# Automatic Generation of Local Repairs for Boolean Programs

Roopsha Samanta, Jyotirmoy V. Deshmukh and E. Allen Emerson

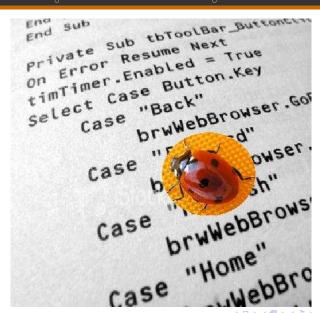
The University of Texas at Austin

November 20, 2008



- Motivation
- Solution Framework
- The Algorithm
- Conclusions





- Program synthesis
  - Correct by construction
  - Detailed specification
  - Hard
  - Also, legacy code?
- Program verification
- Program design + verification + fault localization + repair

- Program synthesis
  - Correct by construction
  - Detailed specification
  - Hard
  - Also, legacy code?
- Program verification
- Program design + verification + fault localization + repair

- Program synthesis
  - Correct by construction
  - Detailed specification
  - Hard

- Also, legacy code?
- Program verification



- Program synthesis
  - Correct by construction
  - Detailed specification
  - Hard

- Also, legacy code?
- Program design + verification + fault localization + repair



- Program synthesis
  - Correct by construction
  - Detailed specification
  - Hard
  - Also, legacy code?
- Program verification
- Program design + verification + fault localization + repair
  - Lengthy, iterative cycle
  - Long, unreadable error traces
  - Essentially manual debugging



- Program synthesis
  - Correct by construction
  - Detailed specification
  - Hard

- Also, legacy code?
- Program design + verification + fault localization + repair
  - Lengthy, iterative cycle
  - Long, unreadable error traces



- Program synthesis
  - Correct by construction
  - Detailed specification
  - Hard

- Also, legacy code?
- Program design + verification + fault localization + repair
  - Lengthy, iterative cycle
  - Long, unreadable error traces
  - Essentially manual debugging



### The repair problem

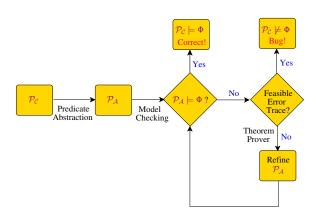
Given a program  $\mathcal{P}$  and a specification  $\Phi$  such that  $\mathcal{P} \nvDash \Phi$ , transform  $\mathcal{P}$  to  $\mathcal{P}'$  such that  $\mathcal{P}' \models \Phi$ 



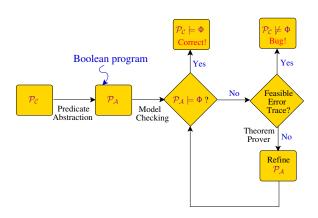
### A specialization ...

- Program model: sequential Boolean programs [BallRaja00]
- Specifications: Hoare-style pre-conditions, post-conditions
- Permissible faults/repairs: incorrect Boolean expressions

#### Iterative (predicate) abstraction-refinement



#### Iterative (predicate) abstraction-refinement



### What are Boolean programs?

- Abstractions of concrete programs
- Boolean variables
- Similar control flow
  - Conditionals, loops, procedures
- Nondeterminism
  - Some expressions may evaluate to either true or false



#### Example C program and Boolean program

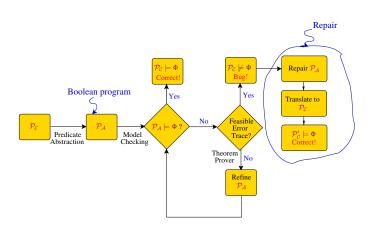
```
while (x>0) {
  x := x-1;
```

```
p: x > 0
while (p) {
  p := nd(0,1);
```

#### Why Boolean programs?

- Used as program abstractions for software verification
  - e.g., SLAM, BLAST, etc.

#### Repair of software programs



#### Why Boolean programs?

- Used as program abstractions for software verification
  - e.g., SLAM, BLAST, etc.
- Could be used to model some Boolean circuits

## Program Syntax

- Prog  $\mathcal{P} = (\mathcal{V}, \text{main}, \mathcal{F})$ 
  - $\mathcal{V} = \{v_1, v_2, \dots, v_t\}$ : Boolean vars
  - main =  $(S, \mathcal{V})$ ,  $S: s_1; s_2; \dots; s_n$ : stmts
  - $\mathcal{F}$ : functions,  $f = (S_f, \mathcal{V}_{f,l})$
- Expr E: Boolean expr + nd(0,1)
  - e.g.,  $v_2 \wedge nd(0,1)$
- Prog stmt s<sub>i</sub>: function call or return or.
  - assignment: v<sub>i</sub> := E;
  - conditional: if (G)  $S_{if}$  else  $S_{else}$ ;
  - loop: while (G)  $S_{body}$ ;



### Program Syntax

- Prog  $\mathcal{P} = (\mathcal{V}, \text{main}, \mathcal{F})$ 
  - $\mathcal{V} = \{v_1, v_2, \dots, v_t\}$ : Boolean vars
  - main =  $(S, \mathcal{V})$ ,  $S: s_1; s_2; \dots; s_n$ : stmts
  - $\mathcal{F}$ : functions,  $f = (S_f, \mathcal{V}_{f,l})$
- Expr E: Boolean expr + nd(0,1)
  - e.g.,  $v_2 \wedge nd(0,1)$
- Prog stmt s<sub>i</sub>: function call or return or.
  - assignment: v<sub>i</sub> := E;

  - loop: while (G)  $S_{body}$ ;



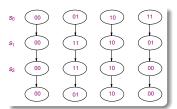
### Program Syntax

- Prog  $\mathcal{P} = (\mathcal{V}, \text{main}, \mathcal{F})$ 
  - $V = \{v_1, v_2, \dots, v_t\}$ : Boolean vars
  - main = (S, V),  $S: s_1; s_2; ...; s_n$ : stmts
  - $\mathcal{F}$ : functions,  $f = (S_f, \mathcal{V}_{f,l})$
- Expr E: Boolean expr + nd(0,1)
  - e.g.,  $v_2 \wedge nd(0,1)$
- Prog stmt s<sub>i</sub>: function call or return or,
  - assignment: v<sub>i</sub> := E;
  - conditional: if (G)  $S_{if}$  else  $S_{else}$ ;
  - loop: while (G)  $S_{body}$ ;



## Example Boolean program and its state diagram

```
swap(x, y) {
   x := x \oplus y;
      := x \wedge y;
   x := x \oplus y;
```



### Specification

#### *Total correctness*: $\langle \varphi \rangle \mathcal{P} \langle \psi \rangle$

ullet Pre-condition  $\varphi$ : init states of  ${\mathcal P}$ 

• Post-condition  $\psi$  : desired final states

 ${\mathcal P}$  is correct *iff* execution of  ${\mathcal P}$ , begun in any state in  $\varphi$ , terminates in a state in  $\psi$ , for *all* choices that  ${\mathcal P}$  might make.



### Specification

#### *Total correctness*: $\langle \varphi \rangle \mathcal{P} \langle \psi \rangle$

- Pre-condition  $\varphi$ : init states of  $\mathcal{P}$
- Post-condition  $\psi$ : desired final states

 $\mathcal{P}$  is correct *iff* execution of  $\mathcal{P}$ , begun in any state in  $\varphi$ , terminates in a state in  $\psi$ , for *all* choices that  $\mathcal{P}$  might make.



### Example Boolean program with its specification

#### $\varphi$ : true

$$x := x \oplus y;$$
  
 $y := x \wedge y;$ 

$$x := x \oplus y;$$

$$\psi: y(f) \equiv x(0) \wedge x(f) \equiv y(0)$$

### Fault/repair model

- Extra statement (needs deletion)
- Assignment: faulty LHS or RHS
- Conditional: faulty G or faulty statement in S<sub>if</sub> or S<sub>else</sub>
- Loop: faulty G or faulty statement in S<sub>body</sub>



#### Fault/repair model

Motivation

- Extra statement (needs deletion)
- Assignment: faulty LHS or RHS
- Conditional: faulty G or faulty statement in S<sub>if</sub> or S<sub>else</sub>
- Loop: faulty G or faulty statement in S<sub>body</sub>

Our algorithm seeks to repair only the above kinds of faults.



The Algorithm

### Algorithm sketch

- Annotation:
  - Propagate  $\varphi$  and  $\psi$  through statements
- Repair:
  - Use annotations to inspect statements for repairability
  - Generate repair if possible

 $\varphi_0$ : true

#### Incorrect Program

$$s_0: x' := x(0) \oplus y(0);$$

$$s_1: y' := x \wedge y;$$

$$s_2$$
: x(f) := x  $\oplus$  y;

$$\psi_3: x(f) \equiv y(0) \land y(f) \equiv x(0)$$

#### $\varphi_0$ : true

#### Incorrect Program

$$s_0: x' := x(0) \oplus y(0);$$
  
 $s_1: y' := x \wedge y;$   
 $s_2: x(f) := x \oplus y;$ 

$$\psi_3: x(f) \equiv y(0) \land y(f) \equiv x(0)$$
Post-condition

propagation

#### $\varphi_0$ : true

#### Incorrect Program

$$S_0: x' := x(0) \oplus y(0);$$

$$S_1: y' := x \wedge y;$$

$$S_2: x(f) := x \oplus y;$$

 $\psi_2$   $\psi_3: x(f) \equiv y(0) \land y(f) \equiv x(0)$ 

propagation

### Program annotation

#### $\varphi_0$ : true

#### Incorrect Program

$$s_0: x' := x(0) \oplus y(0);$$
 $s_1: y' := x \wedge y;$ 
 $s_2: x(f) := x \oplus y;$ 
 $\psi_1$ 
 $\psi_2$ 
 $\psi_3: x(f) \equiv y(0) \wedge y(f) \equiv x(0)$ 

Post-condition

4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 4 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b 6 m b

#### $\varphi_0$ : true

#### Incorrect Program

$$S_0: x' := x(0) \oplus y(0);$$
  
 $S_1: y' := x \wedge y;$   
 $S_2: x(f) := x \oplus y;$ 

$$\psi_1$$
 $\psi_2$ 
 $\psi_3: x(f) \equiv y(0) \land y(f) \equiv x(0)$ 

# Pre-condition propagation

 $\varphi_0$ : true

#### Incorrect Program

$$S_0: x' := x(0) \oplus y(0);$$
  
 $S_1: y' := x \wedge y;$   
 $S_2: x(f) := x \oplus y;$ 

$$\psi_1$$

7 1

$$\psi_2$$

$$\psi_3: x(f) \equiv y(0) \wedge y(f) \equiv x(0)$$



# Pre-condition propagation

 $\varphi_3$ 

#### Incorrect Program

 $\varphi_0: true$   $\left| \begin{array}{c} s_0: x' := x(0) \oplus y(0); \\ s_1: y' := x \wedge y; \end{array} \right|$ 

 $s_2$ : x(f) := x  $\oplus$  y;

 $\psi_{1}$ 

 $\psi_2$ 

 $\psi_2$ 

 $\psi_3: x(f) \equiv y(0) \wedge y(f) \equiv x(0)$ 

Motivation

## Backward propagation of $\psi_i$ through $s_i$

### Weakest pre-condition $wp(s_i, \psi_i)$ :

Set of all *input* states from which  $s_i$  is guaranteed to terminate in  $\psi_i$  for all choices made by  $s_i$ .

The Algorithm 00000

To propagate  $\psi_i$  back through  $s_i$ , compute  $wp(s_i, \psi_i)$ .

#### Details ...

Assignments: 
$$v_j := E$$
;  $\psi_{i-1} = \psi_i [v_i' \to E$ , for each  $m \neq j, v_m' \to v_m]$ 

#### Rule for sequential composition:

$$wp((s_{i-1};s_i),\psi_i) = wp(s_{i-1},wp(s_i,\psi_i))$$

Conditionals: if (G) 
$$S_{if}$$
 else  $S_{else}$ ;  $\psi_{i-1} = (G \Rightarrow wp(S_{if}, \psi_i)) \land (\neg G \Rightarrow wp(S_{else}, \psi_i))$ 

Loops: while (G) 
$$S_{body}$$
;  $\psi_{i-1} = (\psi_i \wedge \neg G) \vee \bigvee_{l=1}^{L} wp(S_{body}, Y_{l-1} \wedge \neg G)$  where,  $Y_0 = \psi_i$ ,  $Y_k = wp(S_{body}, Y_{k-1} \wedge \neg G)$ 

# Forward propagation of $\varphi_{i-1}$ through $s_i$

### Strongest post-condition $sp(s_i, \varphi_{i-1})$ :

Smallest set of *output* states in which  $s_i$  is guaranteed to terminate, starting in  $\varphi_{i-1}$ , for all choices that  $s_i$  might make.

To propagate  $\varphi_{i-1}$  forward through  $s_i$ , compute  $sp(s_i, \varphi_{i-1})$ .



# Example program annotation

#### Pre-condition propagation

φ<sub>0</sub>: true

$$\varphi_1: x' \equiv (x(0) \oplus y(0)) \land y' \equiv y(0)$$

$$\varphi_2$$
:  $x' \equiv (x(0) \oplus y(0)) \land y' \equiv (\neg x(0) \land y(0))$ 

$$\varphi_3: x' \equiv (x(0) \land \neg y(0)) \land y' \equiv (\neg x(0) \land y(0))$$

#### Incorrect Program

$$x' := x(0) \oplus y(0);$$

$$y' := x \wedge y;$$

$$x(f) := x \oplus y;$$

$$\psi_0: y(0) \equiv (x(0) \land \neg y(0)) \land x(0) \equiv (\neg x(0) \land y(0))$$

$$\psi_1 \colon y(0) \equiv (x \land \neg y) \land \\ x(0) \equiv (x \land y)$$

$$\psi_2$$
:  $y(0) \equiv x \oplus y \land x(0) \equiv y$ 

$$\psi_3$$
:  $x(f) \equiv y(0) \land y(f) \equiv x(0)$ 

Post-condition propagation

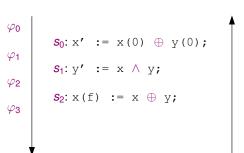
 $\psi_0$ 

 $\psi_2$ 

 $\psi_3$ 

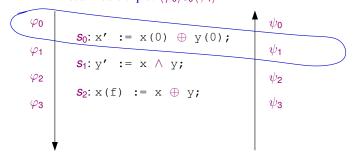
The Algorithm 00000

# Local Hoare triples



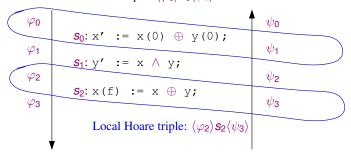
# Local Hoare triples

## Local Hoare triple: $\langle \varphi_0 \rangle s_0 \langle \psi_1 \rangle$



The Algorithm 00000

## Local Hoare triple: $\langle \varphi_0 \rangle s_0 \langle \psi_1 \rangle$



# A key lemma

 $\langle \varphi \rangle \mathcal{P} \langle \psi \rangle$  false  $\Leftrightarrow$  all local Hoare triples false. All local Hoare triples *false* ⇔ some local Hoare triple *false*.

The Algorithm 000000

#### What does this lemma mean for us?

If for some *i*,  $s_i$  can be fixed to make  $\langle \varphi_{i-1} \rangle s_i \langle \psi_i \rangle$  *true*, then we have found  $\mathcal{P}'$  such that  $\langle \varphi \rangle \mathcal{P}' \langle \psi \rangle$ !

The Algorithm 0000000



#### What does this lemma mean for us?

If for some *i*,  $s_i$  can be fixed to make  $\langle \varphi_{i-1} \rangle s_i \langle \psi_i \rangle$  *true*, then we have found  $\mathcal{P}'$  such that  $\langle \varphi \rangle \mathcal{P}' \langle \psi \rangle$ !

The Algorithm 0000000

This is the basis for our repair algorithm.



- Choose promising order



- Choose promising order
- Query stmts in turn for repairability
  - If yes, Repair stmt, return modified program
  - If not, move to next stmt
- If Query fails for all stmts, report failure

- Choose promising order
- Query stmts in turn for repairability
  - If yes, Repair stmt, return modified program

The Algorithm 0000000

- Choose promising order
- Query stmts in turn for repairability
  - If yes, Repair stmt, return modified program
  - If not, move to next stmt

- Choose promising order
- Query stmts in turn for repairability
  - If yes, Repair stmt, return modified program
  - If not, move to next stmt
- If Query fails for all stmts, report failure

## Query for assignment statement

- Let  $\hat{s_i}$ :  $v_i := \exp r$  be potential repair for  $s_i$

The Algorithm 0000000



## Query for assignment statement

- Let  $\hat{s_i}$ :  $v_i := \exp r$  be potential repair for  $s_i$
- Use variable z to denote expr to enable formulation of Quantified Boolean Formula (QBF)

Query returns yes iff following QBF is true for some j:  $\forall v_1(0) \forall v_2(0) \dots \forall v_t(0) \exists z \ \varphi_{i-1} \Rightarrow \psi_{i-1,i}$ 



## Repair for assignment statement

- Let m<sup>th</sup> QBF be true
- Thus,  $\hat{s_i}$ :  $\forall_m := z_i$

$$\forall v_1(0) \forall v_2(0) \dots \forall v_l(0) \exists z \ \underbrace{\varphi_{i-1} \Rightarrow \widehat{\psi}_{i-1,m}}_{\tau}$$

Motivation

The Algorithm 0000000

## Repair for assignment statement

- Let m<sup>th</sup> QBF be true
- Thus,  $\widehat{s_i}$ :  $v_m := Z_i$

$$\forall v_1(0) \forall v_2(0) \dots \forall v_l(0) \exists z \ \underbrace{\varphi_{i-1} \Rightarrow \widehat{\psi}_{i-1,m}}_{}$$



The Algorithm 0000000

Motivation

## Repair for assignment statement

- Let m<sup>th</sup> QBF be true
- Thus,  $\widehat{s_i}$ :  $v_m := z_i$
- How do we obtain z in terms of variables in  $\mathcal{V}$ ?

$$\forall v_1(0) \forall v_2(0) \dots \forall v_t(0) \exists z \quad \underbrace{\varphi_{i-1} \Rightarrow \widehat{\psi}_{i-1,m}}_{T}$$

$$z = T|_{z=1} \text{ is a witness to QBF validity}$$



# Example

#### Pre-condition propagation

 $\varphi_0$ : true

Motivation

$$\varphi_1: x' \equiv (x(0) \oplus y(0)) \land y' \equiv y(0)$$

$$\varphi_2$$
:  $x' \equiv (x(0) \oplus y(0)) \land y' \equiv (\neg x(0) \land y(0))$ 

$$\varphi_3: x' \equiv (x(0) \land \neg y(0)) \land y' \equiv (\neg x(0) \land y(0))$$

#### Incorrect Program

$$x' := x(0) \oplus y(0);$$

$$y' := x \wedge y;$$

$$x(f) := x \oplus y;$$

$$\psi_0: y(0) \equiv (x(0) \land \neg y(0)) \land x(0) \equiv (\neg x(0) \land y(0))$$

$$\psi_1 \colon y(0) \equiv (x \land \neg y) \land \\ x(0) \equiv (x \land y)$$

$$\psi_2$$
:  $y(0) \equiv x \oplus y \land x(0) \equiv y$ 

$$\psi_3$$
:  $x(f) \equiv y(0) \land v(f) \equiv x(0)$ 

Post-condition propagation

QBF for 
$$\widehat{s_2}$$
:  $\forall x(0) \forall y(0) \exists z \ \varphi_1 \Rightarrow \widehat{\psi}_{1,y} = true$   
Synthesized repair:  $y' := x \oplus y$ ;

Motivation

# Worst-case complexity is exponential in # Boolean predicates

In practice, most computations are efficient using BDDs

- Symbolic storage
- Efficient manipulation of pre-/post-conditions
- Efficient computation of fix-points
- Easy QBF validity checking
- Easy cofactor computation



# Complexity

Worst-case complexity is exponential in # Boolean predicates

In practice, most computations are efficient using BDDs

- Symbolic storage
- Efficient manipulation of pre-/post-conditions
- Efficient computation of fix-points
- Easy QBF validity checking
- Easy cofactor computation



#### Extant work

- Error localization based on analyzing error traces: [Zeller02], [Ball+03], [Shen+04], [Groce05]
- Repair of Boolean programs: [Griesmayer+06]
- Sketching: [Solar-Lezama<sup>+</sup>06]
- Repair of circuits using QBFs: [StaberBloem07]
- Dynamic repair of data structures: [DemskyRinard03]



- Novel application of Hoare logic
- Identification of program model, fault model and specification logic for tractable repair algorithm
- Framework for repair without prior fault localization
- Exponentially lower complexity than existing algorithm ([Griesmayer+06]) for our fragment

- Novel application of Hoare logic
- Identification of program model, fault model and specification logic for tractable repair algorithm
- Framework for repair without prior fault localization
- Exponentially lower complexity than existing algorithm ([Griesmayer+06]) for our fragment

- Novel application of Hoare logic
- Identification of program model, fault model and specification logic for tractable repair algorithm
- Framework for repair without prior fault localization

- Novel application of Hoare logic
- Identification of program model, fault model and specification logic for tractable repair algorithm
- Framework for repair without prior fault localization
- Exponentially lower complexity than existing algorithm ([Griesmayer+06]) for our fragment

#### The road ahead ....

- More general fault models
  - e.g., swapped statements, multiple incorrect expressions
- Boolean programs with arbitrary recursion
- Bit-vector programs
  - VHDL or Verilog programs
  - Software programs with small integer domains



## Post-condition propagation

#### Assignments:

E contains nd(0,1):

Compute *conjunction* of wps over  $v'_i := E|_0$  and  $v'_i := E|_1$ 

```
Conditionals: G = nd(0, 1):
Compute wp(S_{if}, \psi_i) \wedge wp(S_{else}, \psi_i)
```

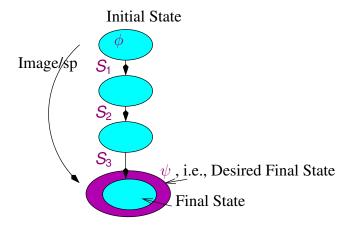
```
Loops: G = nd(0,1):

\psi_{i-1} = false, or,

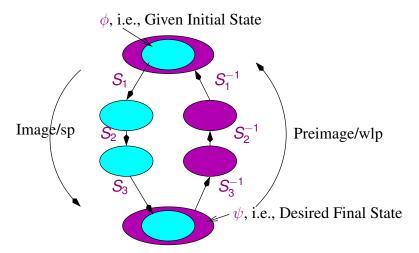
\psi_{i-1} = \bigwedge_{l=0}^{L'} Z_l

Z_0 = \psi_i, Z_k = wp(S_{body}, Z_{k-1})
```

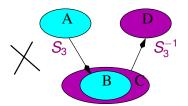
## Proof of lemma

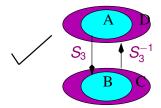


## Proof



## **Proof**





### **Functions**

#### Non-recursive and tail-recursive functions

- Compute functions summaries
- Compute forward summary by sp propagation thru f
- Assume inital pre-condition is  $\bigwedge_y (arg_y \equiv x_y)$
- Compute backward summary by wp propagation thru f
- Assume final post-condition is the return value
- Use summaries for propagation thru the call-site of f
- To repair, replace suspect expression by z
- Reannotate program before solving for z