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Overview

* Cryptography 1s important.
-~ Worth verifying if we can do easily.

* We show that block ciphers can be verified
nearly automatically.

* We handle real implementations in a widely-used
language (Java).



Block ciphers

Encrypt and decrypt using a shared, secret key.
Are the building blocks of larger systems.
Operate on a small amount of data.

- too many inputs for exhaustive testing (at least 2*° for AES)

Many important examples:

- AES, DES, Triple DES, Blowtish, RC6, ...
Very carefully described.



Block Ciphers (cont.)

e Are often structured in terms of rounds.
— Loops can be completely unrolled (10 rounds for 128-bit AES)

* Are often heavily optimized:

- data packed into machine words
~ loops partially unrolled

~ pre-computed partial results stored in lookup tables



Inner loop of “light” AES encrypt

for (r=1;r<ROUNDS - 1;)
{ 10 = mcol((S[C0&255]&255) N ((S[(C1>>8)&255]&255)<<8) A
((S[(C2>>16)&255]&255)<<16) N (S[(C3>>24)&255]<<24)) N KW[r][O];
r]l = mcol((S[C1&255]&255) N ((S[(C2>>8)&255]&255)<<8) A
((S[(C3>>16)&255]&255)<<16) N (S[(CO>>24)&255]<<24)) N KW]r][1];
12 = mcol((S[C2&255]1&255) N ((S[(C3>>8)&255]&255)<<8) A
((S[(CO>>16)&255]&255)<<16) N (S[(C1>>24)&255]<<24)) N KW[r][2];
13 = mcol((S[C3&255]&255) N ((S[(CO>>8)&255]&255)<<8) A
((S[(C1>>16)&255]&255)<<16) N (S[(C2>>24)&255]<<24)) » KW [r++][3];
CO = mcol((S[r0&255]&255) N ((S[(r1>>8)&255]&255)<<8) A
((S[(12>>16)&255]&255)<<16) N (S[(r3>>24)&255]<<24)) N KW[r][0];
C1 = mcol((S[r1&255]&255) N ((S[(12>>8)&255]&255)<<8) A
((S[(r3>>16)&255]&255)<<16) N (S[(r0>>24)&255]<<24)) N KW|r][1];
C2 = mcol((S[r2&255]&255) N ((S[(r3>>8)&255]&255)<<8) A
((S[(10>>16)&255]&255)<<16) N (S[(r1>>24)&255]<<24)) N KW|r][2];
C3 = mcol((S[r3&255]&255) N ((S[(r0>>8)&255]&255)<<8) A
((S[(r1>>16)&255]&255)<<16) N (S[(r2>>24)&255]<<24)) N KW [r++][3];

}



What Our Approach Proves

We don't prove that the cipher 1s unbreakable.

We show the implementation matches:

— a formal specification

- or another implementation

Proves bit-for-bit equivalence.

Complicated by aggressive optimizations and
differences 1n programming idioms.



Inputs to the verification method

Java implementation.
Second Java implementation or formal specification.
Indication of how the bits match up.

Note: No program annotations!



Java code

* (lass files that implement a block cipher

~ main cipher class

~ helper classes

— ancestor classes and interfaces
* Driver program

— Calls the cipher in the usual way



Formal Specifications

Are written in the language of the ACL2 theorem prover

- side-effect-free dialect of Common Lisp
- simple, precise semantics
Closely match the official cipher descriptions
- clarity over efficiency
— unoptimized
Are executable and so can be validated on test cases.

Take a few hours to write and debug.

Can be reused for each implementation.



Two-step proot approach

1. Represent the computations as large mathematical
terms.

— Common language for describing computations.

2. Prove equivalence of the two terms.



Rest of the Talk

Terms and the term simplifier
How to get terms from ACL?2 specifications.
How to get terms from Java byetcode.

How to compare terms.



Mathematical Terms (“DAGSs™)

Are essentially operator trees.
- Leaves are input variables (plaintext, key) or constants.
— Each internal node applies a function to its child nodes.
Represent shared subterms only once.

Are acyclic.

— No loops (but operators can be recursive functions).

Can be large.
- 220,811 nodes for Blowfish after simplification



To simplify terms

Could write code to manipulate terms directly.
Instead, we use:
1. General-purpose term simplifier

— Similar to ACL2's rewriter but handles shared subterms

2. Simplification rules

- ACL?2 theorems
High confidence

Easy to add / change simplifications and turn on/off



Normalization

Equivalent terms should have the same syntactic form.
Crucial to the verification effort.
Often enables further simplifications.

Normalization and bit-blasting suffice to very several
ciphers:

~ Bouncy Castle “light” AES
~ Bouncy Castle RC2

~ Bouncy Castle RC6

~ Bouncy Castle Blowfish

— Bouncy Castle Skipjack

~ Sun RC2

=  Sun Blowfish



From specifications to terms

* The term simplifier:

~ Opens and unrolls function calls.
- Leaves only bit-vector and array operations.

* For a recursive function call, can usually tell whether it
represents the base case or inductive case.



From Java bytecode to terms

* Java has lots of complicated concepts:

- field and method resolution

— allocation of new heap addresses

~ static initializers of classes

— values from the runtime constant pool
~ string interning

~ exceptions

 Want to get rid of all this complexity.

* Want an expression for the output (ciphertext) in terms
of the inputs (plaintext and key).



From Java bytecode to terms (cont.)

Symbolically execute the driver (using a model of the JVM).
Uses the term simplifier to repeatedly step and simplity.

— Simplification helps discharge array bounds checks.

Amounts to unrolling all loops and inlining all method calls.

Can extract bit-accurate results of long JVM executions (tens of
thousands of instructions)

Based on the ACL2 approach of Moore et. al. but

— handles shared subterms.

- handles conditional branches smartly.



Proving equivalence of terms

Given two terms with the same input variables:
Build an equality term (similar to a miter circuit).
Prove the equality 1s true for all inputs.
Phases:

— Apply word-level simplifications

- Bit-blast and simplify again

— Perform SAT-based equivalence checking

* run tests to find internal equivalences

* call STP to prove them



Word-level simplification

Couldn't just give the miter to SAT-based equivalence checker.

~ We tried STP and ABC and they ran for days.
We found that it's crucial to simplify first.
One should simplify before bit-blasting
~ because bit-blasting can obscure interesting structures

Ex: Associativity / commutativity of 32-bit addition

— clear at the word level

~ not clear after additions have been blasted into ripple-carry
adders!

We identified several crucial word-level simplifications for block
ciphers.



Concatenation Example

Concatenation helps pack bytes into machine words.

Ex: To concatenate:

10101010
11110000

shift one operand and OR the results:

1010101000000000
0000000011110000

1010101011110000

The shifts introduce zeros. We never OR two ones together.
So we could also use XOR or addition instead.



Concatenation Example

Three different idioms (combine using OR, XOR, ADD)
Rewrite all three to use a concatenation operator

- Unique representation.
- Reflects what's really going on.

Rules are a bit tricky

— Require the presence of zeros so that we never combine two ones
- Trickier when more than two values are being concatenated.

Could always just bit-blast these operations away, but better to work at
the word level.



Bit rotations

Similar to shifts, but the bits “wrap around.”
No JVM bytecode for rotation.

Common 1diom: two shifts followed by a
combination (OR, XOR, or ADD).

“Variable rotations™ are especially hard.



Variable Rotations

Rotation amount 1s not a constant but depends on inputs.
Key feature of RC6 block cipher.
Cannot directly bit-blast to send to SAT.

~ Would need to split into cases, one for each shift amount.
— Didn't work well for RC6.

Want to normalize.
Solution: introduce LEFTROTATE operator

~ Rules to recognize the common 1dioms

- RC6 miter equality simplifies to TRUE



Lookup tables

Replace sequences of logical operations, for speed.
Appear as array subterms with constant elements.

Lookups should be turned back into logic to match the
specs.

— Usually the logic will involve XOREs.
Our approach:

— Blast the tables to handle each bit position of the
elements separately.

- Look for index bits that are irrelevant or XORed 1n.



Lookup table example

Based on a real block cipher operation:

Consider a three-bit quantity: X =X X X
Want to compute:
- (X2 ® Xl) @ (x2 ® XO) @ (X1 ® XO)

XORing two of the bits would require several
operations: shift, XOR, mask, shift result into
position.



Lookup table example (cont.)

Could simply compute (x, ® x ) @ (X, ® X ) @ (X & X )
from x x X using the table:

000] = 00000000
001] = 00000011
010] =00000101
011] =00000110
[100] = 00000110
101] = 00000101
110] = 00000011
111] =00000000

= Baw Baw Baw N Bar Bar Bar




o Bar Ber Bar Bae Bar Bar Bar

(000
001]
010]
011]
[100]
101
[110]

111

Lookup table example (cont.)

= 00000000
= 00000011
= 00000101
= 00000110
= 00000110
= 00000101
= 00000011
= 00000000

* Want to turn the table back into logic
* Bit-blast the table into single-bit tables

~ One table per column.

— A lookup in T 1s now a concatenation
of 8 lookups 1n the 1-bit tables.

* Recognize tables where the data values
are all the same:

— First 5 columns of T contain only Os.

— Lookup into a table of O's returns 0.



TO
TO
TO
TO
TO
TO
TO
TO

000] =
001] =
010]
011]
[100]
101] =
[110]
[111]

Lookup table example (cont.)

* Recognize when tables have irrelevant index bits

- TO does not depend on x,

— First and second halves of the table are the
same.

* Recognize when table values have index bits
XORed 1n.

- TO has X, XORed in

- When x_ goes from 0 to 1, the table value

always flips.

« The value of TO[X X X | is (X1 ® XO).



Handling XORs

e XOR 1s associative and commutative.

* For a given set of values, there are many equivalent nested XOR
trees.

* Other XOR properties:
—yoy=0
“ye0l=y
- y® not(y) =1 (equivalently, not(y) =1 @ y)



Normalizing XORs (cont.)

* We normalize XOR nests to have the following properties:

- All XOR operations are binary and associated to the right.

~ Values being XORed are sorted (by node number, with
constants at the front)

- Pairs of the same value are removed.

— Multiple constants are XORed together, and a constant of O 1s
dropped.

— Negations of values being XORed are turned into XORs with
ones. (The ones are pulled to the front and combined with
other constants.)

* Result: Equivalent XOR nests are made syntactically equal.



Equivalence checking phase

* Applied if sitmplifications do not reduce the miter
equality to TRUE.

- Simplifications will help this phase succeed.

* Terms to be proved equivalent are large (tens of
thousands of nodes).

~ Usually cannot simply hand off to STP.



Finding internal correspondences

Run random test cases.

Nodes that agree on all test cases are considered to be “probably
equal.”

Sweep up the DAG, proving and merging probably equal nodes
— Very similar to SAT-sweeping / fraiging

Breaks down the large equivalence proof down into a sequence of
smaller ones.

(We also find “probably constant” nodes.)



Finding internal correspondences
(cont.)

* Works well for block ciphers

— Typically a series of rounds.
- Computation of the rounds may differ.
- But implementations typically match up between rounds.

* For block ciphers, a few dozen to a few hundred test cases suffice.



Proving two nodes equal

e Call STP

~ decision procedure for bit-vectors and arrays
~ developed by Prof. Dill and Vijay Ganesh

* We avoid sending huge goals to STP.
* Cut the proofs.

— Heuristically replace large subterms with new
variables (“primary inputs”).

~ Is sound because the resulting goal 1s more general.



Proving the equalities

* If the cut equivalence proof fails, the nodes might actually be equivalent
(known problem: false negatives).

* We try less and less aggressive cuts

- Until STP proves one of the goals or reports a counterexample on the
full formula.

* Block ciphers don't lead to many false negatives

- A false negative 1s an infeasible valuation for the variables along a cut.

— But block cipher state nodes can usually assume any combination of
values.



Results

* Sun's implementation of the Java Cryptography
Extension:

— package com.sun.crypto.provider

~ Vertified all ciphers
* AES, DES, Triple DES, Blowfish, RC2

* Open source Bouncy Castle project:

- package org.bouncycastle.crypto

~ Verified AES (3 implementations), Blowfish, DES,
Triple DES, RC2, RC6, Skipjack



Results (cont.)

Each cipher proved equivalent to a formal
mathematical spec., for all inputs and all keys of
the given length.

Some proofs performed between Sun and Bouncy
Castle implementations of the same cipher.

~ no formal specification required

Found no correctness bugs.

Increased confidence 1n correctness.



Results (cont.)

e For AES,

— 4 implementations

e Sun

29 ¢¢

* 3 from Bouncy Castle: “light,” “regular,” and “fast”
— 2 operations

 encrypt and decrypt
- 3 key lengths

* 128, 192, and 256 bits

- 24 (4 x 2 x 3) total proofs



Results (cont.)

* Most proofs take a few minutes to a few hours.

e Terms have tens of thousands to hundreds of
thousands of nodes.



Latest Example: Skipjack

* Early examples were done 1n parallel with tool
development.

- Hard to estimate effort.
* Skipjack took less than three hours, including:

- writing and debugging the formal spec

— doing the equivalence proof



Cryptographic hash functions

Take a message of essentially any length and compute a
fixed-size digest (hash).

Ex: MD5 and SHA-1
Not directly amenable to our methods

~ Input size not fixed.
- Loop iterations counts unknown.

Can use our method 1f we fix the message length.

Verified MD5 and SHA-1 from Bouncy Castle for 32-bit
and 512-bit messages.




Related Work

* Standard approach to block cipher validation 1s testing.

— NIST provides a test suite.
— Accredited labs certify putative AES implementations.

* But there are too many inputs to test

- at least 2%° for AES



Related work (cont.)

* Functional Correctness Proofs of Encryption Algorithms (Duan, Hurd,
L1, Owens, Slind, Zhang)

- Used an interactive theorem prover to prove inversion of several
block ciphers specified in higher order logic.

- Seems to require significant manual effort to guide the prover.
— Inversion property is weak

 Satisfied by trivial insecure cipher
* Ignores key expansion

— Does not verify pre-existing implementations.

* Implemenations written in the native language of the theorem
prover



Related work (cont.)

e Toma and Borrione used the ACL2 theorem

prover to verify a hardware implementation of
SHA-1

~- Seemed to require manual effort to guide the prover.



Related work (cont.)

* Cryptol language from Galois Connections.

— Can be compiled down to an implementation using
verified compiler transformations.
* (Same approach might apply to the ciphers of Duan, et. al.)

— Requires the use of the correct by construction
framework.

— Doesn't check pre-existing implementations.



Related Work (cont.)

* Formal Verification by Reverse Synthesis (Yin,
Knight, Nguyen, Weimer)

- Used a tool called Echo to verity an AES
implementation.

~ Transforms the code by undoing optimizations.
— Seems less automatic than our approach.

— User must specily some of the transformations:

* Must find instances of work packing.

* Must specify the patterns encoded in lookup tables.



Related Work (cont.)

Sean Weaver has proposed a verification method
similar to our equivalence checking phase.

— Finds probable equivalences using test cases.
— Calls a SAT solver.

Not published (described 1n slides online)
Verified an AES implementation.

Doesn't seem to have tried other ciphers

- AES was among the easiest of the ones we tried.



Related Work (cont.)

Combinational equivalence checking

— Use of random test cases to find equalities (Berman and Trevillyan, 1989)
— Prove equivalences bottom-up (also done by Kuehlmann)

* SAT-sweeping / fraiging
- BDDs

* give equivalent computations the same representation
* but may take exponential space and are sensitive to variable ordering

~— Our word-level simplification:

* isn't guaranteed to normalize

* but works well in practice



Conclusion

* We've demonstrated the feasibility of highly
automated proofs of block cipher
implementations.

* Strong correctness results (bit for bit equivalence)

e Minimal effort.



Future Work

* Consider languages other than Java
- C, hardware, ...
* Handle loops without unrolling:

~ Run test cases to find probable invariants.

~ Would let us verify the hash functions for all message
lengths.
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The End!



Example: AES encryption

* Input:
- 128 bits of plaintext
- 128, 192, or 256 bit key
* Qutput: 128 bits of ciphertext

* Described in FIPS-197 (Federal Information
Processing Standard).

— Block ciphers are usually very well described.



Simplification rule examples

(defthm bitand-of-0-argl
(equal (bitand 0 x)
0))

(defthm bvor-of-shl-and-shr-becomes—-leftrotate32-1
(lmplies (and (equal 0 (bvplus 5 amt amt2))
(unsigned-byte-p 5 amt)
(unsigned-byte-p 5 amt2))
(equal (bvor 32 (shl 32 x amt)
(shr 32 x amt2))
(leftrotate32 amt x))))



Characteristics of block cipher code

e Bit rotations with non-constant rotation amounts

— Can't just bit-blast and send to STP

* Constant arrays as lookup tables

— sequences of logical operations are replaced with table lookups
* Lots of XORs

— SAT-based tools often handle XOR poorly



Breaking down the equivalence proot

* Repeatedly select a pair of probably equal nodes
- Try to prove them equal (using STP).

— If the proof succeeds, “merge” the nodes:

* Choose a representative.
* Change all parents of the other node to use the representative.

- If the proof fails (the nodes weren't equal), report the failure,
don't merge, and continue.

* Sweep up the term, proving and merging from the leaves to the root.

* Eventually, the top nodes of the two implementations merge and the
top equality becomes TRUE.
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