
 1

Industrial Strength Refinement Checking

Jesse Bingham, John Erickson,
Gaurav Singh, and Flemming Andersen
Intel IAG
FMCAD 2009

 2

Introduction

 Standard approach to FV of HW protocols
 Develop high level model (HLM) in guarded-command-

like language (eg Murphi, TLA, Spin etc)
 Write invariants, e.g. cache coherence
 Model check as big as you can

 So the HLM is golden, but what about the
implementation (RTL)?
 Ideal: prove that RTL implements HLM… hard!
 Our solution: test that RTL implements HLM during

dynamic simulation
 check == test in this talk/paper

 3

Key point #1

The ingredients needed for
equivalence testing are also

needed to prove implementation.

⇒ might as well start with testing

 4

What should Implements Mean?

What does it mean for RTL to implement HLM? They
have different
 execution semantics
 state variables/representations
 rule atomicity (HLM has more)
 rule concurrency (RTL has more)

Not always clear [Vardi FMCAD09]
For our domain, we found a notion we call behavioral

refinement appropriate…
 Similar to notion of Bluespec and also super-scalar

processor verification literature

 5

RTL Behavior
(i.e. simulation)

…

one RTL clock cyclereset state

Behavioral Refinement

 6

Murphi Behavior

RTL Behavior …

one RTL clock cycle

…

reset state

initial state a rule fires

RTL Behavior
(i.e. simulation)

Murphi Behavior
(witness)

Behavioral Refinement

 7

Murphi Behavior

RTL Behavior …

one RTL clock cycle

…

reset state

initial state

Refinement
map

a rule fires

RTL Behavior
(i.e. simulation)

Murphi Behavior
(witness)

Behavioral Refinement

 8

Murphi Behavior
(witness)

RTL Behavior …

one RTL clock cycle

…

reset state

initial state

Refinement
map

Each RTL clock cycle corresponds to
zero or more rules firing

a rule fires

RTL Behavior
(i.e. simulation)

Behavioral Refinement

 9

How Refinement Checker Works

Idea: at each RTL cycle, select what sequence of
rules are about to fire

RTL simulation r…

 10

How Refinement Checker Works

Idea: at each RTL cycle, select what sequence of
rules are about to fire

Murphi

RTL simulation r

RM(r)…

…

 11

How Refinement Checker Works

Idea: at each RTL cycle, select what sequence of
rules are about to fire

Murphi

RTL simulation

…

r

RM(r) Next…

…

Rule selection

 12

Murphi

RTL simulation

How Refinement Checker Works

…

r

RM(r)

r′

RM(r′) =?

Next…

…

Rule selection

Idea: at each RTL cycle, select what sequence of
rules are about to fire

 13

Cache
Controller

Main Memory

CPU

Example: Toy Cache Controller

 14

… … …
State

CacheArray

Cpu2Cache

Cache2Mem

Invalid

Dirty

Clean

0xC54

0x6D7 0x01

0x823E

Addr Data

Toy Cache in Murphi

 15

Ruleset i : CacheIndex “Evict"
 CacheArray[i].State != Invalid
==>
 if (CacheArray[i].State == Dirty) begin
 Cache2Mem.opcode := WriteBack;
 Cache2Mem.Addr = CacheArray[i].Addr;
 Cache2Mem.Data = CacheArray[i].Data;
 end;
 CacheArray[i].State := Invalid;
end

Eviction

 16

Ruleset i : CacheIndex “Recv_Store"
 Cpu2Cache.opcode = Store &
 ((CacheArray[i].State != Invalid &
 CacheArray[i].Addr = Cpu2Cache.Addr) |
 (addr_misses_in_cache(Cpu2Cache.Addr) &
 CacheArray[i].State = Invalid)))
==>
 CacheArray[i].Data := Cpu2Cache.Data;
 CacheArray[i].State := Dirty;
 Absorb(Cpu2Cache);
end

Receiving a Store Request

 17

Cache Controller RTL

Cache State
& Addr Array

Eviction
Logic

Hit?
Pipe stage 1

Pipe stage 2

Cache Data
Array

Cpu2Cache

Cpu2Mem

 18

Cache State
& Addr Array

Eviction
Logic

Hit?
Pipe stage 1

Pipe stage 2

Store(A0,D0)

Cache Data
Array

Dirty,A1
Store(A0,D0)

Store(A0,D0)WriteBack(A1,D1)

D1Dirty,A0 D0

WriteBack(A1,D1)

Store

Evict
Example RTL Behavior

 19

Pipelining causes rules that are
atomic in Murphi to be non-atomic in

the RTL…

This non-atomicity is resolved by the
refinement map & history variables

Key point #2

 20

Murphi semantics fire one rule at a time,
while RTL has true rule concurrency.

This is resolved by rule selection,
which picks a sequence of Murphi rules

to fire @ each RTL clock cycle

Key point #3

 21

Example with Refinement Checker

Cache State
& Addr ArrayPipe stage 1

Pipe stage 2

Store(A0,D0)

Cache
Data Array

Dirty,A1
Store(A0,D0)

Store(A0,D0)WriteBack(A1,D1)

D1Dirty,A0 D0

WriteBack(A1,D1)

HLM

RTL

Evict RecvStore

 22

BTW: Everything’s System Verilog

RTL design under verification
Test stimulus
Refinement Map
Rule Selection
High Level Model

 in consultation with Architects
compiled into SV by a tool mu2sv

HW designers

HW validators

Us (FV team)

Paper gives disciplined
approach to writing SV
code for these buggers

⇒ any off-the-shelf SV simulator works

 23

mu2sv

 Translates a Murphi model into SV
 Typedefs, procedures, functions, procedures,

invariants
 State variables get wrapped in a record type called
MURPHI_STATE

 Murphi rule R becomes SV function

 function MURPHI_STATE R_sv(MURPHI_STATE ms,...);

 Errors if invoked when R’s guard is false in ms
 Rule coverage logging

 Valuable feedback for test-writers

 24

Inspiration

• S. Tasiran, Y. Yu, and B. Batson, Linking
simulation with formal verification at a higher
level. IEEE DToC, 2004.
• Used TLA+ & linked TLC model checker to simulation

engine
• Done as research after the project was complete
• Showed that subtle bug would have been caught

 25

Application: Hierarchical Cache Protocol

Core
cache

Core
cache

Core
cache

Level1
Protocol
Manager

QPI
Home
Agent

Core
cache

Core
cache

Core
cache

• 3 person months to
develop

• Caught 8 bugs during
just 1 month of
deployment!

• Was not deployed due
to chip cancellation ;-(

• Could allow up to 8
murphi rules to fire per
RTL clock

Level1
Protocol
Manager

	Industrial Strength Refinement Checking
	Introduction
	Key point #1
	What should Implements Mean?
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	How Refinement Checker Works
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	BTW: Everything’s System Verilog
	mu2sv
	Inspiration
	Application: Hierarchical Cache Protocol

