Industrial Strength Refinement Checking

Jesse Bingham, John Erickson,
Gaurav Singh, and Flemming Andersen

Intel IAG
FMCAD 2009

Introduction

® Standard approach to FV of HW protocols

Develop high level model (HLM) in guarded-command-
like language (eg Murphi, TLA, Spin etc)

Write invariants, e.g. cache coherence
Model check as big as you can

® So the HLM is golden, but what about the
implementation (RTL)?
|deal: prove that RTL implements HLM... hard!

Our solution: test that RTL implements HLM during
dynamic simulation

rheck == fest in this talk/naner

Key point #1

The ingredients needed for
equivalence testing are also
needed to prove implementation.

(1 might as well start with testing

What should Implements Mean?

® \WWhat does it mean for RTL to implement HLM? They
have different

execution semantics

state variables/representations
rule atomicity (HLM has more)
rule concurrency (RTL has more)

® Not always clear [Vardi FMCADOQ9]
® For our domain, we found a notion we call behavioral
refinement appropriate...

Similar to notion of Bluespec and also super-scalar
processor verification literature

Behavioral Refinement

(i.e. simulation)
reset state one RTL clock cycle

RTL Behavior /g) > >QX>Q » ... O—>0O—

Behavioral Refinement

initial state a rule fires

Murphi Behavior O—>O—>O—>O '/’O o> OO

(witness)

RTL Behavior /g) > >QX>Q » ... O—>0O—

(i.e. simulation)
reset state one RTL clock cycle

Behavioral Refinement

initial state a rule fires

/

Murphi Behavior(\‘ >0 ’CA) >0 ;Q_’ 9_’9_’

(witness)

- Refinement ;
] map -

RTL Behavior O—>0O—>O+—>O— .- O—>O—*
(i.e. simulation) \
reset state one RTL clock cycle

Behavioral Refinement

initial state a rule fires

/

Murphi Behavior(\‘ > ’O > () ;Q_’ Q_’O_’

(witness)

-: Reﬂnement
map 3

RTL Behavior O—=2>O—>Ox*(O— .- O>O—*
(i.e. simulation) \
reset state one RTL clock cycle

Each RTL clock cycle corresponds to
zero or more rules firing

How Refinement Checker Works

Idea: at each RTL cycle, select what sequence of
rules are about to fire

RTL simulation --- 4’@

How Refinement Checker Works

Idea: at each RTL cycle, select what sequence of
rules are about to fire

@

I‘
£
*
*
*

RTL simulation --- 4’@

10

How Refinement Checker Works

Idea: at each RTL cycle, select what sequence of
rules are about to fire

Rule selection

r — N\
Murphi =-- Q—>

»

.
£
*

RTL simulation --- 4’@

11

How Refinement Checker Works

Idea: at each RTL cycle, select what sequence of
rules are about to fire

Rule selection

A
r Y

. Q—»

RTL simulation - -- 4’@—’@

12

Example: Toy Cache Controller

I

Cache
Controller

|

Main Memory

13

Toy Cache in Murphi

CacheArray <

State

CpuZ2Cache

l

Invalid

Dirty

l

Cache?Mem

14

Eviction

Ruleset 1 : CacheIndex “Evict"
CacheArray[i] .State !'= Invalid

if (CacheArray[i].State == Dirty) begin
Cache2Mem.opcode := WriteBack;
Cache2Mem.Addr = CacheArray[i] .Addr;
Cache2Mem.Data = CacheArray[i] .Data;
end;
CacheArray[i] .State := Invalid;
end

15

Recelving a Store Request

Ruleset i : CacheIndex “Recv_Store"
Cpu2Cache.opcode = Store &
((CacheArray[i] .State !'= Invalid &
CacheArray|[i] .Addr = Cpu2Cache.Addr) |
(addr misses in cache (Cpu2Cache.Addr) &
CacheArray[i] .State = Invalid)))

CacheArray[i] .Data := Cpu2Cache.Data;
CacheArray[i] .State := Dirty;
Absorb (Cpu2Cache) ;

end

16

Cache Controller RTL

Cpu2Cache

Pipe stage 1,

Hit?

Cache State
& Addr Array

A

l

A

Eviction
Logic

Pipe stage 2 l

Y

Cache Data
Array

A

Cpu2Mem v

17

Example RTL Behavior ==&

Pipe stage 1| Cache State Cache Data
Hit? I & Addr Array Array
Eviction >
Logic
Pipe stage 2

Key point #2

Pipelining causes rules that are
atomic in Murphi to be non-atomic Iin
the RTL...

This non-atomicity is resolved by the
refinement map & history variables

19

Key point #3

Murphi semantics fire one rule at a time,
while RTL has true rule concurrency.

This is resolved by rule selection,
which picks a sequence of Murphi rules
to fire @ each RTL clock cycle

20

Example with Refinement Checker

Evict RecvStore

Cache State Cache
Pipe stage 1 | & Addr Array Data Array

Sre(A0D0) | g | Do

Pipe stage 2

21

BTW: Everything's System Verilog

Hwaesigners { - ® RTL design under verification
HW vaIidators{ ® TeSt St|mUIUS
@ Reﬂnement Map Paper gives disciplined

/
> approach to writing SV

@ Ru |e Selection code for these buggers

Us (FVteam)< O ngh Level Model

In consultation with Architects
\ compiled into SV by a tool mu2sv

[1 any off-the-shelf SV simulator works

22

® Translates a Murphi model into SV

® Typedefs, procedures, functions, procedures,
Invariants

® State variables get wrapped in a record type called

MURPHI STATE
® Murphi rule R becomes SV function

function MURPHI STATE R sv (MURPHI STATE ms,...);

Errors if invoked when R’s guard is false in ms

® Rule coverage logging
Valuable feedback for test-writers

23

Inspiration

- S. Tasiran, Y. Yu, and B. Batson, Linking
simulation with formal verification at a higher
level. IEEE DToC, 2004.

Used TLA+ & linked TLC model checker to simulation
engine

Done as research after the project was complete
Showed that subtle bug would have been caught

24

Application: Hierarchical Cache Protocol

Core ™ Core M Core Core ™ Core M Core
cache | |cache| | cache cache | |cache | | cache

Level1 Level1
Protocol Protocol
Manager Manager

QPI
Home

Agen
< Was not deployed due

to chip cancellation ;-(

Could allow up to 8
murphi rules to fire per
RTL clock

3 person months to
develop

Caught 8 bugs during
just 1 month of
deployment!

25

	Industrial Strength Refinement Checking
	Introduction
	Key point #1
	What should Implements Mean?
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	How Refinement Checker Works
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	BTW: Everything’s System Verilog
	mu2sv
	Inspiration
	Application: Hierarchical Cache Protocol

