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OverviewOverview

Complete Functional Verification is a self-dependent verification 
approach.

� Industrially applied 

� For digital synchronous modules (up to ~ 200 k LOC)

� Formal only

� Verifies entire functionality of a module� Verifies entire functionality of a module

� Proves that functionality is completely verified

� Alternative to simulation based verification approaches for 
modules, e.g., coverage driven random pattern simulation



Quality/Cost Metrics For VerificationQuality/Cost Metrics For Verification

� Final circuit quality

� Verification cost 

◦ Human effort

◦ Hardware and software usage

� Integration into the industrial environment

◦ Processes◦ Processes

◦ Mindset



Components of Complete Functional Components of Complete Functional 
VerificationVerification

Methodology

Operation Properties

Interval Property 
Checker

Completeness 
Checker

Compositional 
Completeness 

Checker



OPERATIONOPERATION
PROPERTIESPROPERTIESPROPERTIESPROPERTIES

J. Bormann, S. Beyer, A. Maggiore, M. Siegel, S. Skalberg, T. Blackmore, F. Bruno, "Complete 
Formal Verification of TriCore2 and Other Processors," DVCon 2007



Operation PropertiesOperation Properties

� Observation:  Inputs at specific points in 
time determine circuit behavior over 
several succeeding clock cycles.

◦ Controller: In the idle state the inputs 
determine which type of transaction is to 
be executed next.

◦ Pipelines: Inputs to first pipe stage 

Idle

Pipelines: Inputs to first pipe stage 
determine behavior of other stages at later 
clock cycles. 

� Example operations:

◦ Requests of a bus bridge

◦ Arbitration cycle

◦ Instruction execution of processor

◦ In general: Incoming transaction makes circuit switch from one 
conceptual state to another while producing outgoing 
transaction(s). 



Hardware ModelHardware Model

� Next state function Δ

� Output function Λ of primary outputs

� Set Σ of  reset states

� Traces: 

∊ Σ Δ

I

O

Σ

� Traces: 
◦ Inputs I 

◦ States S S0 ∊ Σ, Sn+1  = Δ(Sn, In)

◦ Outputs O On = Λ (Sn, In)

� Automaton M is predicate M(I,S, O) about 
traces

S

Δ, Λ 



Operation PropertiesOperation Properties

A timed Boolean expression is a LTL  formula using only the operators

P ∧∧∧∧ Q | P ∨∨∨∨Q | ~P | X(P)

An operation property is a LTL formula of the following form

G (SC ∧∧∧∧ IC ⇒⇒⇒⇒ OC ∧∧∧∧ Xtend EC)

with SC, IC, OC and EC being timed Boolean expressions.

∧∧∧∧ ⇒⇒⇒⇒ ∧∧∧∧

with SC, IC, OC and EC being timed Boolean expressions.

The sub-formulas of an operation property specify the following conditions:

SC: Start State Condition EC: End state Condition
IC: Input Condition OC: Output Condition
tend: duration of the operation

An operation property specifies a behavior where the design makes a transition 
between conceptual states specified by SC and EC within tend clock cycles. This 
transition is triggered by inputs fulfilling IC and produces outputs fulfilling OC.



User-level Language

Syntactic sugar: bounded operators, such as

Time points

t (universally quantified time point)

Ti = Ti-1 + ni .. mi awaits pi (Time of external event pi,  bounded)

Bounded operatorsBounded operators

at Ti + k: p; (p holds at time Ti + k)

during [Ti + k, Tj + v]: p; (p holds always in the interval)

within [Ti + k, Tj + v]: p; (p holds once in the interval)

prev(expr), next(expr) (evaluate expr at previous / next time point)

Can be combined with additional techniques for unbounded operators 
introduced by

Ti ≥Ti-1 + ni awaits pi (Time of external event pi, potentially ∞)



IC

SC

EC

OC

tend

timepoints T1 ≥ t + 2, awaits ack_i = 1;

at t: state = idle; during [t+1, T1]: req_o = 1;

at t: start_i = 1; at TI+1: d_o = prev(d_i);

at T1: error_i = 0; during [T1+1, T1+2]: req_o = 0;

at  T1+2: state = term;

ExampleExample

idle

⇒

start_i

term

t t+1 T1 T1+2

idle termstate

start_i

req_o

ack_i

error_i

d_i

d_o = prev(d_i)

start_i

! ack_i

ack_i ∧
! error_i



COMPLETENESS COMPLETENESS 
CHECKERCHECKERCHECKERCHECKER

Literature: Bormann, Busch: Method For The Determination of the Quality of a Set of 
Properties, Usable for the Verification And Specification of Circuits, 
US Patent 7571398,  priority Sep. 2005, granted Aug 4th, 2009



Transaction and Operation AutomataTransaction and Operation Automata

� Automata with transitions formed by 
operations

◦ Conceptual states = start and end states

◦ The conceptual reset state contains Σ

� Transaction Automaton

◦ Transactions treated atomically

◦ Similar to transaction level models in 

Idle act

In = configuring
write

Out = read
& write

◦ Similar to transaction level models in 
simulation

� Operation Automaton

◦ Transitions = operation properties

◦ Cycle accurate representation

◦ Less abstraction but more structure

� Complete Functional Verification is an 
equivalence verification between RTL 
model and the operation automaton

Idle act



Completeness CriteriumCompleteness Criterium
Properties
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� A set of properties is called complete, if any two circuits  fulfilling the 
properties  are sequentially equivalent. 

� Sequential equivalence check is computationally hard, exacerbated by the 
indirect description of the circuits by properties. 

� Operation properties allow to use inductive argument that can be checked  
quickly and implies completeness.
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Basic IdeaBasic Idea

state

insig

outsig1

outsig2

� Basic idea: For every input trace, there must be a chain of operation 
properties P0,P1,… that uniquely determines the output trace:

� User input for ensuring the existence of chains:

◦ Properties Pi and their duration         

◦ Operation Graph
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Chain Building ChecksChain Building Checks

� Successor Test: For every property P that is 
followed by Q in the Operation Graph

� Case Split Test: For every property P and all 
properties Q1, Q2, Q3, … that follow P in the 

ECP

P

SCQ

Q
Q

free

P

free SCEC ⇒

properties Q1, Q2, Q3, … that follow P in the 
Operation Graph check that the input conditions 
of Q1, Q2, Q3, … cover all possible input traces, 
i.e.,

� It follows by induction that a chain of properties 
exists for every input trace. 

Q1
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Q3

Q4

P
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free
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free
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Determination CheckDetermination Check

� User specifies determination window woutsig for every output signal and for 
every property. 

� For every property P in the Operation  Graph and every output signal, 
prove on two sets of free variables

� Prove that the determination windows are adjacent for every property P 
and every property Q that can follow P in the operation automaton.
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and every property Q that can follow P in the operation automaton.

state

insig

outsig1

outsig2

P
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P
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Q
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Q
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ProofProof ofof AssertionsAssertions

� Assertions capture important verification goals about all 
operations.

� Use complete property set as design-specific induction scheme.

� Prove assertion A by

AOCIC
P

W

PP τ
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X

∈
∀⇒∧

for user-defined time windows WP that are adjacent in every 
property chain
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Refined Completeness CriterionRefined Completeness Criterion

� Use constraints to restrict completeness checking to practically relevant 
input stimuli. 

� Use determination constraints (DC) and determination assumptions (DA) 
to specify valid data inputs or valid data outputs.

� Notation:

if g then determined(expr); end if; = 

� Protocol description by constraints and determination constraints / 

( )( )exprexprgg =∨¬∧¬ ~

� Protocol description by constraints and determination constraints / 
assertions and determination assertions can describe data transport. 
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INTERVAL PROPERTY INTERVAL PROPERTY 

CHECKINGCHECKINGCHECKINGCHECKING

Literature: M. D. Nguyen, M. Thalmaier, M. Wedler, J. Bormann, D. Stoffel, W. Kunz: 
Unbounded Protocol Compliance Verification Using Interval Property Checking 
With Invariants", IEEE TCAD, Nov. 2008



„„IntervalInterval Property Property CheckingChecking (IPC)“:(IPC)“:
PProving roving OOperation peration PProperties on roperties on BBounded ounded CCircuit ircuit MModelodel
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IPC handles large designs (e.g. complete processor core)

◦ Operation properties can be proven efficiently by SAT/SMT

◦ Operation properties lead to less difficult reachability problems

state

insig

outsig1

outsig2



Characteristics of IPC

� Operation properties can be proven efficiently by SAT/SMT

◦ Proof with arbitray initial state guarantees unbounded validity

◦ Size of iterative circuit model depends on inspection window only

◦ Conceptual start state and input conditions simplify SAT model 
significantly

� Operation properties lead to less difficult reachability problems

◦ Reachability information related to conceptual states is intuitive and 
known to the designer

◦ Approximate reachability computation can exploit conceptual states

◦ User may safely provide additional reachability information

◦ … but there are doomed circuits!



COMPOSITIONALCOMPOSITIONAL
COMPLETENESSCOMPLETENESSCOMPLETENESSCOMPLETENESS
CHECKERCHECKER

Literature: Bormann: Vollständige funktionale Verifikation (Complete functional 
Verification), Dissertation, University of Kaiserslautern, 2009



ProblemProblem

Given two circuits       and      , each completely verified with 

◦ a property set      and       , 

◦ constraints             , determination constraints                   ,  

◦ assertions              and determination assertions 

ii CC ′∧ ii CDDC ′∧

ii AA ′∧ ii ADDA ′∧

11
CDC ′′,

22
CDC ′′ ,

1
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2
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DCC ,

11
ADA ′′,
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DAA ,

22
DCC ,

22
ADA ′′ ,

22
DAA ,

Question:  When is the composite circuit completely verified by 

◦ the property set 

◦ constraints              , determination constraints                    

◦ assertions              , determination assertions                  ?
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A2A2C1C1

Assume/Guarantee BasicsAssume/Guarantee Basics

� Subcircuits verified.

◦ Constraints C1, C‘1, C2, C‘2

◦ Assertions A1, A‘1, A2, A‘2

� When is the composite circuit 
completely verified?

◦ Constraints C‘1, C‘2
M1 M2

C‘2C‘1

C2C2A1A1

◦ Output Assertions A‘1,  A‘2

� Problem: Cyclic reasoning

� Assume-Guarantee-Theory allows 
cyclic reasoning

◦ If constraints depend only on input 
signals

◦ No combinatorial loops

◦ A1 ⇒ C2 and A2 ⇒ C1

A‘2A‘1

?
How to deal with reactive 
constraints (depend on outputs)?

How to deal with Completeness?



Implementable ConstraintsImplementable Constraints

� Many constraints restrict inputs depending on outputs.

◦ e.g. protocol constraints

� Assume-Guarantee-Reasoning allows constraints that depend on 
outputs, but the constraints must satisfy some requirements:

◦ No restriction of outputs

◦ No examination of output values in the future

Application specific characterization: Constraint must be � Application specific characterization: Constraint must be 
implementable

◦ Existence of reference circuit that implements the constraint

◦ No combinatorial feedback loop through real and reference circuit

M
C I O

M
I OF



Compositional Complete VerificationCompositional Complete Verification
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� Reduce to the usual Assume-Guarantee-Problem

� Consequence:                         must be implementable (i = 1,2)

� No combinatorial loops through reference circuit and Mj

� Moreover, 
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METHODOLOGYMETHODOLOGY

Literature: Beyer, Bormann, Schönherr: Method for Verifying, European Patent 
Application, priority Feb. 2008, publication number EP2088521



Operation Properties and the MethodologyOperation Properties and the Methodology

� Simple structure

◦ Simple language eases formalization of intuition

◦ Guidance by the 4 timed predicates

� General applicability

◦ Only a focussed set of skills required

� Structuring of the verification task� Structuring of the verification task

◦ Detailed general examination of one operation at a time

◦ Counter examples show different aspects of the same mechanism

� Tool advantages

◦ Proof times of 5 min. or less allow interactive use

◦ Partitioned completeness check allows to obtain partial results



How a Verification ProceedsHow a Verification Proceeds

For a representative subset of 
functionality

� Identify sequences of states in 
central controller

◦ Ideas for start and end state 
conditions

� Identify conditions to primary 

Property 
set

Refine

Property Check

For one
property

� Identify conditions to primary 
inputs for these sequences

◦ Input conditions

� Examine the output behavior

◦ Output conditions

Use already developed properties 
as templates for the verification 
of the remaining functionality 

Analyze Cex

Execute some 
completeness 

checks

Analyze Cex

Refine

For multiple
properties



Characteristics of the MethodologyCharacteristics of the Methodology

� Follows a common process to familiarize with RTL code

� Quick validation of guesses by property checking

� Counter examples help refining guesses

� Unambiguous yet intuitive description of aspects of functionality

Automated examination of coverage� Automated examination of coverage

� Provision of unexamined situations by completeness checker

� Automated non-heuristic termination criterion

� Allows reliable planning

� Verification planning is usual project planning. No need for 
comprehensive lists of verification goals



PRACTICAL PRACTICAL 
EXPERIENCEEXPERIENCEEXPERIENCEEXPERIENCE

Literature: J. Bormann, C. Blank, K. Winkelmann, "Technical and Managerial Data 
About Property Checking With Complete Functional Coverage," Euro DesignCon, 
Munich 2005



Application ExperienceApplication Experience

Processors

TriCore2 (superskalar, 32 Bit)

Multithreaded network processor

IEEE floating point processor 

Weakly programmable IP

Peripherals

Bus Interfaces

AHB (master IF, slave IF,  bridges, multilayer)

CAN, LIN,  Flex Ray,  AXI, SRC Audio bus IF

Network-On-Chip

HDLC Controller 

TelecomPeripherals

USB master interface, Counter/Timer

UART, Interrupt Controllers, A/D Converter 

Controller, Flash Card Data Port

configurable Arbiter, DMA Controller

Memory Interfaces

SDRAM Controller, SATA, Caches

Flash Memory Interface

Telecom

AAL2 Termination Element

Address management in ATM Switch

Sonet / SDH Frame Alignment

Path Overhead Processing of Multi-Gigabit-
Switch

DSP coprocessor ASIC for correlation 
computation 



Quality & CostQuality & Cost

Bugs missed because Simula
tion

Complete
FV

not stimulated yes no

no checker yes no

duplication in RTL and verification code 
(function or constraints)

yes yes

� Human effort: 2-4 kLOC RTL code per person month for an expert. 

◦ May require 2 years to become expert.

� Hardware / Software cost: 

◦ Simulation: Software System consisting of simulator, testbench automation tool, 
bus functional models, application specific software, …

◦ Simulation: Occupies compute farms over weeks

◦ Complete functional verification: 1 property Checker, 1 completeness checker, 
possibly a debugging support tool



Integration Into Industrial ProcessesIntegration Into Industrial Processes

Approach provides:

� Good error localization 

� Non-heuristic termination criterion – sign off documentation

� Tolerance wrt. specification quality

� Verification planning / monitoring is usual project planning / 
monitoringmonitoring

� Integration to system level verification by checking constraints 
during system level simulation

� Operations provide coverage base for system verification.

� Provable Design Documentation

Approach demands:

� Provision of white box information, e.g., by designers



SummarySummary

Interval Property 
Checking (IPC)

Completeness 
Checker

Compositional 
Completeness 

Methodology
Termination criterion, high productivity, high quality, user guidance

Operation Properties
Transaction oriented assertions

Checking (IPC)

Special treatment of 
reachability 
problems

Checker

Verification without 
gaps

Completeness 
Checker

Unbounded circuit 
sizes


