
Complete Functional VerificationComplete Functional VerificationComplete Functional VerificationComplete Functional Verification

Joerg Bormann
joerg.d.bormann@web.de

ContentsContents

� Characterisation of Complete Functional Verification

� Technical Components

� Methodology

� Application Experience

Literature: Bormann: Vollständige funktionale Verifikation (Complete functional
Verification), Dissertation, University of Kaiserslautern, 2009

OverviewOverview

Complete Functional Verification is a self-dependent verification
approach.

� Industrially applied

� For digital synchronous modules (up to ~ 200 k LOC)

� Formal only

� Verifies entire functionality of a module� Verifies entire functionality of a module

� Proves that functionality is completely verified

� Alternative to simulation based verification approaches for
modules, e.g., coverage driven random pattern simulation

Quality/Cost Metrics For VerificationQuality/Cost Metrics For Verification

� Final circuit quality

� Verification cost

◦ Human effort

◦ Hardware and software usage

� Integration into the industrial environment

◦ Processes◦ Processes

◦ Mindset

Components of Complete Functional Components of Complete Functional
VerificationVerification

Methodology

Operation Properties

Interval Property
Checker

Completeness
Checker

Compositional
Completeness

Checker

OPERATIONOPERATION
PROPERTIESPROPERTIESPROPERTIESPROPERTIES

J. Bormann, S. Beyer, A. Maggiore, M. Siegel, S. Skalberg, T. Blackmore, F. Bruno, "Complete
Formal Verification of TriCore2 and Other Processors," DVCon 2007

Operation PropertiesOperation Properties

� Observation: Inputs at specific points in
time determine circuit behavior over
several succeeding clock cycles.

◦ Controller: In the idle state the inputs
determine which type of transaction is to
be executed next.

◦ Pipelines: Inputs to first pipe stage

Idle

Pipelines: Inputs to first pipe stage
determine behavior of other stages at later
clock cycles.

� Example operations:

◦ Requests of a bus bridge

◦ Arbitration cycle

◦ Instruction execution of processor

◦ In general: Incoming transaction makes circuit switch from one
conceptual state to another while producing outgoing
transaction(s).

Hardware ModelHardware Model

� Next state function Δ

� Output function Λ of primary outputs

� Set Σ of reset states

� Traces:

∊ Σ Δ

I

O

Σ

� Traces:
◦ Inputs I

◦ States S S0 ∊ Σ, Sn+1 = Δ(Sn, In)

◦ Outputs O On = Λ (Sn, In)

� Automaton M is predicate M(I,S, O) about
traces

S

Δ, Λ

Operation PropertiesOperation Properties

A timed Boolean expression is a LTL formula using only the operators

P ∧∧∧∧ Q | P ∨∨∨∨Q | ~P | X(P)

An operation property is a LTL formula of the following form

G (SC ∧∧∧∧ IC ⇒⇒⇒⇒ OC ∧∧∧∧ Xtend EC)

with SC, IC, OC and EC being timed Boolean expressions.

∧∧∧∧ ⇒⇒⇒⇒ ∧∧∧∧

with SC, IC, OC and EC being timed Boolean expressions.

The sub-formulas of an operation property specify the following conditions:

SC: Start State Condition EC: End state Condition
IC: Input Condition OC: Output Condition
tend: duration of the operation

An operation property specifies a behavior where the design makes a transition
between conceptual states specified by SC and EC within tend clock cycles. This
transition is triggered by inputs fulfilling IC and produces outputs fulfilling OC.

User-level Language

Syntactic sugar: bounded operators, such as

Time points

t (universally quantified time point)

Ti = Ti-1 + ni .. mi awaits pi (Time of external event pi, bounded)

Bounded operatorsBounded operators

at Ti + k: p; (p holds at time Ti + k)

during [Ti + k, Tj + v]: p; (p holds always in the interval)

within [Ti + k, Tj + v]: p; (p holds once in the interval)

prev(expr), next(expr) (evaluate expr at previous / next time point)

Can be combined with additional techniques for unbounded operators
introduced by

Ti ≥Ti-1 + ni awaits pi (Time of external event pi, potentially ∞)

IC

SC

EC

OC

tend

timepoints T1 ≥ t + 2, awaits ack_i = 1;

at t: state = idle; during [t+1, T1]: req_o = 1;

at t: start_i = 1; at TI+1: d_o = prev(d_i);

at T1: error_i = 0; during [T1+1, T1+2]: req_o = 0;

at T1+2: state = term;

ExampleExample

idle

⇒

start_i

term

t t+1 T1 T1+2

idle termstate

start_i

req_o

ack_i

error_i

d_i

d_o = prev(d_i)

start_i

! ack_i

ack_i ∧
! error_i

COMPLETENESS COMPLETENESS
CHECKERCHECKERCHECKERCHECKER

Literature: Bormann, Busch: Method For The Determination of the Quality of a Set of
Properties, Usable for the Verification And Specification of Circuits,
US Patent 7571398, priority Sep. 2005, granted Aug 4th, 2009

Transaction and Operation AutomataTransaction and Operation Automata

� Automata with transitions formed by
operations

◦ Conceptual states = start and end states

◦ The conceptual reset state contains Σ

� Transaction Automaton

◦ Transactions treated atomically

◦ Similar to transaction level models in

Idle act

In = configuring
write

Out = read
& write

◦ Similar to transaction level models in
simulation

� Operation Automaton

◦ Transitions = operation properties

◦ Cycle accurate representation

◦ Less abstraction but more structure

� Complete Functional Verification is an
equivalence verification between RTL
model and the operation automaton

Idle act

Completeness CriteriumCompleteness Criterium
Properties

= =

M

M
~

I

I
~

O

O
~

� A set of properties is called complete, if any two circuits fulfilling the
properties are sequentially equivalent.

� Sequential equivalence check is computationally hard, exacerbated by the
indirect description of the circuits by properties.

� Operation properties allow to use inductive argument that can be checked
quickly and implies completeness.

())
~

G(
~

GG)
~

G(freefreefreefree OOPPΙI =⇒∧∧=

M O

Basic IdeaBasic Idea

state

insig

outsig1

outsig2

� Basic idea: For every input trace, there must be a chain of operation
properties P0,P1,… that uniquely determines the output trace:

� User input for ensuring the existence of chains:

◦ Properties Pi and their duration

◦ Operation Graph

i

endii

i

i

t
ttttPi +==∧Σ −

≥

∏ −

10

1

01 ,,X where

i

endt

Chain Building ChecksChain Building Checks

� Successor Test: For every property P that is
followed by Q in the Operation Graph

� Case Split Test: For every property P and all
properties Q1, Q2, Q3, … that follow P in the

ECP

P

SCQ

Q
Q

free

P

free SCEC ⇒

properties Q1, Q2, Q3, … that follow P in the
Operation Graph check that the input conditions
of Q1, Q2, Q3, … cover all possible input traces,
i.e.,

� It follows by induction that a chain of properties
exists for every input trace.

Q1
Q2

Q3

Q4

P
...∨∨∨∨ 4321 Q

free

Q

free

Q

free

Q

free ICICICIC

Determination CheckDetermination Check

� User specifies determination window woutsig for every output signal and for
every property.

� For every property P in the Operation Graph and every output signal,
prove on two sets of free variables

� Prove that the determination windows are adjacent for every property P
and every property Q that can follow P in the operation automaton.

()
freefree

P

outsig

P

free

P

free outsigoutsigwOCOCII =∈∀⇒∧∧= ττ X:
~

and every property Q that can follow P in the operation automaton.

state

insig

outsig1

outsig2

P
outsig1w

P
outsig2w

Q
outsig1w

Q
outsig2w

ProofProof ofof AssertionsAssertions

� Assertions capture important verification goals about all
operations.

� Use complete property set as design-specific induction scheme.

� Prove assertion A by

AOCIC
P

W

PP τ

τ
X

∈
∀⇒∧

for user-defined time windows WP that are adjacent in every
property chain

AOCIC
P

Wτ
X

∈
∀⇒∧

Refined Completeness CriterionRefined Completeness Criterion

� Use constraints to restrict completeness checking to practically relevant
input stimuli.

� Use determination constraints (DC) and determination assumptions (DA)
to specify valid data inputs or valid data outputs.

� Notation:

if g then determined(expr); end if; =

� Protocol description by constraints and determination constraints /

()()exprexprgg =∨¬∧¬ ~

� Protocol description by constraints and determination constraints /
assertions and determination assertions can describe data transport.

C

C
~

A

A
~M

~

M

DC DA

Properties

INTERVAL PROPERTY INTERVAL PROPERTY

CHECKINGCHECKINGCHECKINGCHECKING

Literature: M. D. Nguyen, M. Thalmaier, M. Wedler, J. Bormann, D. Stoffel, W. Kunz:
Unbounded Protocol Compliance Verification Using Interval Property Checking
With Invariants", IEEE TCAD, Nov. 2008

„„IntervalInterval Property Property CheckingChecking (IPC)“:(IPC)“:
PProving roving OOperation peration PProperties on roperties on BBounded ounded CCircuit ircuit MModelodel

state

Δ

Λ

Δ

Λ

Δ

Λ

Δ

Λ

Δ

Λ

Δ

Λ

Δ

Λ

IS

It It+1 It+2 It+3 It+4It-1It-2

IPC handles large designs (e.g. complete processor core)

◦ Operation properties can be proven efficiently by SAT/SMT

◦ Operation properties lead to less difficult reachability problems

state

insig

outsig1

outsig2

Characteristics of IPC

� Operation properties can be proven efficiently by SAT/SMT

◦ Proof with arbitray initial state guarantees unbounded validity

◦ Size of iterative circuit model depends on inspection window only

◦ Conceptual start state and input conditions simplify SAT model
significantly

� Operation properties lead to less difficult reachability problems

◦ Reachability information related to conceptual states is intuitive and
known to the designer

◦ Approximate reachability computation can exploit conceptual states

◦ User may safely provide additional reachability information

◦ … but there are doomed circuits!

COMPOSITIONALCOMPOSITIONAL
COMPLETENESSCOMPLETENESSCOMPLETENESSCOMPLETENESS
CHECKERCHECKER

Literature: Bormann: Vollständige funktionale Verifikation (Complete functional
Verification), Dissertation, University of Kaiserslautern, 2009

ProblemProblem

Given two circuits and , each completely verified with

◦ a property set and ,

◦ constraints , determination constraints ,

◦ assertions and determination assertions

ii CC ′∧ ii CDDC ′∧

ii AA ′∧ ii ADDA ′∧

11
CDC ′′,

22
CDC ′′ ,

1
M

2
M

1
Π

2
Π

21,=i

11
DCC ,

11
ADA ′′,

11
DAA ,

22
DCC ,

22
ADA ′′ ,

22
DAA ,

Question: When is the composite circuit completely verified by

◦ the property set

◦ constraints , determination constraints

◦ assertions , determination assertions ?

21
Π∪Π

21
CC ′∧′

21
CDCD ′∧′

21
AA ′∧′

21
ADAD ′∧′

1
M

2
M

A2A2C1C1

Assume/Guarantee BasicsAssume/Guarantee Basics

� Subcircuits verified.

◦ Constraints C1, C‘1, C2, C‘2

◦ Assertions A1, A‘1, A2, A‘2

� When is the composite circuit
completely verified?

◦ Constraints C‘1, C‘2
M1 M2

C‘2C‘1

C2C2A1A1

◦ Output Assertions A‘1, A‘2

� Problem: Cyclic reasoning

� Assume-Guarantee-Theory allows
cyclic reasoning

◦ If constraints depend only on input
signals

◦ No combinatorial loops

◦ A1 ⇒ C2 and A2 ⇒ C1

A‘2A‘1

?
How to deal with reactive
constraints (depend on outputs)?

How to deal with Completeness?

Implementable ConstraintsImplementable Constraints

� Many constraints restrict inputs depending on outputs.

◦ e.g. protocol constraints

� Assume-Guarantee-Reasoning allows constraints that depend on
outputs, but the constraints must satisfy some requirements:

◦ No restriction of outputs

◦ No examination of output values in the future

Application specific characterization: Constraint must be � Application specific characterization: Constraint must be
implementable

◦ Existence of reference circuit that implements the constraint

◦ No combinatorial feedback loop through real and reference circuit

M
C I O

M
I OF

Compositional Complete VerificationCompositional Complete Verification

1
M

~ ~

2
M

1
C

1
DC

1
C′

1
C′
~

1
CD ′

2
C′

2
C′
~

2
CD ′

1
A

1
DA

2
C

2
DC

2
A

2
DA

� Reduce to the usual Assume-Guarantee-Problem

� Consequence: must be implementable (i = 1,2)

� No combinatorial loops through reference circuit and Mj

� Moreover,

iii DCCC ∧∧
~

21,,
~~

=∧∧⇒∧∧ iDCCCDAAA iiiiii

1
M
~

2
M
~

1
C
~

1
A
~

1
A′

1
A′
~1

AD ′

2
C
~

2
A′

2
A′
~2

AD ′

2
A
~

METHODOLOGYMETHODOLOGY

Literature: Beyer, Bormann, Schönherr: Method for Verifying, European Patent
Application, priority Feb. 2008, publication number EP2088521

Operation Properties and the MethodologyOperation Properties and the Methodology

� Simple structure

◦ Simple language eases formalization of intuition

◦ Guidance by the 4 timed predicates

� General applicability

◦ Only a focussed set of skills required

� Structuring of the verification task� Structuring of the verification task

◦ Detailed general examination of one operation at a time

◦ Counter examples show different aspects of the same mechanism

� Tool advantages

◦ Proof times of 5 min. or less allow interactive use

◦ Partitioned completeness check allows to obtain partial results

How a Verification ProceedsHow a Verification Proceeds

For a representative subset of
functionality

� Identify sequences of states in
central controller

◦ Ideas for start and end state
conditions

� Identify conditions to primary

Property
set

Refine

Property Check

For one
property

� Identify conditions to primary
inputs for these sequences

◦ Input conditions

� Examine the output behavior

◦ Output conditions

Use already developed properties
as templates for the verification
of the remaining functionality

Analyze Cex

Execute some
completeness

checks

Analyze Cex

Refine

For multiple
properties

Characteristics of the MethodologyCharacteristics of the Methodology

� Follows a common process to familiarize with RTL code

� Quick validation of guesses by property checking

� Counter examples help refining guesses

� Unambiguous yet intuitive description of aspects of functionality

Automated examination of coverage� Automated examination of coverage

� Provision of unexamined situations by completeness checker

� Automated non-heuristic termination criterion

� Allows reliable planning

� Verification planning is usual project planning. No need for
comprehensive lists of verification goals

PRACTICAL PRACTICAL
EXPERIENCEEXPERIENCEEXPERIENCEEXPERIENCE

Literature: J. Bormann, C. Blank, K. Winkelmann, "Technical and Managerial Data
About Property Checking With Complete Functional Coverage," Euro DesignCon,
Munich 2005

Application ExperienceApplication Experience

Processors

TriCore2 (superskalar, 32 Bit)

Multithreaded network processor

IEEE floating point processor

Weakly programmable IP

Peripherals

Bus Interfaces

AHB (master IF, slave IF, bridges, multilayer)

CAN, LIN, Flex Ray, AXI, SRC Audio bus IF

Network-On-Chip

HDLC Controller

TelecomPeripherals

USB master interface, Counter/Timer

UART, Interrupt Controllers, A/D Converter

Controller, Flash Card Data Port

configurable Arbiter, DMA Controller

Memory Interfaces

SDRAM Controller, SATA, Caches

Flash Memory Interface

Telecom

AAL2 Termination Element

Address management in ATM Switch

Sonet / SDH Frame Alignment

Path Overhead Processing of Multi-Gigabit-
Switch

DSP coprocessor ASIC for correlation
computation

Quality & CostQuality & Cost

Bugs missed because Simula
tion

Complete
FV

not stimulated yes no

no checker yes no

duplication in RTL and verification code
(function or constraints)

yes yes

� Human effort: 2-4 kLOC RTL code per person month for an expert.

◦ May require 2 years to become expert.

� Hardware / Software cost:

◦ Simulation: Software System consisting of simulator, testbench automation tool,
bus functional models, application specific software, …

◦ Simulation: Occupies compute farms over weeks

◦ Complete functional verification: 1 property Checker, 1 completeness checker,
possibly a debugging support tool

Integration Into Industrial ProcessesIntegration Into Industrial Processes

Approach provides:

� Good error localization

� Non-heuristic termination criterion – sign off documentation

� Tolerance wrt. specification quality

� Verification planning / monitoring is usual project planning /
monitoringmonitoring

� Integration to system level verification by checking constraints
during system level simulation

� Operations provide coverage base for system verification.

� Provable Design Documentation

Approach demands:

� Provision of white box information, e.g., by designers

SummarySummary

Interval Property
Checking (IPC)

Completeness
Checker

Compositional
Completeness

Methodology
Termination criterion, high productivity, high quality, user guidance

Operation Properties
Transaction oriented assertions

Checking (IPC)

Special treatment of
reachability
problems

Checker

Verification without
gaps

Completeness
Checker

Unbounded circuit
sizes

