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Anecdote: My Favorite Book Title

¥ Computer-Aided Reasoning: An Approach

B Matt Kaufmann, Panagiotis Manolios, J Moore

B Informative title

®Unassuming title

B Don’t even claim that it is a good approach
B Though of course, it is!



Motivation for Our Title

® Scalable Conditional Equivalence Checking: An
Automated Invariant-Generation Based Approach

B Even more informative

B Comparably unassuming

® Brute-force, eager technique
B Relies upon heuristics to avoid exorbitant resources
B Is it a good approach??

® Nonetheless, the only method we have to solve certain problems



Outline

® Equivalence Checking

B Combinational Equiv Checking (CEC)
® Sequential Equiv Checking (SEC)
B Conditional SEC (CSEC)

B Traditional SEC Algos

B CSEC Algos

¥ Experiments + Conclusion



Equivalence Checking

= A method to assess behavioral equivalence of two designs
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»Validates that certain design transforms preserve behavior
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= E.g., logic synthesis does not introduce bugs
» Designl: pre-synthesis Design2: post-synthesis



Combinational Equivalence Checking (CEC)

= No sequential analysis: state elements become cutpoints
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= Equivalence check over outputs + next-state functions
+ While NP-complete , CEC is a mature + scalable technology

- Requires 1:1 state element correlation



Sequential Equivalence Checking (SEC)

»No 1:1 state element requirement: generalizes CEC
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= Greater applicability: e.g. to validate sequential synthesis
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= Generality comes at a computational price: PSPACE

+ Though exist techniques to enhance scalability



Conditional Sequential Equiv Checking (CSEC)

= Generalizes SEC: check equiv only under specific conditions
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Condition

= While also PSPACE, practically much less scalable than SEC
- Output inequivalence entalils internal inequivalence

- Precludes fundamental SEC scalability techniques



Example: 3-Stage Clock-Gated Pipeline Design
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CSEC: Does Clock-Gating Preserve Design Behavior?
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CSEC Problem Domains

® Clock gating: equivalence during valid computations
B Power gating: equivalence during power-up operation
B Post-reboot equivalence

B Generally: for sequential ODC-based optimizations

B Equivalence during care conditions

Bincreased demand for low-power devices +
Bincreased sophistication of synthesis flows —

Bincreased need for scalable CSEC techniques



Traditional SEC Flow nputs—

1) Postulate internal equivalences (miters) n

2) Attempt to prove conjunction of miters

3) If successful, exit with proven internal equivalences

= |/O equivalence often follows

4) Else refine unprovable miters, go to step 2

B Scalability requires assuming certain equivs while proving others

|.  Conjunction of miters often becomes inductive

Il. Speculative reduction enables dramatic speedup



Traditional SEC Flow

1) Postulate internal equivalences
2) Speculatively reduce w.r.t. postulated equivalences

= Similar to latch cutpointing in CEC — though preserve s SEC results
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3) Attempt to prove miters on reduced design
4) If successful, exit with proven miters

5) Else refine unprovable miters, go to step 2



Speculative Reduction: Key to SEC Scalabillity

®Decomposes monolithic SEC problem into subproblems

B Reduces #gates in the fanin of each proof obligation

B Many trivialized (A XOR A); all become easier to solve

B Enhances applicability of many algos vs. complex miters

B Structurally tightens approximate analysis (e.g. interpolation)
® Abstraction techniques more readily discard irrelevant logic, ...

BEnables 5 orders of magnitude speedup to SEC

E “Speculative Reduction-Based Scalable Redundancy Identification” DATE 2009



CSEC Precludes Speculative Reduction!

® CSEC problems exhibit little internal equivalence
B -Valid_i — “probably” (Data i # Data’ i)

®How can we approach scalability???
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Scalabllity in CSEC

® Conditional inequivalence implies conditional equivalence

B -Valid_i — “probably” (Data i # Data’ i)
® Valid_i — definitely (Data_i = Data’ i)

B ldea: derive adequate conditional equivalence invariants
to enable a scalable proof technigque
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Goal: Inductive Conditional Equivalence Invariant Set

Valid_3 —> (Data_3 == Data_3")
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Valid_2 —> (Data’_2 == Data_2) Valid_4 —> (Data’_4 == Data_4)



CSEC Invariant Generation Flow

1) Postulate conditional equivalence invariants
2) Attempt to prove conjunction of invariants
3) If successful, exit with proven invariants

= CSEC often becomes inductive under these invariants
4) Else refine unprovable invariants, go to step 2



Challenge 1: Huge #Candidate Invariants

B #Candidate invariants may be cubic: a — (b =c¢)

E Invariant generation is expensive

B Implication invariants a — b : quadratic #candidates

® Often performed lossily to contain expense

B “Inductively finding a reachable state space over-approximation” IWLS06

1) Leverage inherent CSEC correlation to reduce cubic — quadratic

® a— (b=Db) vsarbitrary
® a—>(b=0)




Challenge 1: Huge #Candidate Invariants

2) Leverage heuristic shortcuts to minimize #antecedents

B Limit antecendents to testbench-level signals defining Condition
B 3-valued equivalence: -tristated(B) — (B = B’)
® Use toggle/mismatch activity to correlate antecedent/consequent

B Different heuristics applicable to different CSEC problems

E Balancing act: efficiency vs. adequate invariants



Challenge 2: Efficiently Manage (In)valid Invariants

® Equiv class partition inadequate to represent candidates

B Each (B = B’) pair may have a distinct set of candidate antecedents

1) Represent candidates with sub-quadratic memory via trie

2) Use efficient bit-parallel simulator to prune large classes
of invalid candidates upon each counterexample

3) Careful SW engineering between SAT, sim, trie



Experiment 1: Clock-Gated FPU

= All the bells and whistles: double-precision, 53x54 multiplier,
fused multiply-add axb + ¢, 12 clock-period pipeline, ...

» >23k HDL lines, 21k state elements; 120k gates in CSEC formulation

» Complexity precludes single-instruction BMC in 24 hours

= Limited CSEC antecedents to testbench Condition logic

» 11k of 254k candidate invariants proven in 4 hours, 3-step induction
= Sim vs. SAT falsification ratio  679:1

= Could not solve otherwise without manual abstraction



Experiment 2: Power-Gated Arithmetic Unit

= 4-port out-of-order unit capable of arithmetic, ALU ops on 32-
bit data, 16-entry register file

® 13k lines RTL, 807 state elements, 22k gates
» CSEC used ternary equivalence mode
B tristated(B) — (B = B’)

® 961 of 1196 invariants proven in <3minutes, 100MB

» Could not solve otherwise

B Manually-simplified version required >90 hours



Conclusion

= CSEC: an increasingly prevalent problem domain

»No internal equivalence!

» Techniques to scale SEC to 1M+ gate designs inapplicable

» Presented an invariant generation approach tailored for CSEC
= Brute force, relies upon heuristics + careful SW engineering

» The only mechanism we have found for automated solution



