Scalable Conditional Equivalence Checking:
An Automated Invariant-Generation Based Approach

Jason Baumagartner, Hari Mony, Michael Case,
Jun Sawada and Karen Yorav

IBM Corporation

R
A g |

Anecdote: My Favorite Book Title

¥ Computer-Aided Reasoning: An Approach

B Matt Kaufmann, Panagiotis Manolios, J Moore

B Informative title

®Unassuming title

B Don’t even claim that it is a good approach
B Though of course, it is!

Motivation for Our Title

® Scalable Conditional Equivalence Checking: An
Automated Invariant-Generation Based Approach

B Even more informative

B Comparably unassuming

® Brute-force, eager technique
B Relies upon heuristics to avoid exorbitant resources
B Is it a good approach??

® Nonetheless, the only method we have to solve certain problems

Outline

® Equivalence Checking

B Combinational Equiv Checking (CEC)
® Sequential Equiv Checking (SEC)
B Conditional SEC (CSEC)

B Traditional SEC Algos

B CSEC Algos

¥ Experiments + Conclusion

Equivalence Checking

= A method to assess behavioral equivalence of two designs

Outputs

Inputs —¢

»Validates that certain design transforms preserve behavior

|
—>

= E.g., logic synthesis does not introduce bugs
» Designl: pre-synthesis Design2: post-synthesis

Combinational Equivalence Checking (CEC)

= No sequential analysis: state elements become cutpoints

Outputs

Inputs —¢ Pseudo-Inputs

'y

= Equivalence check over outputs + next-state functions
+ While NP-complete , CEC is a mature + scalable technology

- Requires 1:1 state element correlation

Sequential Equivalence Checking (SEC)

»No 1:1 state element requirement: generalizes CEC

Outputs

Inputs ¢

n ' 2

= Greater applicability: e.g. to validate sequential synthesis

|
—>

= Generality comes at a computational price: PSPACE

+ Though exist techniques to enhance scalability

Conditional Sequential Equiv Checking (CSEC)

= Generalizes SEC: check equiv only under specific conditions

Outputs

Inputs e :E
D

Condition

= While also PSPACE, practically much less scalable than SEC
- Output inequivalence entalils internal inequivalence

- Precludes fundamental SEC scalability techniques

Example: 3-Stage Clock-Gated Pipeline Design

Vahd 1 Valid 3

Clock

CSEC: Does Clock-Gating Preserve Design Behavior?

ODC mask of
output
inequivalence

Data 1

Valid 1

Clock
&

Outputs may
be inequivalent
when —Valid_4

CSEC Problem Domains

® Clock gating: equivalence during valid computations
B Power gating: equivalence during power-up operation
B Post-reboot equivalence

B Generally: for sequential ODC-based optimizations

B Equivalence during care conditions

Bincreased demand for low-power devices +
Bincreased sophistication of synthesis flows —

Bincreased need for scalable CSEC techniques

Traditional SEC Flow nputs—

1) Postulate internal equivalences (miters) n

2) Attempt to prove conjunction of miters

3) If successful, exit with proven internal equivalences

= |/O equivalence often follows

4) Else refine unprovable miters, go to step 2

B Scalability requires assuming certain equivs while proving others

|. Conjunction of miters often becomes inductive

Il. Speculative reduction enables dramatic speedup

Traditional SEC Flow

1) Postulate internal equivalences
2) Speculatively reduce w.r.t. postulated equivalences

= Similar to latch cutpointing in CEC — though preserve s SEC results

=0? =07?

- /. A
\ \ |
A
B B
Miter without spec reduction Miter with spec reduction

3) Attempt to prove miters on reduced design
4) If successful, exit with proven miters

5) Else refine unprovable miters, go to step 2

Speculative Reduction: Key to SEC Scalabillity

®Decomposes monolithic SEC problem into subproblems

B Reduces #gates in the fanin of each proof obligation

B Many trivialized (A XOR A); all become easier to solve

B Enhances applicability of many algos vs. complex miters

B Structurally tightens approximate analysis (e.g. interpolation)
® Abstraction techniques more readily discard irrelevant logic, ...

BEnables 5 orders of magnitude speedup to SEC

E “Speculative Reduction-Based Scalable Redundancy Identification” DATE 2009

CSEC Precludes Speculative Reduction!

® CSEC problems exhibit little internal equivalence
B -Valid_i — “probably” (Data i # Data’ i)

®How can we approach scalability???

Valid 1
1

Clock_ |

Scalabllity in CSEC

® Conditional inequivalence implies conditional equivalence

B -Valid_i — “probably” (Data i # Data’ i)
® Valid_i — definitely (Data_i = Data’ i)

B ldea: derive adequate conditional equivalence invariants
to enable a scalable proof technigque

N

Goal: Inductive Conditional Equivalence Invariant Set

Valid_3 —> (Data_3 == Data_3")

4 B
Trata 1
Valid 1
Clock
L

< 4 Y | y y
Valid_2 —> (Data’_2 == Data_2) Valid_4 —> (Data’_4 == Data_4)

CSEC Invariant Generation Flow

1) Postulate conditional equivalence invariants
2) Attempt to prove conjunction of invariants
3) If successful, exit with proven invariants

= CSEC often becomes inductive under these invariants
4) Else refine unprovable invariants, go to step 2

Challenge 1: Huge #Candidate Invariants

B #Candidate invariants may be cubic: a — (b =c¢)

E Invariant generation is expensive

B Implication invariants a — b : quadratic #candidates

® Often performed lossily to contain expense

B “Inductively finding a reachable state space over-approximation” IWLS06

1) Leverage inherent CSEC correlation to reduce cubic — quadratic

® a— (b=Db) vsarbitrary
® a—>(b=0)

Challenge 1: Huge #Candidate Invariants

2) Leverage heuristic shortcuts to minimize #antecedents

B Limit antecendents to testbench-level signals defining Condition
B 3-valued equivalence: -tristated(B) — (B = B’)
® Use toggle/mismatch activity to correlate antecedent/consequent

B Different heuristics applicable to different CSEC problems

E Balancing act: efficiency vs. adequate invariants

Challenge 2: Efficiently Manage (In)valid Invariants

® Equiv class partition inadequate to represent candidates

B Each (B = B’) pair may have a distinct set of candidate antecedents

1) Represent candidates with sub-quadratic memory via trie

2) Use efficient bit-parallel simulator to prune large classes
of invalid candidates upon each counterexample

3) Careful SW engineering between SAT, sim, trie

Experiment 1: Clock-Gated FPU

= All the bells and whistles: double-precision, 53x54 multiplier,
fused multiply-add axb + ¢, 12 clock-period pipeline, ...

» >23k HDL lines, 21k state elements; 120k gates in CSEC formulation

» Complexity precludes single-instruction BMC in 24 hours

= Limited CSEC antecedents to testbench Condition logic

» 11k of 254k candidate invariants proven in 4 hours, 3-step induction
= Sim vs. SAT falsification ratio 679:1

= Could not solve otherwise without manual abstraction

Experiment 2: Power-Gated Arithmetic Unit

= 4-port out-of-order unit capable of arithmetic, ALU ops on 32-
bit data, 16-entry register file

® 13k lines RTL, 807 state elements, 22k gates
» CSEC used ternary equivalence mode
B tristated(B) — (B = B’)

® 961 of 1196 invariants proven in <3minutes, 100MB

» Could not solve otherwise

B Manually-simplified version required >90 hours

Conclusion

= CSEC: an increasingly prevalent problem domain

»No internal equivalence!

» Techniques to scale SEC to 1M+ gate designs inapplicable

» Presented an invariant generation approach tailored for CSEC
= Brute force, relies upon heuristics + careful SW engineering

» The only mechanism we have found for automated solution

