
FMCAD 2009

Scalable Conditional Equivalence Checking:Scalable Conditional Equivalence Checking:
An Automated InvariantAn Automated Invariant--Generation Based ApproachGeneration Based Approach

Jason Baumgartner, Hari Mony, Michael Case,
Jun Sawada and Karen Yorav

IBM Corporation

2

Anecdote: My Favorite Book Title

Computer-Aided Reasoning: An Approach
Matt Kaufmann, Panagiotis Manolios, J Moore

Informative title

Unassuming title

Don’t even claim that it is a good approach

Though of course, it is!

3

Motivation for Our Title

Scalable Conditional Equivalence Checking: An
Automated Invariant-Generation Based Approach

Even more informative

Comparably unassuming

Brute-force, eager technique

Relies upon heuristics to avoid exorbitant resources

Is it a good approach??

Nonetheless, the only method we have to solve certain problems

4

Outline

Equivalence Checking

Combinational Equiv Checking (CEC)

Sequential Equiv Checking (SEC)

Conditional SEC (CSEC)

Traditional SEC Algos

CSEC Algos

Experiments + Conclusion

5

Equivalence Checking

A method to assess behavioral equivalence of two designs

Validates that certain design transforms preserve behavior

� E.g., logic synthesis does not introduce bugs

• Design1: pre-synthesis Design2: post-synthesis

= ?Inputs

OutputsDesign 1

Design 2

6

Combinational Equivalence Checking (CEC)

= ?= ?Inputs Pseudo-Inputs

Outputs
Next-States

No sequential analysis: state elements become cutpoints

Equivalence check over outputs + next-state functions

+ While NP-complete , CEC is a mature + scalable technology

- Requires 1:1 state element correlation

7

Sequential Equivalence Checking (SEC)

No 1:1 state element requirement: generalizes CEC

Greater applicability: e.g. to validate sequential synthesis

Generality comes at a computational price: PSPACE

+ Though exist techniques to enhance scalability

= ?Inputs

Outputs

8

Conditional Sequential Equiv Checking (CSEC)

Generalizes SEC: check equiv only under specific conditions

While also PSPACE, practically much less scalable than SEC

- Output inequivalence entails internal inequivalence

- Precludes fundamental SEC scalability techniques

≠
Inputs

Outputs

Condition

= 0?

9

Example: 3-Stage Clock-Gated Pipeline Design

10

CSEC: Does Clock-Gating Preserve Design Behavior?

ODC mask of
output

inequivalence

Outputs may
be inequivalent
when ¬Valid_4

11

CSEC Problem Domains

Clock gating: equivalence during valid computations

Power gating: equivalence during power-up operation

Post-reboot equivalence

Generally: for sequential ODC-based optimizations

Equivalence during care conditions

Increased demand for low-power devices +

Increased sophistication of synthesis flows →

Increased need for scalable CSEC techniques

12

Traditional SEC Flow

1) Postulate internal equivalences (miters)

2) Attempt to prove conjunction of miters

3) If successful, exit with proven internal equivalences

� I/O equivalence often follows

4) Else refine unprovable miters, go to step 2

Scalability requires assuming certain equivs while proving others

I. Conjunction of miters often becomes inductive

II. Speculative reduction enables dramatic speedup

=?Inputs

Outputs

13

Traditional SEC Flow

1) Postulate internal equivalences

2) Speculatively reduce w.r.t. postulated equivalences

� Similar to latch cutpointing in CEC – though preserve s SEC results

3) Attempt to prove miters on reduced design

4) If successful, exit with proven miters

5) Else refine unprovable miters, go to step 2

A

B

Miter without spec reduction

=0?

A

B

Miter with spec reduction

=0?

14

Speculative Reduction: Key to SEC Scalability

Decomposes monolithic SEC problem into subproblems

Reduces #gates in the fanin of each proof obligation

Many trivialized (A XOR A); all become easier to solve

Enhances applicability of many algos vs. complex miters

Structurally tightens approximate analysis (e.g. interpolation)

Abstraction techniques more readily discard irrelevant logic, …

Enables 5 orders of magnitude speedup to SEC
“Speculative Reduction-Based Scalable Redundancy Identification” DATE 2009

15

CSEC Precludes Speculative Reduction!

CSEC problems exhibit little internal equivalence

¬Valid_i → “probably” (Data_i ≠ Data’_i)

How can we approach scalability???

16

Scalability in CSEC

Conditional inequivalence implies conditional equivalence

¬Valid_i → “probably” (Data_i ≠ Data’_i)

Valid_i → definitely (Data_i = Data’_i)

Idea: derive adequate conditional equivalence invariants
to enable a scalable proof technique

17

Goal: Inductive Conditional Equivalence Invariant Set

18

CSEC Invariant Generation Flow

1) Postulate conditional equivalence invariants

2) Attempt to prove conjunction of invariants

3) If successful, exit with proven invariants

� CSEC often becomes inductive under these invariants

4) Else refine unprovable invariants, go to step 2

19

Challenge 1: Huge #Candidate Invariants

#Candidate invariants may be cubic: a → (b = c)

Invariant generation is expensive

Implication invariants a → b : quadratic #candidates

Often performed lossily to contain expense

“Inductively finding a reachable state space over-approximation” IWLS06

1) Leverage inherent CSEC correlation to reduce cubic → quadratic

a → (b = b’) vs arbitrary

a → (b = c) =?Inputs

Outputs

20

Challenge 1: Huge #Candidate Invariants

2) Leverage heuristic shortcuts to minimize #antecedents

Limit antecendents to testbench-level signals defining Condition

3-valued equivalence: ¬tristated(B) → (B = B’)

Use toggle/mismatch activity to correlate antecedent/consequent

Different heuristics applicable to different CSEC problems

Balancing act: efficiency vs. adequate invariants

21

Challenge 2: Efficiently Manage (In)valid Invariants

Equiv class partition inadequate to represent candidates

Each (B = B’) pair may have a distinct set of candidate antecedents

1) Represent candidates with sub-quadratic memory via trie

2) Use efficient bit-parallel simulator to prune large classes
of invalid candidates upon each counterexample

3) Careful SW engineering between SAT, sim, trie

22

Experiment 1: Clock-Gated FPU

All the bells and whistles: double-precision, 53x54 multiplier,
fused multiply-add a×b + c, 12 clock-period pipeline, …

� >23k HDL lines, 21k state elements; 120k gates in CSEC formulation

Complexity precludes single-instruction BMC in 24 hours

Limited CSEC antecedents to testbench Condition logic

� 11k of 254k candidate invariants proven in 4 hours, 3-step induction

� Sim vs. SAT falsification ratio 679:1

Could not solve otherwise without manual abstraction

23

Experiment 2: Power-Gated Arithmetic Unit

4-port out-of-order unit capable of arithmetic, ALU ops on 32-
bit data, 16-entry register file

13k lines RTL, 807 state elements, 22k gates

CSEC used ternary equivalence mode

¬tristated(B) → (B = B’)

961 of 1196 invariants proven in <3minutes, 100MB

Could not solve otherwise

Manually-simplified version required >90 hours

24

Conclusion

CSEC: an increasingly prevalent problem domain

No internal equivalence!

� Techniques to scale SEC to 1M+ gate designs inapplicable

Presented an invariant generation approach tailored for CSEC

Brute force, relies upon heuristics + careful SW engineering

The only mechanism we have found for automated solution

