
Barbara Jobstmann 1

Synthesizing Robust Systems

Roderick Bloem and Karin Greimel (TU-Graz)

Thomas Henzinger (EPFL and IST-Austria)

Barbara Jobstmann (CNRS/Verimag)

FMCAD 2009 in Austin, Texas



Barbara Jobstmann 2

Motivation

When designing systems:

• environment might not be known, or cannot 
be precisely modeled, e.g., physical 
environment

• behaves differently from expected 

– program in libraries, might be used in other than 

the intended way

– transmission and other errors

• environment model necessary



Barbara Jobstmann 3

Motivation

A system should not only be 

• correct, it should also

• behave ‘reasonably,’ even in 
circumstances that were not anticipated in 
the requirements specification[. . . ] 

[“Fundamentals of software engineering” by GJM]

In short, it should also be robust.



Barbara Jobstmann 4

Simple Example

• Resource controller for two clients

– Clients send requests using signals r1,r2
– Controller grant resource using signals g1,g2

Client 1

Client 2

r1

r2

g1

g2

Controller



Barbara Jobstmann 5

Specification

• Assumption A on clients

– never(r1∧r2)

• Guarantee G of controller

– always(r1→next(g1))

– always(r2→next(g2))

– never(g1∧g2)

• Specification A→G



Barbara Jobstmann 6

Two Correct Controllers

g1g2

g1g2

g1g2

r
1r

2

r 1
r 2

⊥

g1g2

g1g2

r1r2

r1 r1r2∨

r1r2 r1r2

r1r2
r1r2

Input trace:(r1r2)(r1r2)
ω

Output trace:(g1g2)(g1g2)
ω

r1

r1
r1 ∨

(r1r2)(r1r2)
ω

(g1g2)(g1g2)
ω

Specification: A→G

M1 M2



Barbara Jobstmann 7

Two Correct Controllers

g1g2

g1g2

g1g2

r
1r

2

r 1
r 2

⊥

g1g2

g1g2

Input trace:(r1r2)(r1r2)
ω

Output trace:(g1g2)(g1g2)
ω

r1r2

r1 r1r2∨

r1r2 r1r2

r1r2
r1r2

r1

r1
r1 ∨

Does not recover from an error!Does not recover from an error! Does recover from an error!Does recover from an error!

(r1r2)(r1r2)
ω

(g1g2)(g1g2)
ω

M1 M2



Barbara Jobstmann 8

Outline

• Definition

– Error specifications

– Robustness (our proposal) 

• Verify Robustness

• Synthesize Robust Systems

• Conclusion



Barbara Jobstmann 9

Setting

• Reactive finite-state system M (signals I/O)

– Alphabet Σ= 2I∪O (evaluations of I ∪ O)

– Behavior of M is a sequence σ ∈ Σω

– Set of all behavior: L(M)

• Specification ϕ = A → G

– A is assumption on environment

– G is guarantee of system

– A and G are safety specifications over Σ

– σ satisfies or does not satisfy ϕ



Barbara Jobstmann 10

Error Specification (1)

• Error function d: Σω ∪ Σ* → N ∪ {∞}

– maps all behaviors/prefixes to number or ∞

– Idea: count errors (violations of specification),

higher value means more errors

– Quantitative specification

good bad

M1
M2

good bad

M2
M1



Barbara Jobstmann 11

Error Specification (2)

• Error function d: Σω ∪ Σ* → N ∪ {∞}

• Det. Automaton A with weight function w
mapping edges to weights

d(σ) = sum of weights of run over σ

• Error specification is pair (de,ds)

– de…error function for environment

– ds…error function for systems q0

r1

q1

r1g1

r1

(0)

(0)

(0)

g1(1)

r1g1(0)



Barbara Jobstmann 12

Safety
Spec

From Spec to Error Function

• In general, “a design choice”

• We show: one way of going from spec to 
error function

ϕ ⊆ Σω d: Σ*/ω→ N

Automaton
Automaton
+ weight fct

Error
Function

2

1

0

0

?safe Trap



Barbara Jobstmann 13

From Spec to Error Function
Recall, example:

Good properties of this error function:

- If behavior σ is error-free, then d(σ)=0

- If behavior σ has errors d(σ)>0

Bad properties:

- Does not distinguish between single and 
multiple errors (it’s a trap)

always(r1→next(g1))∧...

q0

r1

q1
Safe region={q0,q1}

q2

⊥

r1g1

r1g1

r1 g1

(0)

(0)

(0)

(0)

(1)

(1)



Barbara Jobstmann 14

Example

What to do with traps?

(a) Reset → go to initial states (restart property)

(b) Skip → self loop (ignore input)

(c) Follow closest correct letter in alphabet

q0

r1

q1 q2

⊥

r1g1

r1g1

r1 g1

(0)

(0)

(0)

(0)

(1)

(1)

q0

r1

q1

r1g1

r1

(0)

(0)

(0)

g1(1)

r1g1(0)

A: never(r1∧r2)
G1:always(r1→next(g1))
G2:always(r2→next(g2))
G3:never(g1∧g2)

de =#(r1∧r2)
ds1=#(r1∧next(g1))
ds2=#(r2∧next(g2))
ds3=#(g1∧g2) ds=ds1+ds2+ds3



Barbara Jobstmann 15

Robustness

• System M is robust wrt error spec (de,ds)

if forall σ ∈ L(M):

de(σ) ≠ ∞ implies ds(σ) ≠ ∞

• System M is k-robust wrt (de,ds)

if exists c ∈ N s.t. forall σ ∈ prefix(L(M))

ds(σ) ≤ k·de(σ) + c

• k-robustness classifies robust systems wrt
infinite behavior



Barbara Jobstmann 16

Verifying Robustness (1)

• Given system M and automata Ae and As

for de and ds, resp., check if M is robust

– Compute product M×Ae×As with two weight 
functions ws and we

– Then, M is robust if forall σ ∈ L(M×Ae×As)

sum of we over σ ≠ ∞ implies sum of ws ≠ ∞.

– Equivalently, if infinitely often ws> 0, then 

infinitely often we>0 (Streett)



Barbara Jobstmann 17

Verifying Robustness (2)
– Two sets Es, Ee of edges: one with ws>0 and on 

with we>0

– Streett cond. with pair (Es,Ee), linear in #edges

M×Ae×As q0

r1

q1

r1g1

r1(1,0)

(0,1) (2,1)

r1g1(0,0)



Barbara Jobstmann 18

Example

g1g2

g1g2

g1g2

r
1r

2

r 1
r 2

r1r2

r1r2

(0,0)

(0,0) (0,0)

(0,0)

(2
,1)

(2,1)

r1r2 (0,0)
r1r2 (1,0)

r1r2 (1,0)
r1r2 (2,1)

r1

r1

Non-robustNon-robust

infinitely often ws> 0 
but only finitely often we>0

(s,e)
de =#(r1∧r2) (0,1)
ds1=#(r1∧next(g1)) (1,0)
ds2=#(r2∧next(g2)) (1,0)
ds3=#(g1∧g2) (1,0)

M×Ae×As



Barbara Jobstmann 19

Verifying K-Robustness (1)

• Recall, exists c ∈ N, forall σ ∈ prefix(L(M))

ds(σ) ≤ k·de(σ) + c

• 0-Robust = finitely many errors ds(σ) ≤ c

• k-Robust = average ratio between #system 
errors and #environment errors is ≤ k

#s-#e ≤ c #s/#e ≤ k



Barbara Jobstmann 20

Verifying K-Robustness (2)

• Given robust system M, automata Ae and As, 
check if M is k-robust.

– Compute product M×Ae×As with two weight 
functions ws and we

– M is k-Robust if forall runs q0q1q2…

limm→∞liminfl→∞

– True if maximum simple cycle ratio ≤ k, 

computable in O(#states2·#edges)

sumi=m..l(ws(qi,qi+1))

1+sumi=m..l(we(qi,qi+1))
≤ k



Barbara Jobstmann 21

Example

g1g2

g1g2

r1r2

r1r2

r1r2
r1r2

(0,0)

(1,1)

(0,0)

(1,1)
(0,0)

(0,0)

r1

r1

1-robust1-robust

maximum simple cycle ratio=1

M×Ae×As



Barbara Jobstmann 22

Synthesizing Systems

Synthesis
game +

two weight fcts

Spec de:
Automaton
+ weight fct

we
Automaton

+ two weight
functions
we and ws

Strategy
Robust
System

Ratio
game

Strategy
k-robust
System

Streett
game

Spec ds:
Automaton
+ weight fct

ws



Barbara Jobstmann 23

Synthesis Game: Example

• Two players

• Alternately, 
pick signal 
assignments

• Add weights 
accordingly

• Winning 
objective?

s0

r1

s1 s2

⊥

r1g1

r1g1

r1 g1

s0 s1

g1 r1

r1

g1r1

r1

(w1)

(w2)

(w1)

(w1)

(w2)

(w2)



Barbara Jobstmann 24

Synthesizing Systems

Synthesis
game +

two weight fcts

Spec de:
Automaton
+ weight fct

we
Automaton

+ two weight
functions
we and ws

Strategy
Robust
System

Ratio
game

Strategy
k-robust
System

Streett
game

Spec ds:
Automaton
+ weight fct

ws



Barbara Jobstmann 25

Synthesizing Robust Systems

• Play is winning: if infinitely many edges with 
ws>0, then infinitely many edges with we>0

• Two sets Es, Ee of edges: one with ws>0 
and on with we>0

• Winning objective: Streett with 1-pair (Es,Ee)

(0,1)

(1,2)

(0,0)

(0,0)

(1,0)

(0,0)



Barbara Jobstmann 26

Synthesizing Systems

Synthesis
game +

two weight fcts

Spec de:
Automaton
+ weight fct

we
Automaton

+ two weight
functions
we and ws

Strategy
Robust
System

Ratio
game

Strategy
k-robust
System

Streett
game

Spec ds:
Automaton
+ weight fct

ws



Barbara Jobstmann 27

Ratio Game

• A novel game type 

• Formally, value of a play ρ=q0q1q2… is

v(ρ) = limm→∞liminfl→∞

• Objective of Player System: minimize v(ρ)

• In paper, we show that in ratio games 
– both players have memoryless winning 

strategies and 

– reduction to mean-payoff game (decision)

sumi=m..l(ws(qi,qi+1))

1+sumi=m..l(we(qi,qi+1))



Barbara Jobstmann 28

Conclusion

• A notion of robustness based on error 
functions

• Algorithms to 

– verify robustness and k-robustness

– synthesize robust systems with minimal k 

(based on our ratio games)


