.~ o= W VA

Synthesizing Robust Systems

Roderick Bloem and Karin Greimel (TU-Graz)
Thomas Henzinger (EPFL and IST-Austria)
Barbara Jobstmann (CNRS/Verimag)

FMCAD 2009 in Austin, Texas

Barbara Jobstmann 1

oy - = k= RV
Motivation

When designing systems:

* environment might not be known, or cannot
be precisely modeled, e.g., physical
environment

* behaves differently from expected

— program in libraries, might be used in other than
the intended way

—transmission and other errors
» environment model necessary

Barbara Jobstmann 2

oy - = k= RV
Motivation

A system should not only be
» correct, it should also

* behave ‘reasonably, even in
circumstances that were not anticipated in
the requirements specification]. . .]

[“Fundamentals of software engineering” by GJM]

In short, it should also be robust. "

Barbara Jobstmann

O T T~ -
Simple Example

» Resource controller for two clients
— Clients send requests using signals ry,
— Controller grant resource using signals g4, g,

. 4)
Client 1 :

?,l Controller
Client 2 _<g_>

AN Y

Barbara Jobstmann

\ﬁ/!"rrni-lﬂ

O T T -
Specification

« Assumption A on clients
—never(riar,)

« Guarantee G of controller
—always(r;—next(g;))
—always(r,—next(g,))
—never(g;AQg,)

» Specification A—G

Barbara Jobstmann 5

oy - = k= RV
Two Correct Controllers

Specification: A—G
M1 T1 \ /M2 ryvror,)

Input trace: (ryry) (ryry)w
Output trace: (9,9,) (3,0,)

\ rr, / L rnr, J
(
(

Barbara Jobstmann 6

.~ o= W VA

Two Correct Controllers
|Does not recover from an error!l | Does recover from an error! l

M T \ Mo Fiviiry)

\ rlFZ / \ /
Input trace: (riry)(r;r,)v (riry) (rory)e
Output trace: (9;9,) (9,9,)% (919,) (9,9,)

Barbara Jobstmann

oy - = k= RV
Outline

* Definition
— Error specifications
— Robustness (our proposal)

 Verify Robustness
» Synthesize Robust Systems
» Conclusion

Barbara Jobstmann 8

ey . = b= FECUCRRVER
Setting

* Reactive finite-state system M (signals |/O)
— Alphabet 2= 2IY© (evaluations of | U O)

— Behavior of M is a sequence 0 € 2%
— Set of all behavior: L(M)

« Specificationp=A - G
— A Is assumption on environment
— G is guarantee of system
— A and G are safety specifications over 2
— 0 satisfies or does not satisfy ¢

Barbara Jobstmann 9

Error Specification (1)

« Error functiond: 2®* U 2" — N U {co}

— maps all behaviors/prefixes to number or oo

— Idea: count errors (violations of specification),
higher value means more errors

— Quantitative specification

@ @ @) @

ood bad ood bad

Barbara Jobstmann 10

. = by FECOERRVES
Error Specification (2)

« Error functiond: 2®* U 2" — N U {co}

* Det. Automaton A with weight function w
mapping edges to weights

d(o) = sum of weights of run over o

» Error specification is pair (d,,d,)
— d,...error function for environment ‘

(0)
—d....error function for systems @

r,(0) r19:(0)

Barbara Jobstmann 11

ey . = by OOV
From Spec to Error Function

* In general, “a design choice”

« We show: one way of going from spec to
error function

Safety Automaton Error

L Spec } = {Automaton} QL weight chQL Function }
Do @ m=

o C T st‘afe &1. d: Yw s N

Barbara Jobstmann 12

From Spec to Error Function
Recall, example: always(r;—next(g;))a...

r(0) r,9:(0) T(1)
‘ r,(0) 9. (1 ‘
1
— Q Safe region={q,,q;}
r19,(0)

Good properties of this error function:
- If behavior o is error-free, then d(o)=0
- If behavior o has errors d(o)>0
Bad properties:

- Does not distinguish between single and
multiple errors (it's a trap)

Barbara Jobstmann 13

O T T~

Example

What to do with traps?
(a) Reset — go to initial states (restart property)
(b) Skip — self loop (ignore input)

(c) Follow closest correct Ietter Ig alphabet
r4(0) r19:(0 r r191(0>

RS ES

) §1(

Vﬁ!‘i‘l‘ﬂi—lﬂ

A: never(riar,) d, =#(rar,
G,:always(r;—next(g,)) d.;=#(rAnext(g,))
G2 :always(r,—next(g,)) d =#(r,Annext(qg,))
G;:never(g;Ag,) dss=#(9:/0;) d,=dg +ds,+dg;

Barbara Jobstmann 14

.~ o= W VA

Robustness
» System M is robust wrt error spec (d,,d,)
if forall o € L(M):
d,(0) # o implies d (0) # oo

» System M is k-robust wrt (d,d,)
if exists ¢ € N s.t. forall o € prefix(L(M))

d.(0) £ k-d,(0) +C

» k-robustness classifies robust systems wrt
infinite behavior

Barbara Jobstmann 15

ey - =y R
Veritying Robustness (1)

» Given system M and automata A, and A,
for d, and d, resp., check if M is robust

— Compute product MxA_xA, with two weight
functions w, and w,

— Then, M is robust if forall 0 € L(MxA_XA,)
sum of w, over g # o« implies sum of w, # co.

— Equivalently, if infinitely often w,> 0, then
infinitely often w_>0 (Streett)

Barbara Jobstmann

\ﬁ/!"rrni-lﬂ

16

nrimaa

Verifying Robustness (2)

— Two sets E, E, of edges: one with w,>0 and on
with w_>0

— Streett cond. with pair (E,,E,), linear in #edges

0,1) 191(2 1)

MxA XA,
1 1

Barbara Jobstmann 17

(

(rianext (g,
d.,=#(r,Annext(g,)) (1,0)
ds3=#(9:n0,) — (1,0)

infinitely often w > 0
but only finitely often w_>0

‘ Non-robust l

Barbara Jobstmann

18

e . = = FCUERRVES
Veritying K-Robustness (1)

* Recall, exists c € N, forall o € prefix(L(M))
d.(0) £k-d,(0) +C
 0-Robust = finitely many errors d.(0) = c

* k-Robust = average ratio between #system
errors and #environment errors is < k

#s-#e < C #s/#te < K

Barbara Jobstmann 19

e . = = FCUERRVES
Veritying K-Robustness (2)

 Given robust system M, automata A, and A,
check if M is k-robust.

— Compute product MxA_xA, with two weight
functions w, and w,

— M is k-Robust if forall runs g,q:9,...
m Mi_m, | Ws(@9it))f
@ uml =m. I q|5q|+1) -
— True if maximum simple cycle ratio <Kk,
computable in O(#states=-#edges)

Barbara Jobstmann 20

ey . = b= FECUCRRVER
Example

™

maximum simple cycle ratio=1

Barbara Jobstmann 21

e . = = FCUERRVES
Synthesizing Systems

Streett Robust
4 e de£\ game E> SN E> System
Automaton
+ weight fet =)~ N ﬁ
W Automaton 4)
" |+ two weight Synthesis
s ~ functions = NN =7
Spec d: T — two weight fcts
Automaton |\ °) =
+ weight fct @
s

Ratio k-robust
game E> Strategy E> System

Barbara Jobstmann 22

Synthesis Game: Example

Two players
Alternately,
pick signal
assignments
Add weights
accordingly
Winning
objective?

Barbara Jobstmann 23

ey . = by OOV
Synthesizing Systems

Streett Robust

" 3pec de;\ game)| Strategy :>{ SystemJ
Automaton

+ weight fet =)~ D ﬁ

W Automaton 4)

|} two weight Synthesis
Ve ™ functions = NS aF

Spec dg: 0GRl two weight fcts

Automaton |\ °) - J

+ weight fct @
N

Ratio k-robust
game E> Strategy E> System

Barbara Jobstmann 24

ey . = by OOV
Synthesizing Robust Systems

* Play is winning: if infinitely many edges with
w >0, then infinitely many edges with w_>0

» Two sets Eg, E_ of edges: one with w >0
and on with w_>0

« Winning objective: Streett with 1-pair (E,E,)

SI—€

"
0.0)(1(0,1)

(1,0) :

(0,0)

Barbara Jobstmann 25

Synthesizing Systems

Streett Robust
C Spec d.: A game :> Strategy :>£ System J
Automaton
+ weight fct |~ D ﬁ
W Automaton 4)
- " |itwo weight Synthesis
s DY functions = game -+
Spec dg: e two weight fcts
Automaton |=n " °) - J
+ weight fct @

W
~ — Rati k-robust
atio -
game :> Strategy :> System

Barbara Jobstmann 26

.~ o= W VA

Ratio Game

* A novel game type
» Formally, value of a play p=9,9:05..- IS

liminf Sumi=m..|(WS(qisqi+1))
e e 1 +Sumi=m..|(we(qi5qi+1))

v(p) = lim

 Objective of Player System: minimize v(p)

* In paper, we show that in ratio games

— both players have memoryless winning
strategies and

— reduction to mean-payoff game (decision)

Barbara Jobstmann 27

O T T~

Conclusion

* A notion of robustness based on error
functions

 Algorithms to
— verify robustness and k-robustness

— synthesize robust systems with minimal k
(based on our ratio games)

Barbara Jobstmann

28

