
Formal Verification of an ASIC Ethernet Switch Block

 B. A. Krishna Anamaya Sullerey Alok Jain
Chelsio Communications Inc. Chelsio Communications Inc. Cadence Design Systems, Inc.

 bkrishna@chelsio.com anamaya@chelsio.com alokj@cadence.com

Abstract— Traditionally, validation at the ASIC block level relies
primarily upon simulation based verification. Specific
components that are “hot spots” are then considered as
candidates for Formal Verification. Under this usage model, the
hurdles to Formal Verification are intractability and poor
specifications. In this paper, we outline an alternate approach,
where we used Formal Verification as the “first line of defense”
in the course of validating a Packet Switch. This block had
several components that were complex and hard to verify,
including components that required liveness guarantees, where
responses are event bound, and not cycle bound. To surmount
typical hurdles, an early collaboration was formed between
design and verification engineer, both to influence the design as
well as to identify relevant manual abstraction techniques
upfront. All significant components were formally verified at the
module level.

This approach was successful in identifying most bugs during the
design phase itself and drastically minimized bugs during
verification/emulation phases of the project. This paper
illustrates the strengths of such an approach. It describes our
overall methodology and the proof techniques utilized. The
overall effort yielded a total of 55 bugs found (52 during the
design phase and only 3 bugs during the verification phase). No
bugs were found subsequently during emulation. As a result, this
block was deemed “tape out ready” 2 months prior to other
blocks of similar complexity.

I. INTRODUCTION

The complexity of modern designs has been increasing at a
rapid pace. Modern design blocks are made up of modules that
have very complex behaviors and interactions. Verification of
such blocks poses a serious challenge. The conventional
approach is to verify through simulations at the block level.
However, simulation has the inherent limitation that one can
simulate only a limited set of patterns in any reasonable
amount of time. As design sizes grow, it is becoming
increasingly difficult to maintain a high level of confidence
purely based on simulation coverage. A possible solution is to
use Formal Verification to verify some of complex modules in
your design. Formal Verification performs exhaustive
verification by exploring the entire state space of the design.

In this paper, the design block under consideration is a switch
with around 650k gates and with multiple ports. Most of the
modules inside this design block have high complexity both in
terms of the control oriented behavior and data path
operations. Based on previous experiences, it was estimated
that simulation based verification techniques of such designs

would require more than a year for a dedicated engineer to
fully verify.

In addition, the design in question also had several
components for which liveness guarantees were required,
which were not possible to validate using simulation based
verification. Thus, it was therefore concluded that the most
cost-effective approach would be to utilize Formal
Verification techniques to prove correctness of all significant
components of the design at the module level. Conventional
simulation based design verification (DV) was also done, but
at the block level.

Our overall approach was inspired by the following quotation
from “Mythical Man Month” [1]:

 “The use of clean, debugged components saves much more
time in system testing than that spent on scaffolding and
thorough component test."

Our FV efforts commenced very early during the design phase
and consisted of the following methodology (which took place
alongside conventional DV efforts at the block level):

1) Partition the design into minimally sized pieces and generate
specifications at the module level. Use the compositional
verification technique of proving properties of a system by
checking the properties of its components, using “assume-
guarantee” style reasoning.

2) Aim to prove “black-box” (end-to-end module level)
properties and use the tractability results to both influence
design re-partitioning as well as to gain insights about RTL
complexity.

3) Study cones of influence in order to deduce possibilities for
manual abstractions. Once identified, these abstractions were
then used to replace stateful RTL components within the
design.

In a few cases where all other options failed, we resorted to
proving “white-box” properties (based on RTL internal state).
We used this approach as a last resort since rigorous
specifications of RTL internals are hard to come by, and
further, such specifications often change in the course of the
design cycle.

This paper will focus on the techniques used to verify two of
the modules in the design, namely the Synchronizer and the
Page Manager modules. The first case study is a control &

datapath block that consists of 20k gates and the second is a
datapath block that consists of 25k gates.

In subsequent sections, we describe each module, the Device
Under Test (DUT) operational details, the Formal Verification
strategy utilized in each case as well as the verification results.
Later, we also present our overall results (number of bugs
found etc.) and our high level conclusions. The model
checkers Incisive Formal Verifier (IFV)[2] and SMV[5] were
used over the course of this project.

II. DESCRIPTION OF THE PACKET SWITCH

The design block under consideration was a packet switch
with multiple ports that accepted packets, stored them in
memory, and later forwarded them to various output ports,
allowing for the possibilities of switching and replicating
packets.

In order to accomplish this functionality, the block had various
types of complex components, components that were
responsible for storing incoming packets to memories,
components that were responsible for managing pages in
memory over which packets were stored, components that
maintained caches, etc.

The goal here was to a) design specifically with Formal
Verification in mind (keep modules small, keep interfaces
crisp) as well as to b) formally verify as many elements of the
design as possible. In total, 14 modules of the design were
formally verified. The design consisted of 18 modules in its
entirety.

The following design principles were utilized to ensure FV
tractability:

• Careful design partitioning with exhaustive invariants

of module interfaces.
• Isolation of modules that exhibit FIFO-ness.
• Significant parameterization of modules, to allow

abstraction/reduction of bus widths, etc.
• Significant reuse of common modules, e.g., arbiters,

aligners, etc.
• Decomposition of all architectural invariants into

micro-architectural invariants.

III. FORMAL VERIFICATION OF THE SYNCHRONIZER

The synchronizer module has two inputs, a) packet data is sent
across in_{valid,sop,eop,data[63:0]} , where sop and eop are
start/end packet delimitors and b) address of a valid page is
specified across in_addr, in_addr_valid. Its purpose is to place
the arriving data, which arrives in units of 8 bytes, into various
slots within the specified page. The interface for this module is
shown in Fig 1.

The input packet data bus adheres to the following protocol:
in_valid is asserted whenever there is new data presented

across the input. During the first 8 byte data chunk within a
packet, in_sop will be asserted, and during the last 8 byte
chunk, in_eop will be asserted.

Each page is of size 128 bytes, which is broken down into 16 x
8 byte slots. This module receives an input, sync_cnt[3:0],
which is an external counter that increments every cycle. The
output consists of: rf_write, rf_write_sop, rf_write_eop,
rf_write_data[63:0]. If, at any point in time, we see
rf_write==1 and sync_cnt==i (where i:=0...15), then it means
that rf_write_data[63:0] is being written into slot i within the
page.

The rules determining when/what data is written into a
particular slot in a page are described in the Operational
Details section. All data arriving over in_data goes into an
internal skid_fifo. The data that is at the head of the skid_fifo is
written out into a page only when various design rules are
satisfied.

This module is called the synchronizer because it synchronizes
when and where an incoming data segment is written into a
page. It is part of a larger system that is responsible for
accumulating various 8 byte chunks of data within a register
file so that it can later generate an atomic memory write
operation for a half page worth of data.

Figure 1 – Block Diagram of the Synchronizer

IV. OPERATIONAL DETAILS OF THE SYNCHRONIZER

Following are rules governing the Synchronizer module:

• Across the datapath between in_{valid,sop,eop,data} &

rf_write,rf_write_{sop,eop,data}, FIFO-ness needs to
hold. Note that the input bus has no backpressure

capability (i.e., the input interface should always be able
to sink data and cannot throttle the input bus).

• For a given page (presented on: in_addr), rf_writes should

occur to slot=0....15 in a monotonically increasing
fashion.

• For a given page, if a non-EOP data word was written into

slot=i, then the next data word for this packet must be
written into slot=i+1.

• If we are at the lower half of a page (slot=7) and a)

there’s an rf_write or b) we are not within a packet and
have seen an rf_write in the past to the lower half of this
page, then at the next cycle hpage_wr will be asserted and
not otherwise.

• If we are at the upper half of a page (slot=15) and a)

there’s an rf_write or b) we are not within a packet and
have seen an rf_write in the past to the upper half of this
page, then at the next cycle hpage_wr will be asserted and
not otherwise.

V. DESIGNER’S INVARIANTS FOR THE SYNCHRONIZER

Apart from the rules that were identified by the verification
engineer, we also proceeded to prove the following invariants
put forth by the designer. The intent here was to prove
invariants that emerged after interface study by the verification
engineer, as well as those that were deemed important by the
designer.

• If there is an rf_write to some slot x (where x=0…15),

then there will be no write to slot y (y<=x) until there is
an assertion of output signal hpage_wr.

VI. SYNCHRONIZER VERIFICATION STRATEGY

We could visually establish that this module demonstrated
data independence. The circuit accepted data and shuffled it
around, but no control signals were derived from data. This
could be done relatively easily, by examining the fan-out cone
associated with the data-path elements.

Further, the design also dealt exclusively in terms of 8 byte
(64 bit chunks) and didn't reorder data bytes within each
incoming double word. In order to prove that the unit fulfilled
the specification of a FIFO, it was possible to utilize Wolper’s
Theorem [3], abstract the data width to just 2 bits, inject a
regular expression consisting of A*BA*CA* over the input
data interface and expect that the data showing up at the
output also conformed to this regular expression.

A packet generator was written to inject packets that a)
conformed to SPI4 framing conventions and b) had a
minimum length of 64 bytes, over the input bus:
in_{valid,sop,eop,data}. This packet generator data words
consisting of just 4 types: {A,B,C,D}, where A=64'h0,

B=64'h1, C=64'h2, D=64’h3. A auxiliary fsm was written to
monitor the outputs: rf_write,rf_write_{sop,eop,data}.

Three critical proofs, pertaining to packet data-integrity and
framing, were then cast using the packet generator and
auxiliary FSM.

Proof Obligation1: To prove data integrity across the FIFO’s
data-path.

This proof asserted that if we injected packets conforming to
the regular expression A*BA*CA* over in_data[1:0], then we
are guaranteed to see outputs that also conform to the regular
expression A*BA*CA* over rf_write[1:0]. Note that this
regular expression is injected and expected across all valid
input and output data words This proves that no input data
word is dropped, duplicated or reordered.

Proof Obligation2: To prove that SOPs are preserved intact
across the internal FIFO.

For this proof, the regular expression A*BA*CA* was injected
into in_data[1:0] for SOP input words, and D was injected
into in_data[1:0] for non-SOP input words. The expectation
was that the regular expression A*BA*CA* will always be
seen on rf_write[1:0], for SOP output words and D will
always be seen on rf_write[1:0], for non SOP output words.

Any corruption of an input SOP word (with data values:
{A,B,C}) into an output non-SOP word, would result in an
output non-SOP with a value of {A,B,C}, which will be
detected as a violation of Proof Obligation2.

Any corruption of an input non-SOP word (with data value: D)
into an output SOP word, would result in an output SOP word
with a value of D, which will be detected as a violation of
Proof Obligation2.

Proof Obligation3: To prove that EOPs are preserved intact
across the internal FIFO.

For this proof, the regular expression A*BA*CA* was injected
into in_data[1:0] for EOP input words, and D was injected
into in_data[1:0] for non-EOP input words. The expectation
was that the regular expression A*BA*CA* will always be
seen on rf_write[1:0], for EOP output words and D will
always be seen on rf_write[1:0], for non EOP output words.

Any corruption of an input EOP word (with data values:
{A,B,C}) into an output non-EOP word, would result in an
output non-EOP with a value of {A,B,C}, which will be
detected as a violation of Proof Obligation3.

Any corruption of an input non-EOP word (with data value:
D) into an output EOP word, would result in an output EOP
word with a value of D, which will be detected as a violation
of Proof Obligation3.

In order to prove that writes within a page were to
monotonically increasing slots, a tracking FSM was written.
This FSM did the following: Every time a new page was
presented over in_addr, in_addr_valid, it recorded the slot into
which it first saw an rf_write, storing both the value of
sync_cnt into last_wr_ptr as well as rf_write_{sop,eop} into
last_wr_{sop,eop}.

Properties were then written to monitor the behavior of
rf_write. The two most important assertions were:

1. If we are performing an rf_write to some slot=sync_cnt

and if this is not the first write to the page, then sync_cnt
will be greater than last_wr_ptr.

2. If we are performing an rf_write and if this is not the first

write to the page and if the previous write was a non-EOP
data word (i.e., last_wr_ptr=i && last_wr_eop=0), then
this write will be to slot=(i+1).

This tracking FSM also monitored writes to upper/lower
halves of a page such that later, when sync_cnt={7,15} (i.e.,
write pointer is at the upper/lower half boundaries), if any
writes had occurred to a half, the output hpage_wr would be
asserted.

VII. SYNCHRONIZER VERIFICATION RESULTS

A critical bug was found in the implementation of hpage_wr.
The failing counterexample consisted of a scenario where
there was a write to the upper half of a page for which there
was a valid hpage_wr assertion. However, this signal
continued to be asserted for 8 extra cycles indicating a write to
the lower half of the page inspite of the fact that the lower half
was not written into. This was found very early in the design
stage.

Another critical bug was found in the FIFO size required. The
property corresponding to Proof Obligation1 failed. Our
analysis showed us that the minimum FIFO depth should have
been 18 and not 16. The depth had to account for the internal
FIFO latency. This bug was found very early in the design
stage. While sync_cnt is a primary input to this module, it is an
internal signal within the larger block. Since conventional
simulation based DV was being performed at the block level,
precise control over this signal is difficult to realize in
simulation, making this bug an improbable event within block
level DV. The designer estimates that debugging this issue
would have required ~ 2 hours within a block level
verification test failure, but within the module level FV
framework, this debugging took just a few minutes.

VIII. FORMAL VERIFICATION OF THE PAGE MANAGER MODULE

The Page Manager module’s block diagram is shown in
Figure 2. It is responsible for managing all pages on the
receive path of our Ethernet Switch. This module’s interface
supports four types of requests: Allocate, Enqueue, Dequeue
and Dealloc. It also has an output bus, Page Free.

IX. PAGE MANAGER OPERATIONAL DETAILS

Data passing through the switch from input to output ports is
stored in pages. A list of pages defines a packet. The Page
Manager maintains the state of the page, from the time it is
allocated until the time it is relinquished. Internally, the Page
Manager consists of a) Free List Manager and b) Life Count
Memory. These two sub-units together maintain the state of a
page, which consists of its allocation state as well its reference
count (i.e., the number of packets utilizing that page).

 Figure 2 – Block Diagram of Page Manager

The Free List Manager sub-unit maintains a list of free pages
and its interface allows pages to be allocated and freed. The
Life Count Memory sub-unit maintains a reference count (also
called Life count or lcnt) on a per-page basis, representing the
number of packets present on a single page. The legal lcnt
values are: 0...3.

The life cycle of any page consists of the following event
sequence:
• The unit first receives a Page Allocate. This request is

fielded by the Free List Manager, and a free page is
handed to out to the requestor. Coincident with that, the
page’s lcnt is initialized to 0 in the Life Count Memory..

• Once a page has been successfully allocated, an Enqueue
request will be received along with a specified initial lcnt.
The legal values for lcnt are: {0,1,2,3}. This information
is then stored alongside the page within the LCNT
complex.

• After a page has been Enqueue’ed, it will then receive (at

arbitrary points in time), various Page Dealloc requests.

During each Dealloc request, this page’s lcnt, will be
decremented in the Life Count Memory complex.

• The design assumes that once a page has been
Enqueue’ed with some lcnt (1,2 or 3), it will only field
those many Dealloc requests. After the last Dealloc
request (in the course of which a particular page’s lcnt
goes from 1 to 0), the Free List Manager should free the
relevant page and thePage Free output signal will be
asserted.

• Between the time a particular page has been Enqueue’ed,
and the time it is freed up, its lcnt can be read any number
of times over the Page Dequeue interface. Each Dequeue
request extracts the lcnt and return this value in the
Dequeue response.

X. PAGE MANAGER VERIFICATION STRATEGY

The design was responsible for managing a total of 1024
pages. When an attempt was made to cast proofs against the
DUT, it was found that the proofs did not converge due to
state space explosion. The biggest contributor to the state
space was the Free List Manager (with 1024 state bits).

The Free List Manager’s interface definition is shown in
Table I. This module has a page allocation interface
alloc_{srdy,drdy,num} as well as a page free interface
dlloc_{srdy,drdy,num}.

 Table I (Free List Manager Interface)

Our abstraction reasoning hinged on a single observation: If
you focus on the life of a single page, every other page’s
activity (and state) should be orthogonal to this page’s life.
We utilized this observation in constructing a manual
abstraction for the Free List Manager that maintains state only
for a single page of interest thereby cutting down the size of
the cone-of-influence significantly. This technique is based on
the Refinement strategy described in [4].

The Free List Manager abstraction had the following
characteristics:

• It was aware of the address of a magic page and

maintained state only for that page.

• It operates in two modes, depending upon whether this

magic page is allocated or not:
• If the magic page was already allocated, during

subsequent allocation requests, it would non-
deterministically allocate a page whose address!=
magic page.

• If the magic page wasn’t already allocated, during

subsequent allocation requests, it would non-
deterministically allocate any page (including one
whose address == magic page).

This Free List Manager abstraction SMV code is shown in
Table II. This abstraction was coded in both SMV (for
abstraction soundness proofs) as well as in verilog (for the
Page Manager proofs, which were run within IFV).

As can be seen in the abstraction’s code, a single state
variable, magicPageAllocated, was used to record whether or
not the magic page was allocated, and this state is then used in
determining the page handed out during allocation requests.

Aside from this state, the notion of magic page was
maintained within a rigid variable that was set non-
deterministically by the external environment at the time of
reset, and kept constant during each path. By virtue of
maintaining just 1 bit of state (magic page’s allocation state),
the number of bits of state was reduced by 1023 bits within the
cone of influence. This abstraction was then used to replace
the Free List Manager instance within the DUT.

The intent here, in the construction of the Free List Manager
abstraction, was to provide ourselves with a light-weight stub
that allowed completely non-deterministic allocation and
freeing of pages, with arbitrary latencies, with a single
restriction that it would never reallocate the magic page, if
someone else already have it allocated – which are
characteristics required for this abstraction to be “sound”.

/*
* alloc_srdy => alloc page available
* alloc_drdy => alloc page consumed by client
* alloc_num => alloc page number
* dlloc_srdy => dlloc page requested by client
* dlloc_drdy => dlloc page request accepted
* dlloc_num => dlloc page number
*/

module fl_mgr(
 Clk,
 Rst_,
 alloc_srdy,
 alloc_drdy,
 alloc_num,
 dlloc_srdy,
 dlloc_drdy,
 dlloc_num
);
input Clk;
input Rst_;
output alloc_srdy;
input alloc_drdy;
output [9:0] alloc_num;
input dlloc_srdy;
output dlloc_drdy;
input [9:0] dlloc_num;
...
endmodule

 Table II (Free List Manager Abstraction)

 The FV framework additionally maintained an auxiliary non-
deterministic “tracking state” FSM (trkState) to both
exhaustively generate requests sequences while tracking the
life of the magic page as well as to help predict the DUT’s
responses. This FSM’s state diagram is shown in Figure 3

The trkState FSM starts off in IDLE state and transitions into
ALCD state if magic page is allocated. Once it is in ALCD
state, it non-deterministically generates an Enqueue request
with lcnt={1,2,3} and transitions to states LCNT1, LCNT2,
LCNT3 respectively. After it moves into an LCNT state, it

then non-deterministically generates as many Dealloc requests
as is permissable.

During the last Dealloc request generation (which occurs
while in LCNT1) state, this FSM expects to see a Page Free
event for the magic page. If this event occurs, the FSM
transitions to IDLE. On the other hand, during this last
Dealloc, a Page Free event is not observed for the magic
page, it transitions to and forever remains in ERROR state. In
addition, any unexpected output event also caused a transition
to ERROR state.

 Figure 3 – trkState FSM state diagram

There are two modes of operation within the FV framework,
based on whether or not magicPageAllocated is set:

1. If magicPageAllocated is 0, the trkState FSM will be in
IDLE and the FV framework will non-deterministically
generate requests (for any page), to the DUT.

2. If magicPageAllocated is 1, the trkState FSM will

generate legal/exhaustive requests (for magic page)
while other input constraints non-deterministically
generate requests (for any page other than magic page).

In addition to generating exhaustive and legal inputs, the
purpose of the FSM’s state variable was to predict the DUT’s
responses while in various states.

We now describe some important assertions governing the
DUT’s behavior (These were coded in System Verilog):

• While in non-IDLE states (i.e., magic page has already

allocated), the DUT should not reallocate magic page to
any other requesting agent.

 layer abstract : {
 alcVld : boolean;
 dlcVld : boolean;
 magicPageAllocated : boolean;
 magicPageAllocatedNxt : boolean;

 alcVld := (alloc_srdy & alloc_drdy);
 dlcVld := (dlloc_srdy & dlloc_drdy);

 init (magicPageAllocated) := 0;
 next (magicPageAllocated) := magicPageAllocatedNxt;

 /* magicPageAllocatedNxt generation */
 default {
 magicPageAllocatedNxt := magicPageAllocated;
 } in {
 if (~Rst_)
 magicPageAllocatedNxt := 0;
 else {
 if (alcVld & ~dlcVld){
 /* Only Alloc */
 if ((alloc_num=magicPage) | magicPageAllocated)
 magicPageAllocatedNxt := 1;
 }
 else
 if (~alcVld & dlcVld){
 /* Only Dlloc */
 if (magicPageAllocated & dlloc_num=magicPage)
 magicPageAllocatedNxt := 0;
 }
 else
 if (alcVld & dlcVld){
 /* Both Alloc & Dlloc */
 if (alloc_num=magicPage)
 magicPageAllocatedNxt := 1;
 else
 if (dlloc_num=magicPage)
 magicPageAllocatedNxt := 0;
 }
 }
 }

 /* alloc_num generation */
 default {
 /* any page whatsoever */
 alloc_num := {0..MAX_NPAGES-1};
 } in {
 if (alloc_drdy & magicPageAllocated){
 /* any page other than magicPage */
 alloc_num := { i : i=0..MAX_NPAGES-1, i~=magic Page };
 }
 }

• After the Allocate phase, during the Enqueue phase for
the magic page, the specified lcnt should be initialized.

• After the Enqueue phase for the magic page, during each

Dealloc phase, its lcnt should be properly decremented in
the LCNT memory.

• The output Page Free should be generated for the magic

page if and only if the last Dealloc request has been
issued for this page.

• While in non-IDLE states, for any Dequeue request, the

response lcnt should match what we expect based on the
FSM state (0 if in ALCD, 1 if in LCNT1, 2 if in LCNT2,
3 if in LCNT3).

 Table III (Example SV Assertions)

We provide some example SV assertions in Table III. The first
property, assert_page_no_realloc, asserts that if trkState is not
IDLE, that is if the magic page is already allocated, it will not
be reallocated to any other requestor.

The second and third properties that are shown here,
assert_page_free_{valid,invalid}, describe the necessary and
sufficient condition required for the magic page to be freed

(“magic page should be freed if and only if trkState is in
LCNT1 and magic page is deallocated”).

By maintaining a rigid variable that determined magic page
and by having a Free List Manager abstraction that
maintained state for just this one page, the design was
rendered tractable. The properties outlined earlier were all
proven against the life of this single magic page, and since this
page address was non-deterministically generated (to have any
page address), the proofs hold for all pages.

In the interest of completeness, the Free List Manager was
separately formally verified within an SMV framework. Two
properties were proven against the actual Free List Manager:

• A page, once allocated, will never be reallocated until it is

deallocated (safety property)
• All page allocation requests will eventually be fulfilled

(liveness property)

It is worth noting that the last property mentioned above
required the following fairness constraint: “Every allocated
page will always eventually be relinquished” in order to
eliminate invalid counter-examples.

In addition, the soundness of (an SMV version of) the Free
List Manager abstraction was also proven within this
framework.

XI. OVERALL VERIFICATION RESULTS

During this project, 14 modules within this block were
formally verified by a single FV engineer, over a period of 6
months. A total of 55 bugs were found during this effort; 52
bugs were found in the design phase and 3 bugs were found in
the verification phase. It is also worth noting that during the
verification phase, 3 other bugs slipped through FV and were
found in block level simulation (2 were due to missing
properties and 1 was due to an overly tight constraint).

The 3 bugs found in simulation were recreated within FV by
adding new properties and correcting an overly constrained
input. In addition, the fixes were formally verified.

During emulation, this formally verified block was the first to
successfully withstand data integrity type testing. As a
consequence, this block was deemed tape-out ready two
months prior to other blocks, of similar complexity that
exclusively underwent simulation based verification.

During ASIC “bring-up”, no issues were found in any of the
design components that were formally verified.

XII. CONCLUSIONS

Based on our experience, we come to the conclusion that it is
possible to significantly address block level verification needs

/*
 * If we’re in non-IDLE state, magic page is already in use and
 * should not be reallocated to any other requestor
 */
assert_page_no_realloc: assert property(
 @(posedge Clk) disable iff (!Rst_)(
 (trkState!=IDLE) |-> !(page_alloc_req && page_alloc_rsp
&& page_alloc_pgnum==magic_page)
)
);

/*
 * If in LCNT1 state and there is a dealloc of the magic page,
 * then we should see a freeing of the magic page
 */
assert_page_free_valid: assert property(
 @(posedge Clk) disable iff (!Rst_)(
 (trkState==LCNT1 && page_dealloc_req &&
page_dealloc_rsp && page_dealloc_pgnum==magic_page) |->
 (page_free_req && page_free_pgnum==magic_page
)
);

/*
 * If in !(LCNT1 state and there is a dealloc of the magic page),
 * then we should not see a freeing of the magic page
 */
assert_page_free_invalid: assert property(
 @(posedge Clk) disable iff (!Rst_)(
 ! (trkState==LCNT1 && page_dealloc_req &&
page_dealloc_rsp && page_dealloc_pgnum==magic_page) |->
 ! (page_free_req && page_free_pgnum==magic_page
)
);

by breaking down the design into minimally sized modules and
then formally verifying each of them.

Our methodology also helped yield the following benefits over
the course of this project:

• Overcoming state space explosion during proof runs
within the model checker.

• Generating rigorous specifications upfront at the module
level, something that is often overlooked while embarking
on “block level” DV.

• Providing SVA assertions and assumptions which could
also be used in simulation.

• Creating FV frameworks within which we could verify
design changes/bug fixes with a high degree of confidence
alleviating the need to rerun all simulation tests.

While re-partitioning of design based on FV tractability can
sometimes lead to added design latency, this tradeoff was
worthwhile overall because the more minimally sized design
modules were easier to maintain.

We also observed that debugging of counter-examples was
very efficient since we specified a large number of module
level invariants that helped isolate root-causes fairly quickly.

We believe there is value in some amount of overlap between
FV efforts and conventional simulation based verification.
Such a parallel/overlapping approach reduces the risks posed
by overly tight constraints and inadequate (or missing)
properties. This overlapping effort is justified by the fact that
almost all bugs were found in the design phase itself and the
FV proof frameworks provided us with a vehicle within which
the fixes could be formally verified.

While the techniques outlined here, to render modules tractable
under FV, are well known in the research world, they are
seldom applied in the course of ASIC formal verification
efforts and are hence worth emphasizing.

XIII. LIMITATIONS AND FUTURE WORK

Our approach relies on the verification engineer using design
insights to come up with the right manual abstractions. This
approach does risk bias particularly in light of the fact that
commercial model checkers (that we know of) lack the means

to prove soundness of abstractions or the means to express
refinement maps (as can be done with SMV[5]).

To alleviate this risk, we made a deliberate attempt to keep our
abstractions very simple (less than half a screen worth of
verilog code per abstraction), and as a result have a high degree
of confidence in our abstractions’ soundness.

For the specific case of the Free List Manager abstraction, we
reimplemented this abstraction within an SMV “layer” and
proved its soundness, ensuring that for every path taken within
the RTL component replaced, there exists at least one identical
path within the abstract definition.

Most commercial model checkers do not possess the ability to
verify data-independence in any automated way. We look
forward to such features so that we can utilize them in the
interest of completeness.

However, to put these concerns into practical perspective, we
observe that these risks are no worse than other concerns, such
as ensuring that DUT inputs are not over-constrained, ensuring
that assertions correctly capture the specification’s intent, etc.

ACKNOWLEDGMENT
We are very grateful to Ásgeir Eiríksson, the CTO of

Chelsio Communications, for providing us with valuable
insights pertaining to abstractions and to Jon Michelson for
sharing his numerous detailed observations. We are also
grateful to Vigyan Singhal, Prashant Arora and Paul Everhardt
for providing feedback regarding various drafts of this paper.

REFERENCES
[1] Frederick P. Brooks, Jr. The Mythical Man-Month, Addison-Wesley

Publications, 1995.
[2] Incisive Formal Verifier User Guide, Cadence Design Systems.
[3] Pierre Wolper. Expressing interesting properties of program in

propositional temporal logic. In Proceedings of the 13th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages, pages
184-193. ACM Press, 1986.

[4] Ásgeir Eiríksson. The Formal Design of 1M-gate ASICs. In Formal
Methods in System Design, Vol 16, Issue 1 (Jan 2000), Special issue on
formal methods for computer-aided system design. Kluwer Academic
Publishers.

[5] K. L. McMillan, Getting started with SMV, Cadence Berkeley Labs,
1999.

