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Abstract—Certain formal verification tasks require reasoning
about Boolean combinations of non-linear arithmetic constraints
over the real numbers. In this paper, we present a new technique
for satisfiability solving of Boolean combinations of non-linear
constraints that are convex. Our approach applies fundamental
results from the theory of convex programming to realize a
satisfiability modulo theory (SMT) solver. Our solver, CalCS,
uses a lazy combination of SAT and a theory solver. A key
step in our algorithm is the use of complementary slackness
and duality theory to generate succinct infeasibility proofs that
support conflict-driven learning. Moreover, whenever non-convex
constraints are produced from Boolean reasoning, we provide
a procedure that generates conservative approximations ofthe
original set of constraints by using geometric properties of convex
sets and supporting hyperplanes. We validate CalCS on several
benchmarks including formulas generated from bounded model
checking of hybrid automata and static analysis of floating-point
software.

I. I NTRODUCTION

The design and verification of certain systems requires
reasoning about nonlinear equalities and inequalities, both
algebraic and differential. Examples range from mixed-signal
integrated circuits (e.g., [1]) that should operate correctly
over process-voltage-temperature variations, to controldesign
for biological or avionics systems, for which safety must be
enforced (e.g., [2]). In order to extend the reach of formal
verification methods such as bounded model checking (BMC)
for such systems [3], [4], it is necessary to develop efficient
satisfiability modulo theories (SMT) solvers [5] for Boolean
combinations of non-linear arithmetic constraints. However,
SMT solving for arbitrary non-linear arithmetic over the reals,
involving, e.g., quantifiers and transcendental functions, is
undecidable [6]. There is therefore a need to develop efficient
solvers for special cases that are also useful in practice.

In this paper, we addressthe satisfiability problem for
Boolean combinations of convex non-linear constraints. We
follow the lazy SMT solving paradigm [7], where a classic
David-Putnam-Logemann-Loveland (DPLL)-style SAT solv-
ing algorithm interacts with a theory solver based on funda-
mental results from convex programming. The theory solver
needs only to check the feasibility of conjunctions of theory
predicates passed onto it from the SAT solver. However, when
all constraints are convex, a satisfying valuation can be found
using interior point methods [8], running in polynomial time.

A central problem in a lazy SMT approach is for the theory
solver to generate a compact explanation when the conjunction
of theory predicates is unsatisfiable. We demonstrate how this
can be achieved for convex constraints using duality theoryfor
convex programming. Specifically, we formulate the convex
programming problem in a manner that allows us to easily
obtain the subset of constraints responsible for unsatisfiability.

Additionally, even when constraints are restricted to be
convex, it is possible that, during Boolean reasoning, some
of these constraints become negated, and thus the theory
solver must handle some non-convex constraints. We show
how to handle such constraints by set-theoretic reasoning and
approximation with affine constraints.

The main novel contributions of our work can be summa-
rized as follows:

• We present the first SMT solver for a Boolean combina-
tion of convex non-linear constraints. Our solver exploits
information from the solution of convex optimization
problems to establish satisfiability of conjunctions of
convex constraints;

• We give a novel formulation that allows us to generate
certificates of unsatisfiability in case the conjunction of
theory predicates is infeasible, thus enabling the SMT
solver to perform conflict-directed learning;

• Whenever non-convex constraints originate from convex
constraints due to Boolean negation, we provide a proce-
dure that can still use geometric properties of convex sets
and supporting hyperplanes to generate approximations of
the original set of constraints;

• We present a proof-of-concept implementation, CalCS,
that can deal with a much broader category than linear
arithmetic constraints, also including conic constraints, as
the ones in quadratic and semidefinite programs, or any
convex relaxations of other non-linear constraints [8]. We
validate our approach on several benchmarks including
formulas generated from BMC for hybrid systems and
static analysis of floating-point programs, showing that
our approach can be more accurate than current leading
non-linear SMT solvers such as iSAT [9].

The rest of the paper is organized as follows. In Section II, we
briefly review some related work in both areas on which this
work is based, i.e. SMT solving for non-linear arithmetic con-
straints and convex optimization. In Section III, we describe
background material including the syntax and semantics of the
SMT problems our algorithm handles. Section IV introduces
to the convex optimization concepts that our development
builds on and provides a detailed explanation of our algorithm.
In Section V we report implementation details on integrating
convex and SAT solving. After presenting some benchmark
results in Section VI, we conclude with a summary of our
work and its planned extensions.

II. RELATED WORK

An SMT instance is a formula in first-order logic, where
some function and predicate symbols have additional inter-
pretations related to specific theories, and SMT is the problem



of determining whether such a formula is satisfiable. Modern
SAT and SMT solvers can efficiently find satisfying valuations
of very large propositional formulae, including combinations
of atoms from various decidable theories, such as lists, arrays,
bit vectors [5]. However, extensions of the SMT problem to
the theory of non-linear arithmetic constraints over the reals
have only recently started to appear. Since our work combines
both SAT/SMT solving techniques with convex programming,
we briefly survey related works in both of these areas.

A. SMT solving for non-linear arithmetic constraints

Current SMT solvers for non-linear arithmetic adopt the
lazy combination of a SAT solver with a theory solver for
non-linear arithmetic. The ABsolver tool [10] adopts this
approach to solve Boolean combinations of polynomial non-
linear arithmetic constraints. The current implementation uses
the numerical optimization tool IPOPT [11] for solving the
non-linear constraints. However, without any other additional
property for the constraints, such as convexity, the numerical
optimization tool will necessarily produce incomplete results,
and possibly incorrect, due to the local nature of the solver
(all variables need upper and lower bounds). Moreover, in case
of infeasibility, no rigorous procedure is specified to produce
infeasibility proofs.

A completely different approach is adopted by the iSAT
algorithm that builds on a unification of DPLL SAT-solving
and interval constraint propagation [9] to solve arithmetic
constraints. iSAT directly controls arithmetic constraint prop-
agation from the SAT solver rather than delegating arithmetic
decisions to a subordinate solver, and has shown superior effi-
ciency. Moreover, it can address a larger class of formulae than
polynomial constraints, admitting arbitrary smooth, possibly
transcendental, functions. However, since interval consistency
is a necessary, but not sufficient condition for real-valued
satisfiability, spurious solutions can still be generated.

To reason about round-off errors in floating point arithmetic
an efficient decision procedure (CORD) based on precise arith-
metic and CORDIC algorithms has been recently proposed
by Ganai and Ivancic [12]. In their approach, the non-linear
part of the decision problem needs first to be translated intoa
linear arithmetic (LA) formula, and then an off-the-shelf SMT-
LA solver and DPLL-style interval search are used to solve
the linearized formula. For a given precision requirement,the
approximation of the original problem is guaranteed to account
for all inaccuracies.

B. Convex Programming

An SMT solver for the non-linear convex sub-theory is
motivated by both theoretical and practical reasons. On theone
hand, convex problems can be solved very efficiently today,
and rely on a fairly complete and mature theory. On the other
hand, convex problems arise in a broad variety of applications,
ranging from automatic control systems, to communications,
electronic circuit design, data analysis and modeling [8].The
solution methods have proved to be reliable enough to be
embedded in computer-aided design or analysis tool, or even
in real-time reactive or automatic control systems. Moreover,
whenever the original problem is not convex, convex problems
can still provide the starting point for other local optimization
methods, or a cheaply computable lower bounds via constraint
or Lagrangian relaxations. A thorough reference on convex
programming and its applications can be found in [8].

As an example, convex optimization has been used in
electronic circuit design to solve the sizing problem [13]–[15].
Robust design approaches based on convex models of mixed-
signal integrated circuits have also been presented in [16],
[17]. While, in these cases, there was no Boolean structure,
Boolean combinations of convex constraints arise when the
circuit topology is not fixed, or for cyber-physical systems
where continuous time dynamics need to be co-designed with
discrete switching behaviors between modes. It is therefore
necessary to have solvers that can reason about both Boolean
and convex constraints.

In the context of optimal control design for hybrid systems,
the work in [18], [19] proposes a combined approach of
mixed-integer-programming (MIP) and constraint satisfaction
problems (CSP), and specifically, convex programming and
SAT solvers, as in our work. The approach in [18], [19] is,
in some respects, complementary to ours. A SAT problem is
first used to perform an initial logic inference and branching
step on the Boolean constraints. Convex relaxations of the
original MIP (including Boolean variables) are then solvedby
the optimization routine, which iteratively calls the SAT solver
to ensure that the integer solution obtained for the relaxed
problem is feasible and infer an assignment for the logic
variables that were assigned to fractional values from the MIP.
However, the emphasis in [18], [19] is more on speeding up
the optimization over a set of mixed convex and integer con-
straints, rather than elaborating a decision procedure to verify
feasibility of Boolean combinations of convex constraints, or
generate infeasibility proofs. Additionally, unlike [18], [19],
by leveraging conservative approximations, our work can also
handle disjunctions of convex constraints.

III. B ACKGROUND AND TERMINOLOGY

We cover here some background material on convexity and
define the syntax of the class of SMT formulae of our interest.

Convex Functions. A function f : R
n → R is termed

convex if its domain domf is a convex set and if for all
x, y ∈ domf , andθ with 0 ≤ θ ≤ 1, we have

f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y). (1)

Geometrically, this inequality means that thechord from x to
y lies above the graph off . As a special case, when (1) always
holds as an equality, thenf is affine. All linear functions
are also affine, hence convex. It is possible to recognize
whether a function is convex based on certain properties. For
instance, iff is differentiable, thenf is convex if and only
if domf is convex andf(y) ≥ f(x) + ∇f(x)T (y − x)
holds for all x, y ∈ domf , and ∇f(x) is the gradient of
f . The above inequality states that iff is convex, its first-
order Taylor approximation is always a global underestimator.
The converse result can be also shown to be true. Iff is twice
differentiable, thenf is convex if and only ifdomf is convex
and its Hessian∇2f(x) is positive semidefinite matrix for all
x ∈ domf . In addition to linear, affine, and positive semi-
definite quadratic forms, examples of convex functions may
include exponentials (e.g.eax), powers (e.g.xa whena ≥ 1),
logarithms (e.g.− log(x)), the max function, and all norms.

Convex Constraint. A convex constraint is of the form
f(x) {<,≤, >,≥} 0 or h(x) = 0, wheref(x) andh(x) are
convex and affine (linear) functions, respectively, of their real
variablesx ∈ D ⊆ R

n, with D being a convex set. In the



following, we also denote a constraint in the formf(x) ≤ 0
(f(x) < 0) as aconvex(strictly convex) constraint (CC), where
f(x) is a convex function on its convex domain. A convex
constraint is associated with a setC = {x ∈ R

n : f(x) ≤ 0},
i.e. the set of points in the space that satisfy the constraint.
SinceC is the 0-sublevel set of the convex functionf(x), C
is also convex. We further denote the negation of a (strictly)
convex constraint, expressed in the formf(x) > 0 (f(x) ≥ 0),
asreversed convex(reversed strictly convex) constraint (RCC).
An RCC is, in general, non-convex as well as its satisfying
setN = {x ∈ R

n : f(x) > 0}. The complement̄N of N is,
however, convex.

Syntax of Convex SMT Formulae. We represent SMT
formulae over convex constraints to be quantifier-free formulae
in conjunctive normal form, with atomic propositions ranging
over propositional variables and arithmetic constraints.The
formula syntax is therefore as follows:

formula ::= {clause∧}∗clause
clause ::= ({literal∨}∗literal)
literal ::= atom| ¬atom
atom ::= conv constraint | bool var

conv constraint ::= equation | inequality
equation ::= affine function = 0

inequality ::= convex function relation 0
relation ::= < | ≤

In the grammar above,bool var denotes a Boolean variable,
and affine function and convexfunction denote affine and
convex functions respectively. The termsatomand literal are
used as is standard in the SMT literature. Note that the only
theory atoms are convex or affine constraints. Even though we
allow negations on convex constraints (hence allowing non-
convex constraints), we will term the resulting SMT formula
as aconvex SMT formula.

Our constraint formulae are interpreted over valuations
µ ∈ (BV → B) × (RV → R), where BV is the set of
Boolean andRV the set of real-valued variables. The definition
of satisfaction is also standard: a formulaφ is satisfied by a
valuationµ (µ |= φ) iff all its clauses are satisfied, that is,
iff at least one atom is satisfied in any clause. A literall is
satisfied if µB(l) =true. Satisfaction of real constraints is
with respect to the standard interpretation of the arithmetic
operators and the ordering relations over the reals.

Based on the above definitions, here is an example of a
convex SMT formula:

(x + y − 3 = 0 ∨ a ∨ − log(ex + ey) + 10 ≥ 0)

∧ (¬b ∨ ||(x − 2, z − 3)||2 ≤ y − 5) ∧ (x2 + y2 − 4x ≤ 0)

∧
(

¬a ∨ y < 4.5 ∨ max{2x + z, 3x2 + 4y4 − 4.8} < 0
)

,
(2)

wherea, b ∈ BV , x, y, z ∈ RV , and || · ||2 is the Euclidean
norm onR

2.
If the SMT formula does not contain any negated convex

constraint, the formula is termed amonotone convex SMT
formula.

IV. T HEORY SOLVER FORCONVEX CONSTRAINTS

In optimization theory, the problem of determining whether
a set (conjunction) of constraints are consistent, and if so,
finding a point that satisfies them, is afeasibility problem. The

feasibility problem for convex constraints can be expressed in
the form

find x

subject to fi(x) ≤ 0, i = 1, . . . , m

hj(x) = 0, j = 1, . . . , p

(3)

where the single (vector) variablex ∈ R
n represents then-

tuple of all the real variables(x1, . . . , xn)T , the fi functions
are convex, and thehj functions are affine. As in any opti-
mization problem, ifx is a feasible point andfi(x) = 0, we
say that thei-th inequality constraintfi(x) ≤ 0 is active at
x. If fi(x) < 0, we say the constraintfi(x) ≤ 0 is inactive.
The equality constraints are active at all feasible points.For
succinctness of presentation, we make the assumption that
inequalities are non-strict (as listed in (3)), but our approach
extends to systems with strict inequalities as well.

In this section, we describe how we construct a theory solver
for a convex SMT formula that generates explanations when
a system of constraints is infeasible. In general, the system
of constraints can have both convex constraints and negated
convex constraints (which can be non-convex). We will first
consider the simpler case where all constraints in the system
are convex, and show how explanations for infeasibility can
be constructed by a suitable formulation that leverages duality
theory (Section IV-A). We later give an alternative formulation
(Section IV-B) and describe how to deal with the presence of
negated convex constraints (Section IV-C).

Although it is possible to directly solve feasibility problems
by turning them into optimization problems in which the
objective function is identically zero [8], no informationabout
the reasons for inconsistency would be propagated with this
formulation, in case of infeasibility. Therefore, we cast the
feasibility problem (3) as a combination of optimization prob-
lems with the addition of slack variables. Each of these newly
generated problems is an equivalent formulation of the original
problem (and it is therefore in itself a feasibility problem),
while at the same time being richer in informative content.
In particular, given a conjunction of convex constraints, our
framework builds upon the following equivalent formulations
of (3), namely thesum-of-slacksfeasibility problem (SSF), and
the single-slackfeasibility (SF) problem, both detailed below.

A. Sum-of-Slacks Feasibility Problem

In the SSFproblem, a slack variablesi is introduced for
every single constraint, so that (3) turns into the following

minimize
∑m+2p

k=1
sk

subject to f̃k(x) − sk ≤ 0, k = 1, . . . , m + 2p

sk ≥ 0

(4)

where f̃k(x) = fk(x) for k = 1, . . . , m, f̃m+j(x) = hj(x),
and f̃m+p+j(x) = −hj(x) for j = 1, . . . , p. In other
words, every equality constrainthj(x) = 0 is turned into a
conjunction of two inequalities,hj(x) ≤ 0 and−hj(x) ≤ 0
before applying the reduction in (4). TheSSF problem can
be interpreted as trying to minimize the infeasibilities ofthe
constraints, by pushing each slack variable to be as much as



possible close to zero. The optimum is zero and is achieved
if and only if the original set of constraints (3) is feasible.

Based onduality theory[8], a dual problemis associated
with (4), which maximizes theLagrange dual functionas-
sociated with (4), under constraints on thedual variablesor
Lagrange multipliers. While the dual optimal value always
provides a lower bound to the original (primal) optimum, an
important case obtains when this bound is tight and the two
primal and dual optima coincide (strong duality). As a simple
sufficient condition, Slater’s theorem states that strong duality
holds if the problem is convex, and there exists a strictly
feasible point, such that the non-linear inequality constraints
hold with strict inequalities. As a consequence of duality
theory, the following result holds for (4) at optimum:

Proposition IV.1. Let (x∗, s∗) ∈ R
n+m+2p be a primal

optimal andz∗ ∈ R
m+2p be a dual optimal point for(4).

Then: (i) if (3) is feasible,x∗ provides a satisfying assignment;
(ii) moreover, we obtain:

z∗k(f̃k(x∗) − s∗k) = 0 k = 1, . . . , m + 2p. (5)

Proof sketch:The first statement trivially follows from the
solution of problem (4). Sincex∗ is the optimal point, it
also satisfies all the constraints in (4) withsk = s∗k = 0,
therefore it is a satisfying assignment for (3). The second state-
ment follows fromcomplementary slackness. In fact, under
the assumptions in Section III, (4) is a convex optimization
problem. Moreover, it is always possible to find a feasible
point which strictly satisfies all the nonlinear inequalities since,
for a any givenx, the slack variablessk can be freely chosen,
hence Slater’s conditions hold. As a result, strong duality
holds as well, i.e. both the primal and dual optimal values are
attained and equal, which implies complementary slackness,
as in (5).

We use complementary slackness to generate infeasibility
certificates for (3). In fact, if a constraintk is strictly satisfied
(i.e. s∗k = 0 and f̃k(x∗) < 0) then the relative dual variable
is zero, meaning that the constraintf̃k(x∗) ≤ 0 is actually
non-active. Conversely, a non-zero dual variable will necessary
correspond to either an unfeasible constraint (s∗k > 0) or to a
constraint that is non strictly satisfied (s∗k = 0). In both cases,
the constraintf̃k(x∗) ≤ sk is active at optimum and it is one
of the reasons for the conflict. We can therefore conclude with
the following result:

Proposition IV.2. The subset of constraints in(4) that are
related to positive dual variables at optimum represents the
active subset, and therefore provides a succinct reason of
infeasibility (certificate).

Numerical issues must be considered while implementing
this approach. When (3) is feasible, the optimization algorithm
in practice will terminate with|

∑m+2p

k=1
sk| ≤ ǫt, thus pro-

ducing anǫt-suboptimal point for arbitrary small, positiveǫt.
Accordingly, to enforce strict inequalities such asf̃k(x) < 0,
we modify the original expression with an additional user-
defined positive slack constantǫs as f̃k(x) + ǫs ≤ 0, thus
requiring that the constraint be satisfied with a desired margin
ǫs. All the above conclusions valid for (3) can then be
smoothly extended to the modified problem.

B. Single-Slack Feasibility Problem

While the SSFproblem is the workhorse of our decision
procedure, we also present an alternative formulation of the
feasibility problem, which will be useful in the approximation
of RCCs.

The SF problem minimizes the maximum infeasibilitys of
a set of convex constraints as follows

minimize s

subject to f̃k(x) − s ≤ 0, k = 1, . . . , m + 2p
(6)

where inequalities are pre-processed as in Section IV-A. The
goal is clearly to drive the maximum infeasibility below
zero. At optimum the sign of the optimal values∗ provides
feasibility information. If s∗ < 0, (6) has a strictly feasible
solution; if s∗ > 0 then (6) is infeasible; finally, ifs∗ = 0 (in
practice|s∗| ≤ ǫt for some smallǫt > 0) and the minimum
is attained, then the set of inequalities is feasible, but not
strictly feasible. As in (4), complementary slackness willhold
at optimum, i.e.

z∗k(f̃k(x∗) − s∗) = 0 k = 1, . . . , m + 2p.

Therefore, even when the problem is feasible, whenever a
constraintk is not active, then(f̃k(x∗) − s∗) 6= 0 will be
strictly satisfied, and implyzk = 0. Conversely, ifzk 6= 0,
then the constraint(f̃k(x∗)− s∗) is certainly active and̃fk(x)
contributes to determine the maximum infeasibility for the
given problem, in the sense that ifs∗ was further pushed to
be more negative,̃fk(x) would be no longer satisfied.

C. Dealing with Reversed Convex Constraint

A negated (reversed) convex constraint (an RCC) is non-
convex and defines a non-convex setN . Any conjunction of
these non-convex constraints with other convex constraints
results in general in a non-convex set. To deal with such
non-convex sets, we propose heuristics to compute convex
over- and under-approximations, which can then be solved
efficiently. This section describes these techniques.

Our approximation schemes are based on noting that the
complementary set̄N is convex. Therefore geometric prop-
erties of convex sets, such as strict or weak separation [8],
can still be used to approximate or boundN via a supporting
hyperplane. Once a non-convex constraint is replaced with a
bounding hyperplane, the resultingapproximate problem(AP)
will again be convex, and all the results in Section IV-A will
be valid for this approximate problem.

For simplicity, we assume in this section that we have
exactly one non-convex constraint (RCC), and the rest of the
constraints are convex. We will describe the general case in
Sec. IV-D. Letg(x) be the convex function associated with
the RCC. Our approach proceeds as follows:

1) Solve the sum-of-slacks (SSF) problem for just the
convex constraints. Denote the resulting convex region
by B.
If the resulting problem isUNSAT, report this answer
along with the certificate computed as described in
Sec. IV-A.
Otherwise, if the answer returned isSAT, denote the
optimal point asx∗

b (satisfying assignment) and proceed
to the next step.



2) Add the negation of the RCC (a convex constraint) and
solve the SSF problem again, which we now denote as
reversed problem(RP). There are two cases:
(a) If the answer isUNSAT, then the RCC regionN̄

does not intersect the convex regionB. This implies
that B ⊂ N , and hence the RCC is a redundant
constraint. This situation is illustrated in Fig. 1(a).
Thus, the solver can simply returnSAT (as returned
in the previous step).

(b) On the other hand, if the answer isSAT, we denote
asx∗

c the optimal point of the RP and check whether
the negated RCC is now redundant, based on the
shift induced in the optimal pointx∗

b . In particular,
if both x∗

c andx∗

b are insideN̄ , we solve two single-
slack feasibility (SF) problems, and we denote as
x̃∗

b and x̃∗

c the two optimal points, for the problem
having just the convex constraints and for the the RP,
respectively. Similarly, we denote the two optimal
values as̃s∗b and s̃∗c .
As also observed in Section IV-B, for a set of
satisfiable constraints,̃x∗

b , x̃∗

c , s̃∗b ands̃∗c may contain
more information than the optimal pointsx∗

b andx∗

c

(and their slack variables) for theSSFproblem. In
fact, sinces̃∗b and s̃∗c are also allowed to assume
negative (hence different) values at optimum, they
can provide useful indications on how the RCC
has changed the geometry of the feasible set, and
which constraints are actually part of its boundary,
thus better driving our approximation scheme. In
particular, if we verify that̃s∗b = s̃∗c , x̃∗

b = x̃∗

c , and
B ⊂ N̄ , then we implyB ∩ N = ∅. Hence, the
solver can returnUNSAT. Techniques to detect if a
conjunction of convex constraints generates sets that
are (exactly or approximately) contained in a convex
set are reported in [20], [21]. For instance, when
both B and N̄ are spheres, the conditionB ⊂ N̄
is equivalent to checking that the slack constraint
related to the RCC is not active at optimum in the
SF problem. This case is illustrated in Fig. 1(b) for
the following conjunction of constraints:

(x2
1 + x2

2 − 1 ≤ 0) ∧ (x2
1 + x2

2 − 4 > 0)

where(x2
1+x2

2−4 > 0) is the non-convex constraint
defining regionN . If set containment cannot be
exactly determined the procedure returnsUNKNOWN.

If none of the above cases hold, we proceed to the next
step. For example, this is the case wheneverx∗

b is outside
N̄ , or on its boundary (i.e.g(x∗

b) ≥ 0). This implies that
the negated RCC is not redundant, and we can move to
the next step without solving the twoSF problems.

3) In this step, we generate a convex under-approximation
of the original formula including the convex constraints
and the single non-convex RCC. If the resulting problem
is found satisfiable, the procedure returnsSAT. Other-
wise, it returnsUNKNOWN.

We now detail the under-approximation procedure in Step 3.
As an illustrative example, we use a2-dimensional region
defined by the following SMT formula:

(x2
1+x2

2−1 ≤ 0)∧(x2
1 +x2

2−4x1 ≤ 0)∧(x2
1 +x2

2−2x2 > 0).
(7)

Fig. 1. Two special cases for handling non-convex constraints: (a) by adding
a negated RCC a new set is generated that is strictly separated from the
previous convex set; (b) the negated RCC generates a set thattotally includes
the previous convex set.

As apparent from the geometrical representation of the setsin
Fig. 2 a), the problem is clearly satisfiable and a satisfying
valuation could be any point in the grey regionA.

First, we note for this example the results obtained before
the under-approximation is performed. We solve theSSFprob-
lem for the convex setB = {(x1, x2) ∈ R

2 : (x2
1 + x2

2 − 1 ≤
0) ∧ (x2

1 + x2
2 − 4x1 ≤ 0)}, obtained fromA after dropping

the RCCN . The problem is feasible, as shown in Fig. 2 (b),
and the optimal pointx∗

b = (0.537, 0) is returned.
Next, the RCC is negated to become convex and theSSF

problem is now solved on the newly generated formula

(x2
1 +x2

2−1 ≤ 0)∧(x2
1 +x2

2−4x1 ≤ 0)∧(x2
1 +x2

2−2x2 ≤ 0)

which represents the previously defined (RP). The RP will
provide useful information for the approximation, thus acting
as a “geometric probe” for the optimization and search space.
Since the RCC is reversed, the RP is convex and generates the
setC, shown in Fig. 2 (c).

Let us assume, at this point, that the RP is feasible, as
in this example. ThenC 6= ∅, and an optimal pointx∗

c =
(0.403, 0.429) ∈ C is provided. Moreover,A can be expressed
asB \C, andx∗

b is clearly outside the convex set̄N generated
by the negated RCC, meaning that we can go to the under-
approximation step without solving the SF problems since the
negated RCC is certainly non-redundant.

The key idea for under-approximation is to compute a
hyperplane that we can use to separate the RCC regionN
from the remaining convex region. This “cut” in the feasible
region is performed by exploiting the perturbation of the
optimal point fromx∗

b to x∗

c induced by the negated RCC
N̄ : (x2

1 + x2
2 − 2x2) ≤ 0. At this point, we examine a few

possible cases:
Case (i):Suppose thatx∗

b 6= x∗

c , andx∗

b is outsideN̄ (as in
our example). In this case, we find the orthogonal projection
p = P(x∗

b) onto N̄ , which can be performed by solving a
convex,L2-norm minimization problem [8]. Intuitively, this
corresponds to projectingx∗

b onto a pointp on the boundary of
the regionN̄ . Finally, we compute the supporting hyperplane
to N̄ in p. The half-space defined by this hyperplane that
excludesN̄ provides our convex (affine) approximatioñN
for N .

For our example,N̄ = {x ∈ R
n : x2

1 + x2
2 − 2x2 ≤ 0}.

The affine constraint resulting from the above procedure is
Ñ : −0.06x1 +0.12x2 +0.016 < 0. On replacing the RCCN
with Ñ , we obtain a new setD, as shown Fig. 2(d), which is
now our approximation forA.



Fig. 2. Geometrical representation of the sets used in Section IV-C to illustrate the approximation scheme in CalCS: (a)A is the search space (in grey)
for the original non-convex problem including one RCC constraint; (b)B is search space when the RCC is dropped (over-approximationof A); (c) C is the
search space for thereversed problem, i.e. the problem obtained from the original one in (a) when the RCC is negated; the RP is therefore convex; (d)D is
the under-approximation ofD in (a) using a supporting hyperplane.

An SSF problem can now be formulated forD thus pro-
viding the satisfying assignmentx∗

d = (0.6,−0.33). The
approximation procedure will stop here and returnSAT.

Notice that, wheneverx∗

b is on the boundary of̄N , a similar
approximation as described above can be performed. In this
case,x∗

b is the point through which the supporting hyperplane
needs to be computed, and no orthogonal projection is neces-
sary. The normal direction to the plane needs, however, to be
numerically computed by approximating the gradient ofg(x)
in x∗

b .
Case (ii): A second case occurs whenx∗

b 6= x∗

c , but both
x∗

b and x∗

c are inside N̄ . In this case, starting fromx∗

c

we search the closest boundary point along the(x∗

b − x∗

c)
direction, and then compute the supporting hyperplane through
this point as in the previous case. In fact, to find an under-
approximation for the feasible regionA, we are looking for
an over-approximationof the setN̄ in the form of a tangent
hyperplane. Since the optimal pointx∗

b moves tox∗

c after
the addition of the negated RCC,̄N will be more “centered”
aroundx∗

c than aroundx∗

b . Therefore, a reasonable heuristic
could be to pick the direction starting fromx∗

c and looking
outwards, namely(x∗

b − x∗

c).
Case (iii):Assume now thatx∗

b = x∗

c (with bothx∗

b andx∗

c

inside N̄ ), but we havex̃∗

b 6= x̃∗

c , where x̃∗

b and x̃∗

c are the
two optimal points, respectively, for theSF problem having
just the convex constraints and for the the RP in theSF form,
as computed in Step 2 (b) above. In this case, to operate the
“cut”, we cannot use the perturbation onx∗

b and x∗

c , as in
Case (ii), but we can still exploit the information contained
in the SF problems. This time, starting from̃x∗

c , we search
the closest boundary point along the(x̃∗

b − x̃∗

c) direction, and
then compute the supporting hyperplane through this boundary
point.

Case (iv):Finally, both x∗

b = x∗

c and x̃∗

b = x̃∗

c can also
occur, as for the following formula:

(x2
1 + x2

2 − 1 ≥ 0) ∧ (x2
1 + x2

2 − 4 ≤ 0),

for which A would coincide with the white ring region in
Fig. 1 b) (including the dashed boundary). In this case, no
useful information can be extracted from perturbations in the
optimal points. The feasible set appears “isotropic” to both x∗

b

andx̃∗

b , meaning that any direction could potentially be chosen
for the approximations. In our example, we infer from theSF
problems that the inner circle is the active constraint and we
need to replace the non-convex constraint corresponding toits

exterior with a supporting hyperplane, e.g.−x1 + 1 ≤ 0, by
simply picking it to be orthogonal to one of the symmetry
axes of the feasible set. The resulting under-approximation is
found SAT and we obtain a satisfying assignment consistent
with this approximation.

This completes the description of the under-approximation
procedure of Step 3. We note that we still have the possibility
for the solver to returnUNKNOWN. Depending on the target
application, the user can interpret this asSAT (possibly leading
to spurious counterexamples in BMC) orUNSAT (possibly
missing counterexamples). For higher accuracies, the approx-
imation scheme can also be iterated over a set of boundary
points of the original constraintf(x), to build a finer polytope
bounding the non-convex set.

D. Overall Algorithm

Our theory solver is summarized in Fig. 3. This procedure
generalizes that described in the preceding section by handling
multiple reversed convex constraints (RCCs). In essence, if the
conjunction of all convex constraints and any single RCC is
foundUNSAT, then we reportUNSAT. In order to reportSAT,
on the other hand, we must consider all convex constraints and
all affine under-approximations of non-convex constraints.

The details are as follows. For a given conjunction of
CCs and RCCs, we first solve theSSF problem generated
by the CCs alone (Section IV-A). If the problem isUNSAT,
the algorithm returns the subset of constraints that provide the
reason for inconsistency (infeasibility certificate) and stops.
Otherwise, each RCC is processed sequentially. For each
RCC, the initial convex problem is augmented and the RP
is formulated and solved. If the RP is unfeasible then, as
discussed in Section IV-C, the constraint is ignored since
it is non-active for the current feasibility problem. On the
contrary, if the RP is feasible we proceed by computing an
approximation.

The Approximate method implements the under-
approximation strategies outlined in Section IV-C and deter-
mines whether the constraint is non-active or can be dropped
by solving additionalSF problems (Section IV-B). If the
negated RCC is fully included in the set generated by the
CCs alone, (e.g. the megated RCC and the set generated
by the CCs are both circles and the negated RCC is non-
active for the RP) the problem isUNSAT, meaning that the
RCC is incompatible with the whole set of CC (step 2(b) of
Section IV-C). The full set, including both the CC and the



function [status, out] = Decision Manager(CC, RCC)
% receive a set of convex (CC) and non-convex constraints (RCC)
% return SAT/UNSAT/UNKNOWN and MODEL/CERTIFICATE
%
% solve sum-of-slacks feasibility problems with CCs
[status, out] = SoS solve(CC);
% OUT contains CERTIFICATE
if (status== UNSAT) return ; end
AC = CC;% AC stores all constraints
for (k = 1, k <= length(RCC), k++)

RP = reverse(CC, RCC(k));
[status, out] = SoS solve(RP);
% strict separation: ignore RCC
if (RP == UNSAT) continue; end
% both CC and RP problems are SAT: approximation
[approxCC, active, drop] = Approximate(RCC(k));
% RCC incompatible (inclusion)
if (˜active)

status= UNSAT;
% certificate
out = [CC, RCC(k)]; return ;
% over-approximation: ignore constraint

elseif (drop) continue;
else AC = AC ∪ approxCC;

[status, out] = SoS solve(AC);
if (status== SAT)

Check SAT assignment on original constraints;
if (original constraints satisfied) status= SAT; return ;
end

end
end

end
status= UNKNOWN;

Fig. 3. Pseudo-code for the CalCS decision procedure.

current RCC is returned as an explanation for the conflict.
If an over-approximation is required, then the constraint is
ignored. If the constraint is compatible and cannot be dropped,
the supporting hyperplane is computed and the new under-
approximated problem is solved. The algorithm proceeds
with visiting the other RCCs. Finally, when all non-convex
constraints have been processed without returningUNSAT
the algorithm is re-invoked on the set of convex constraints
CC and the set of affine under-approximations of non-convex
constraints RCC. If this invocation returnsSAT, so does the
overall algorithm; otherwise, it returnsUNKNOWN. A SAT
answer is accompanied by a satisfying valuation to variables.

V. I NTEGRATING CONVEX SOLVING AND SAT SOLVING

Using the theory solver described in Section IV, we have
implemented a proof-of-concept SMT solver, CalCS, that
supports the convex sub-theory. As in [10], CalCS receives as
input an SMT formula in a DIMACS-like CNF format, where
atomic predicates can be both Boolean or convex constraints,
according to the definitions in Section III. Following the
lazy theorem proving paradigm, the SMT problem is first
transformed into a SAT problem, by mapping the nonlinear
constraints into auxiliary Boolean variables. This Boolean
abstraction of the original formula is then passed to the
SAT solver. If the outcome isUNSAT, the theory manager
terminates and returnsUNSAT. Conversely, the assigned aux-
iliary variables are mapped back to a conjunction of CC and
RCC and are sent to the theory for consistency checking.
If the theory solver returnsSAT, a combined Boolean and

realmodel(satisfying assignment) is also returned. Otherwise,
whenever inconsistencies are found (UNSAT), the reason for
the conflict (certificate) is encoded into thelearned clause
(¬l1 ∨ . . . ∨ ¬lk), l1, . . . , lk being the auxiliary literals as-
sociated with the infeasible constraints. The SAT problem is
then augmented and new SAT queries are performed until
either the SAT solver terminates withUNSAT or the theory
solver withSAT. To benefit from the most recent advances in
SAT solving, MiniSAT2 [22] is adapted to our requirements
by adding decision heuristics to prune our search space. To
reduce the number of theory calls, we first assign values to
the Boolean variables so as to satisfy as many clauses as
possible. Subsequently, we start assigning values to some of
the auxiliary variables, until all clauses are satisfied. Whenever
we need to decide an assignment for an auxiliary variable,
we affirm any CC and negate any RCC as a first choice, to
maximize the number of CCs for each theory call, hence the
chances of deciding without approximations. The following
theorems state the properties of CalCS.

Theorem V.1. Letφ be a convex SMT formula. Then, if CalCS
reports SAT on φ, φ is satisfiable. Alternatively, if CalCS
reportsUNSAT, φ is unsatisfiable.

Note that the converse does not hold in general. If CalCS
reportsUNKNOWN, it is possible that the formulaφ is either
satisfiable or unsatisfiable. In the case of a monotone convex
SMT formula, we have stronger guarantees.

Theorem V.2. Let φ+ be a monotone convex SMT formula.
Then, CalCS reportsSAT on φ+ iff φ+ is satisfiable and
CalCS reportsUNSAT iff φ+ is unsatisfiable.

The above result follows straightforwardly from the fact that
for monotone convex SMT formulas, all convex constraints
are assigned true, so the theory solver never sees non-convex
constraints.

VI. EXPERIMENTAL RESULTS

In our prototype implementation, we use the Matlab-based
convex programming packageCVX [23] to solve the optimiza-
tion problems, while theory solver and SAT solver interact
via an external file I/O interface. We therefore allow for
all functions and operations supported by disciplined convex
programming [24]. We first validated our approach on a set
of benchmarks [25], including geometric decision problems
dealing with the intersection ofn-dimensional geometric ob-
jects, and randomly generated formulae obtained from3-SAT
classical Boolean benchmarks [26], after replacing some of
the Boolean variables with convex or RC constraints. Table I
shows a summary of an experimental evaluation of our tool,
also in comparison with iSAT. To evaluate the impact of gen-
erating a compact explanation of unsatisfiability (a certificate)
we run CalCS in two modes: in the first mode (C in Table I),
a subset of conflicting constraints is provided, as detailedin
Section IV, while in the second mode (NC in Table I), the full
set of constraints is returned as simply being inconsistent. All
benchmarks were performed on a3 GHz Intel Xeon machine
with 2 GByte physical memory running Linux.

Results show that whenever problems are purely convex,
they are solved without approximation and with full controlof
rounding errors and can provide results that are more accurate
than the ones of iSAT, in comparable time, in spite of our
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Fig. 4. Simple hybrid automata with convex guards and invariants (left) and
representation of the error traces from CalCS (solid) and iSAT (dashed) in
the (x, y) plane (right). The safety interval forx is [−4, 4].

prototype implementation. In particular, the interval-based rea-
soning scheme can incur inaccuracies and large computation
times when the satisfying sets are lower dimensional sets with
respect to the full search space including all the real variables
in the problems. As a simple example, for the formula:

(x2
1 + x2

2 − 1 ≤ 0) ∧ (x2
1 + x2

2 − 6x1 + 5 < 0), (8)

iSAT returns an interval that contains a spurious solution,
while our convex sub-theory can rigorously deal with tight
inequalities and correctly returnsUNSAT (see (8) and Conj3
in Tab. I). Similarly, CalCS can provide the correct answer for
the following formulae ((9) and (10) in Tab. I), mentioned as
prone to unsound or spurious results in [12]:

(x+y < a)∧(x−y < b)∧(2x > a+b)∧(a = 1)∧(b = 0.1),
(9)

(x ≤ 109) ∧ (x + p > 109) ∧ (p = 10−8). (10)

While for small problem instances (Bool1-2-3, Conj1) both
the C and NC schemes show similar performances, the
advantages of providing succinct certificates becomes evident
for larger instances (Bool4-5-6-7, Conj2), where we rapidly
reached a time-over (TO) limit (set to200 queries to the theory
solver) without certificates. A faster implementation would
be possible by using commercial, or more optimized, convex
optimization engines.

We have also tested CalCS on BMC problems, consisting
in proving a property of a hybrid discrete-continuous dynamic
system for a fixed unwinding depthk. We generated a set
of hybrid automata (HA) including convex constraints in both
their guards and invariants. For the simple HA in Fig. 4 we also
report a pictorial view of the safety region for thex variable,
and the error traces produced by CalCS (solid line) and iSAT
(dashed line). The circle in Fig. 4 represents the HA invariant
set, while the portion of the parabola underlying thex axis
determines the set of pointsx satisfying the property we want
to verify, i.e. {x ∈ R : x2 − 16 ≤ 0}. Our safety region
is therefore the closed interval[−4, 4]. The dynamics of the
HA are represented by the solid and dash lines. As far as the
invariant is satisfied, the continuous dynamics hold and the
HA moves along the arrows on the(x, y) plane, starting from
the point (2, 3). When the trajectories intersect the circle’s
boundary, a jump occurs (e.g. from(3, 4) to (3, 2) and from
(4, 3) to (4, 1)) and the system is reset. Initially, both the solid
and dashed trajectories are overlapped (they are drawn slightly
apart for clarity). However, more accurately, we return unsafe

TABLE I
CAL CS EXPERIMENTS: IN MODE C THE UNSAT CORE IS PROVIDED

WHILE IN MODE NC THE FULL SET OF CONSTRAINTS IS RETURNED AS
CONFLICTING; APPROX DENOTES THE NUMBER OFRCCS

APPROXIMATED AS HYPERPLANES; S STANDS FORSAT,U FOR UNSAT.

File Res. CalCS Approx Queries iSAT
C/NC [s] C/NC C/NC [s]

(8) U 0.5 (U) 0 1 0.05 (S)
(9) U 0.2 (U) 0 1 0 (S)

Conj3 U 22/23 (U) 5 3 0.05 (S)
(10) S 0.2 (S) 0 1 0 (U)

Bool1 S 3.5 (S) 1 1 8 (S)
Bool2 S 16 (S) 3 1 0.91 (S)
Bool3 S 27/23 (S) 5/4 2 0.76 (S)
Conj1 U 8.7/9.5 (U) 3 2 0.3 (U)
Bool4 S 17.9/17.7 (S) 3 1 0.75 (S)
Conj2 U 17/23.3 (U) 4/5 4/7 0.4 (U)
Bool5 U 23.5/321.7 (U) 4/36 5/94 0.02 (U)
Bool6 U 29.8/TO (U) 5/− 6/− 0.4 (U)
Bool7 S 257.7/TO (S) 24/− 6/− 1.31 (S)

TABLE II
TCAS BMC CASE STUDY

Maneuver type Crash state #queries run time [s]
UNSAFE CRUISE 2 10.9
UNSAFE LEFT 4 28
UNSAFE STRAIGHT 6 50

SAFE NONE 10 110

after3 BMC steps (k = 3), while iSAT stops at the second step
producing an error trace that is still in the safety region, albeit
on the edge. As an additional case study, we considered aircraft
conflict resolution [27] based on the Air Traffic Alert and
Collision Avoidance System (TCAS) specifications (Tab. II).
The hybrid automata in Fig. 5 models a standardized maneuver
that two airplanes need to follow when they come close to each
other during their flight. When the airplanes are closer thana
distancednear, they both turn left by∆φ degrees (which is
kept fixed to a constant value in our maneuver) and fly for a
distanced along the new direction. Then they turn right and
fly until their distance exceeds a thresholddfar. At this point,
the conflict is solved and the two airplanes can return on their
original route. We verified that the two airplanes stay always
apart, even without coordinating their maneuver with the help
of a central unit.

Finally, we have applied CalCS to formulae generated
in the context of static analysis of floating-point numerical
code, and requiring an SMT solver that can handle non-linear
arithmetic constraints over the reals. Tab. III summarizesthe
performance of CalCS on a set of benchmarks provided by Vo
et al., who are developing a static analyzer to detect floating-
point exceptions (e.g., overflow and underflow) [28]. Early
experience with CalCS on this set of benchmarks, mostly
including conjunctions of linear and non-linear constraints,
seems promising. After a fast pre-processing step, CalCS can
deal with the formulae of interest providing an exact answer
in reasonable computation time even when approximations are
needed, which demonstrates that our solver can be general
enough to be suitable for different application domains.

VII. C ONCLUSIONS

We have proposed a procedure for satisfiability solving of a
Boolean combination of non-linear constraints that are convex.
Our prototype SMT solver, CalCS, combines fundamental
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Fig. 5. Air Traffic Alert and Collision Avoidance System

TABLE III
BENCHMARKS FROMSTATIC ANALYSIS OF NUMERICAL CODE: APPROX

DENOTES THE NUMBER OFRCCS APPROXIMATED AS HYPERPLANES.

File Result Time [s] Approx
Num1 SAT 1.08 0
Num2 SAT 4.35 2
Num3 UNSAT 0.55 0
Num4 UNSAT 0.55 0
Num5 SAT 4.27 2
Num6 SAT 0.49 0
Num7 SAT 2.82 1
Num8 UNSAT 2.64 2
Num9 UNSAT 2.10 0
Num10 UNSAT 0.53 0

Num11 − 13 UNSAT 0 0
Num14 UNSAT 1.91 0
Num15 UNSAT 1.94 0
Num16 UNSAT 0.53 0

Num17 − 18 UNSAT 0 0
Num19 UNSAT 0.49 0
Num20 UNSAT 0 0

results from convex programming with the efficiency of SAT
solving. By restricting our domain to a subset of non-linear
constraints, we can solve for conjunctions of constraints glob-
ally and accurately, by formulating a combination of convex
optimization problems and exploiting information from their
primal and dual optimal values. When the conjunction of
theory predicates is infeasible, our formulation can generate
certificates of unsatisfiability, thus enabling conflict-directed
learning. Finally, whenever non-convex constraints originate
from convex constraints due to Boolean negation, our pro-
cedure uses geometric properties of convex sets to generate
conservative approximations of the original set of constraints.
Experiments on several benchmarks, including examples of
BMC for hybrid systems, show that CalCS can be more
accurate than other state-of-the-art non-linear SMT solvers. In
the future, we plan to further refine the proposed algorithms
by devising more sophisticated learning and approximation
schemes as well as more efficient implementations.
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