Encoding Industrial Hardware Verification Problems
into Effectively Propositional Logic

Moshe Emmer, Zurab Khasidashvili Konstantin Korovin, Andrei Voronkov
Intel Israel Design Center School of Computer Science,
Haifa 31015, Israel University of Manchester, UK
{memmer,zurabk@iil.intel.com korovin@cs.man.ac.uk, andrei@voronkov.com

Abstract—Word-level bounded model checking and equiva- In this paper we are interested in equivalence checking and
lence checking problems are naturally encoded in the theory model checking problems in hardware verification involving

of bit-vectors and arrays. The standard practice of decidiy 4acision procedures for bit-vectors and arrays. Such prosl
formulas of such theories in the hardware industry is either

SAT- (using bit-blasting) or SMT-based methods. These metids 2" be solved efficiently by Satisfiability Mo_dulo Theories

perform reasoning on a low level but perform it very efficienty. (SMT) [16] solvers [5], [6], [21]. More precisely, we are

To find alternative potentially promising model checking ard interested in problems in the theory of fixed-size bit-vesto

equivalence checking methods, a natural idea is to lift reaming and extensional arrays, known as the the@Q¥_AUFBV.

from the_blt and bit-vector levels to higher levels. In SL_Jch & |t has also been shown [14] that such problems can be

attempt, in [14] we proposed translating memory designs ird the) . o

Effectively PRopositional (EPR) fragment of first-order logic. encoded.mt(-) the Eﬁectlvely Propos!tlonal ,(I_EPR) fragmeit
The first experiments with using such a translation have FOL, which is decidable and for which efficient FOL solvers

been encouraging but raised some questions. Since the higgvel exist [20], [15], [3]. The EPR fragment consists of first-erd

encoding we used was incomplete (yet avoiding bit-blastijgome formulas which in clausal normal form contain no function
equivalences could not be proved. Another problem was that symbols other than constants.

there was no natural correspondence between models of EPR h d di hich in th
formulas and bit-vector based models that would demonstrat The current understanding (on which many experts in the

non-equivalence and hence design errors. field agree) is that FOL solvers are good at "pure first-order
~ This paper addresses these problems by providing more re- problems” involving formulas with (interleaving and nette
fined translations of equivalence checking problems arisig from ynjversal and existential quantifiers, while SMT solvers ar
hardware verification into EPR formulas. We provide three swch |y ot quantifier-free theoridsin this paper we set out to

translations and formulate their properties. All three tra nslations
are designed in such a way that models of EPR problems can be INvestigate the scalability of EPR solvers with differemai-

translated into bit-vector models demonstrating non-equialence. calculi to real-life problems involving reasoning with it
We also evaluate the best EPR solvers on industrial equivaiee vectors and arrays, and comparing their performance wéh th
checking problems and compare them with SMT solvers desigite pest SMT solvers for the theol@ F_ AU FBV. We propose
and tuned for such formulas specifically. We present empirial gayeral sound and complete encodings of problems in this
evidence demonstrating that EPR-based methods and solvease . . .
competitive. theory into EPR, and discuss and experimentally evaluate
the advantages and disadvantages of different encodings. W
|. INTRODUCTION also discuss and experimentally evaluate advantages and di

advantages of different proof calculi for FOL with respect

L_Jse .Of theorem proving in ha?r.dw"?“e and software veri to solving the EPR problems arising from industrial scale
cation is not new. A first classification of the use of theﬁardware verification

orem proving in formal verification would be to divide it To the best of our knowledge, no similar analysis was

into Higher-Order Logic (HOL) and First-Order Logic (FOL)Ireported before. We find this analysis interesting and itt@mbr

theorem proving. Because HOL theorem proving is hlghé(specially because the significance of the EPR fragment in

interactive and requires from the user both an expertise Nt d hard ification has b lized onl
theorem proving and a good familiarity of the design (osrO are and hardware vert Ication has een realized only
recently [17], [18], by showing that many interesting veri-

program) under verification, the use of higher-order thIEIIDreﬁca’[ion problems can be encoded in this fragment and can

proving in hardware verification is limited to particulayiets often be solved efficiently. We hope that the theoretical and
of design for which no good fully-automatic verification)

methods exist. Unlike HOL, there are highly efficient fully Ieexzfr?l:;engzlt\zgslnyfrzse Ze;;g;tl?grlg ;Tlsomﬂzjs\’\glrlnh%pelg ;SZMT
automatic FOL theorem provers, so the potential of FOL for g 9 ploy

. . P . and FOL approaches, for the class of problems with bit-vscto
a wider use in formal verification is significantly higher. and arrays

This work is partially supported by EPSRC and the Royal Sycie
1This by no means diminishes the importance of the use of H@brtim 2Few SMT solvers, like Z3, do support limited quantified thesr see [22]
proving in verification — in certain areas of verification stindispensable. for further references.

In the next section, we recall a sound but incomplete RTL ScH

encoding of problems with bit-vectors and arrays into EPR, slock clock

as described in [14]. As a consequence of incompleteness, th p AT
powerful abstraction of the size of bit-vectors and arrags o wren | Ly | o e nhz _
which the encoding to EPR is based, is often the source & fals rden | by PO rden mem | | Fead
counter-examples in verification. Debugging of verificatio ader addr

failures is the main source of inefficiency in hardware desig sute e

projects, and false failures (also called false negativa@ssed

by the nature of the verification tool or methodology rather

than an actual bug in the design) are simply unacceptable. Fig. 1. Specification and Implementation memories
In Section lll, we therefore propose several approaches to

achieving the completeness of encoding to EPR, thereby

eliminating the possibility of false negatives. The toy designs are depicted in Figure 1. The specification
In Section IlI, and further in Section IV, we analyze thgjesign corresponds to the register-transfer level det&mip

advantages and disadvantages of the proposed sound), while the implementation design corresponds to its

complete encodings to EPR, and relate these to the strengiiSematic implementation (SCH). The specification model

and weaknesses, relative to the problems we are interested-jniains a memonsmem with 64 rows and71 columns,

of several important proof calculi employed in the best EPR; sqdress bit-vectoaddr is of width 12, and it is used

solvers (the winners of recent theorem proving compettiog, pass the memory address for both write and read oper-

in the EPR and other categories). Extensive experimenigl,,s- bitsaddr [5 : 0] are used for the write operation
results comparing the performance of the best solvers f& EBq pits addr [11 6] are used for the read operation.

problems with the performance of winning SMT solvers in th?urther,swri t e andsr ead denote the write and read data

category of _b_it—vectors and arrays on hardware veri_ficati%ctors' respectively, of widthl, andwr en andr den are the
problems arising from real-life Intel micro-processorides .qnirol bits enabling write and read operations, respeltiv
are reported in Section V. The benchmarks were selected &tk pits wren and rden. as well as the clockel ock
organized carefully so to expose the strengths and wead®1es§,y addresaddr , are shared between the specification and
of different decision procedures, and their sensitivitytiie implementation designs. The implementation design has-mem
nature of the benchmarks (such as the presence of extengwi memwith the same dimensions asrem 3 The write

bit-level reasoning as opposed to really bit-vector |e-r gperation in the implementation model is different: bitter
soning, the design style, the writing style of RTL, the naturyataj wr i t e is split into two parts during the write operation
of compilation of RTL and schematic descriptions into medel ; s te[70 : 36] andiwrite[35 : 0]. Each of the

checking instances). Conclusions appear in Section VI. parts is written to the corresponding part iofrem so the

implementation memory is shown split into two parts. Beyond
the boundaries of the implementation memory unit the data is

In this paper we consider the theory of fixed-size bit-vextobitwise negated before being written to the implementation
and extensional arrays. We assume that bit-vector ariibomahemory and after being read from it, so the write data
operators are synthesized (or bit-blasted) in the verifinati writ e (respectively, read datar ead) in the implemen-
front-end, and the solver engines do not receive arithmetation memory is the negation of the write (respectivelpdie
operations in the expressions to solve. data in the specification memory.

For arrays, we assume the standard operations: read (Ofith the relational encoding [14] of memory equivalence
select), write (or store), and equality (if the array dimiens checking problems into EPR, any bit-vectois considered as
are the same), and the standard consistency and exterisiongl re|ation on integers. Thus, for every integerit holds that

Il. THE RELATIONAL ENCODING

axioms [19], [7], [16]: b(k) is true if and only if thekth bit of b is 1. If b does not
mem{i « e}(i) = e; have thekth bit, the relational encoding in [14] assumes that
mem{i < e}(j) = mem(j), if j #14; b(k) is either true or false. Such a representation of bit-vector
(V5 : memy (j) = mems(j)) — mem; = mems. is a powerful abstraction, since, instead of consideringt-a b

The encodings of the theory of bit-vectors and arrays th\é(?c_tor a ma?pping from a finite range of integer_s o bool_eans,
we consider here are all refinements of an encoding propoé‘édIS done n the SMT theop”_AUFBV, a blt-\{ector S
in [14], called therelational encoding (as opposed to the "OW & Mapping fronall integers to booleans. T_he width of t_)|t-
algebraic encoding that was also considered there and waggctors is thus abstrapted away. In the relaﬂonal encoding
shown not to scale on even small verification problems). fgemory becomes a binary re'a“of“ the first argument denotes
explain the relational encoding and to describe our contign an address and the second a bit. For examipismn(a, k)

clearly, we choose to use as the running example inth}?nOteS the value of thie-th bit of the element at the address

modified toy specn‘lcatlo_n and |mplementat|on deS|gnS usedaIntel’s logic extraction tool can identify memories and esk$ decoders
as the running example in [14]. in the schematic models [14].

aininmem
Let us now recall the relational encoding (as in [14]) cl ock Arden — VB(sread'(B) +» smen(r eadAddr , B));
of our running example. First, define the correspondence-(cl ock Arden) — VB(sread’(B) «+ sread(B)).
between the specification and the implementation designs a§he definitions of the read operations for the implementa-

the conjunction of correspondence of the memories and of qun memory are similar; one should only replaeead and
read data. smemby i r ead andi mem

VAVB(i memA, B) <> ~smem4, B)). (1) 1Il. RELATIONAL ENCODINGS ELIMINATING SPURIOUS
MODELS
vB(i read(B) «» —sread(B)). @ Unfortunately, as pointed out in [14], the powerful abstrac
The input write data correspondence is specified as followtn resulting from considering bit-vectors as functiomsadl
integers comes in the expense of loosing the completeness
VB(iwite(B) <+ —swite(B)). (3) of the encoding — false negatives (i.e, counter-examplas th
To be able to use the relational approach, one should ident\i?fretg(:; E)efalznarﬁ] plostilzli.)rlr:;)l:lzxamplez,lb, ¢ represent bit-
bit-vectors in the design used as addresses and add eqauatu?ﬁ gth L,
enabling to decide when any pair of addresses is equal. For a=bVa—=cVb=c 8)
example, in our running example, we might need formu- o o)) o
las describing when the termr i t eAddr corresponding to 1S vall_d,_but it is not valid in the abstraction since its néga
addr [5 : 0] is equal to the ternt eadAddr corresponding IS satisfiable. o _ o
to addr[I1 : 6]. Since the bit indexes involved in these IN order to avoid the possibility of false negatives (i.eus-
two bit-vectors are different (in particular, are shiftedjhe ©OUS models), we would like the relational encoding to become

corresponding bit-index constants t I ndo,...,bit1nd;; aware oftheranges of bit-vectors and arrays involved ugtr
are introduced, and the following axiom is added: operation, and we would like to record this information ie th
translation. The main idea of the refined encoding — let us cal
(wri t eAddr = r eadAddr) < it range-aware relational encoding to EPR — is that for every
((addr (bi t 1 ndg) <+ addr (bit1ndg)) A...A (4) formulathat we generate during the encoding, the ranget®f bi
(addr (bi t I nds) <+ addr (bi t 1 ndi1))). in the involved bit-vectors or arrays is explicitly encoded

The transition relation for the specification memory is a§i¢ formula using the less-predicates and bit-index costa

follows, where the prime symbolis used to denote next-state(SUCh as €ss;s or bi t 1 nds). For this to work, we need to
variables: relate the less predicates introduced during the encoditig w

the bit-index constants introduced during the encodingeNo
that there is no need to relate a bit-indsxt | nd;, with a less
(5) predicate ess,, for many pairs(k,n): it might be irrelevant

VA(cl ock AwenAA=witeAddr —
VB(smem(A, B) <> swrite(B)));
VA(—(clock Awen A A=witeAddr) —

VB(snem (A, B) <> smemA, B))). to capture the fact that
Splitting bit-vectors into parts is done by introducing ghre less,(bitIndy) if k<n;)
icates true on bits belonging to the LSB part. For the running -l essn(bitlndg) otherwise

example, predicaté esssg is introduced, intended to hold ; o ;
(only) on bits with numbers strictly less thags. We also Next we discuss several ways to eliminate false negatives,

introduce propositional variablesr en;,; and wr enj,, for and discuss the advantages and disadvantages of each ap-
enabling writing into the two parts of the memory. proach.

W enp1 <> wren Acl ock; ©6) A. Encoding 1: precise ranges

W enps <> W en Acl ock.
"2 Let us first define range-predicates: For a pair of non-

.negative integera < m, let us define
The transition relation for the implementation memory is

then given as follows: rangey, j(B) <> | ess;,11(B) A -l ess,(B).
VAQA enp A A = wr i t eAddr — When equality betwee_n arrays is introduced, it should be
VB(essse(B) — (i mem(A, B) < iwrite(B)))); guaranteed that there will be no bits beyond the range of the
VA(=(wrenm A A=witeAddr) — data on which the array equality will fail. For example, we
VB(l essss(B) — (i meni(A, B) « i mem(A, B)))); write the invariant formula (1) for memories as
VAW enp A A=witeAddr —)
VB(-l essss(B) — (i menmd (A, B) <+ iwrite(B)))); VAVB(range;q o(B) — (i mem(A, B) < ~smem(A, B))).
VA(-(wenpz AA=witeAddr)— . . .
VB(-l essss(B) — (i meni(A, B) « i men(A, B)))). When equality between bit-vectors of the same range is in-

(7) troduced, we explicitly restrict the corresponding eglénae
The definitions of the read operations for the specificati@f bits to the relevant bit-range. For example, we now write
memory are as follows. the formula (7) as

B. Encoding 2: bit-index pre-instantiation

VAW enp A A =writeAddr — In the precise—rgnges encoding, the axiom.s_like (_1(_)) intro-
VB(rangess o (B) — (i menf(A, B) < iwri te(B)))); duce many equalities between terms describing bit-indexes

VA(=(Wwren, AA=witeAddr) — Dealing with many such equalities may significantly slow
VB(rangejs; o (B) — (i meni(A4, B) <»i mem4, B)))); down the EPR solvers. This is explained in the next section.

vA(wenu AA=writeAddr — The most straightforward way to avoid these equalities be-

VB(range ;g 36 (B) — (i men(A, B) < iwite(B)))); o . .
VA(=(Wr enps A A= wri t eAddr) - tween the bit-index terms (and still retain the completshes

VB(r ange o a4 (B) — (i meni(A, B) <> i mem(4, B)))). is to pre-instantiate all quantifiers ranging over bit-ivee
with concrete index values. This is a meaningful alterreativ

Similarly, instead of (2) we now write in the case where there is a lot of bit-wise reasoning, like
in schematic models, and most of the bit-indexes introduced
VB(r ange oo (B) — (i read(B) «» —sread(B))). during pre-instantiation would have been introduced aryywa

with the precise-ranges approach.

We add axioms stating that bit-index terms corresponding ThiS approach is sensitive to the amount of bit-index con-
to different indexes are not equal. For a less-predicate liRtants that will be introduced during pre-instantiationt4-bit

| esssg, that has been introduced, we add the axiom based real-life micro-processor designs, there normadiyna
bit-vectors longer than arourfd bits (which consist 064 bits

of data and several other encryption bits and flags). However
VB(l esss(B) < , (10) because of the writing style of RTL and Schematic, and the
(B=bitlndo) V... V(B =Dbitlnds;)). way many RTL compilers work, often long vectors are created
{ om nested structures. For example, in our toy exampleyaf t
Ifferent bit-vectors of widthé were used for the write and
ead addresses instead of using2abit vectoraddr , there

How can the range-aware encoding solve the incomple
ness of the relational encoding of [14]? With the relation
encoding, the equation (8) is represented with the follgwir{

formula, which is false already for 2-bit bit-vectors, sa ill be no need to introduce bilsi t 1 ndg, ..., bi t1 ndy, to
4=10b=00c—=11. he instance. Similarly, if the write and read data bit-vest
’ ’ swite and sread were defined as the LSB and MSB
(VB(a(B) + b(B))) V halves of a data bit-vectadat a[141 : 0], or as a structure
(VB(a(B) + ¢(B))) V with two fields [70 : 0] swite and[70 : O] i wri te, the
VB(b(B) « c(B))). functionality of the design would not change but the encgdin
.)) with index pre-instantiation would force us to introducerax
. With the range-aware relational encoding, the same formyg_indexesbi t | ndz1,...,bi t1ndus. In our experiments
is represented by below, we will see how introduction of bit-indexes caused by
the RTL and SCH writing style and compilation of RTL and
E:gg 2232{“} Egg : Zggg : gggggg x SCH into the model-checking instance can affect the solvers
0,0
(VB(r angeyg o (B) = b(B) < c(B))). performance.

C. Encoding 3: Skolem predicates
From the axiomatization (10) of thkess andrange d P

predicates, we conclude that the above formula is equivalen W& NOW introduce a smarter way to avoid introduction of
to the one below, which is clearly true. equalities between bit-index terms as in the less predmate

ioms like (10). Our approach can be seen as reasoning modulo

(a(bi t 1 ndo) « b(bi t 1 ndg)) Vv a fixed domain of indexes and is inspired by approaches used
(a(bi t1ndo) < c(bi t1ndo)) v in state-of-the-art finite model finders [1], [8].
(b(bi t1ndo) < c(bi t1ndo)). First, note that the Skolemization of the invariant formu-

las (1) and (2) introduces Skolem constants. For example,

Note that with the precise-ranges relational encoding thg poolean variable eadeq denote the truth value of the
widths of bit-vectors and the dimensions of arrays are Stgbuality @):

abstracted away. This is different from the informationcspe
ified to SMT solvers in the theory of fixed-size bit-vectorsr eadeq <> VB(r ange o (B) — (i read(B) «» —sr ead(B))).
and extensional arrays. However, since our modeling ofyever This formula is translated into a collection of following
bit-vector or array operations explicitly encodes thevafe clauses, wherak0 is a fresh Skolem constant;
ranges, the bit-vector width and array size information be; eadeq Vv —i r ead(sk0) V —sr ead(sk0);
comes redundant. readeq Vi read(sk0) vV sr ead(sk0);

Theorem 1: The precise ranges encoding is sound and eadeq V -l esso(sk0);
complete: an EPR formula obtained by the precise rangé’s“«‘f'ﬂd3qB\/I 95_571(8’50])33 I - 5 dea
encoding is satisfiable if and only if it is satisfiable over-bi S'€2d(B)V ~i read(B)VIesso(B) vl essn(B)V readeq;

i) iread(B)V —sread(B) VIl esso(B)V-less7(B)V readeq.
vectors of the specified size. I (B) (B) o(B) n(B) (11) a

On the clauses containing occurrences of Skolem constamt®del is growing during the proof search (and optionallg, th
we perform the following transformation: For each Skolerset of lemmas if lemma learning is applied). On the other
constantsk; we introduce a new unary predicasé&P;, and hand, such lifting to the first-order logic requires to corgu
the following axiom, wherek,...,m is the index range expensive context unifiers and considerably complicates dy
corresponding tsk;. namic backtracking and lemma learning, generally renderin
them not as effective as in the propositional case.

The Inst-Gen calculus is based on a modular combination
of propositional reasoning with refined instantiations oftfi
Informally if skP;(bi t1nd,) is true then we can assignorder formulas. One of the distinctive features of the Inst-

sk; to be equabi t | nd,. Further, wherevesk; occurs in G€n approach is that it allows one to employ off-the-shelf
a clauseC(sk;, X1,... X,,) then we replace this clause withefficient propositional solvers (currently iProver intagrs
—skP;(Y) V C(Y, X1,...X,). After this transformation, the MiNiSAT [9]) for reasoning with propositional abstract®n
first four formulas in (11) will have the following form: of first-order clauses, guiding the instantiation infersiand
) simplification of clauses. We believe that such a modular
:gggggxF;gsgzjg)g\)/\é::;;(ag)uj)ﬁél:sok(?)(,B)i integration of industrial-strength propositional solvegives
readeq V -l esso(B) V —skPo(B); ’ a considerable advantage when solving large real-life fprob
readeq V1 ess7i(B) V =skPo(B). lems. Another important requirement from a solver used in a
verification environment is to produce models for satiséabl
Then we can define predicatesss; for i as follows: e.g. problems. Such models correspond to bugs in the design and

skP;(bi t 1 ndy) V...V skP;(bi t1nd,). 12)

for | ess3 we have unit clauses: it is crucial to have a model representation amendable to
efficient analysis. As a byproduct of this work, iProver has

l'esss(bitlndo),l esss(bitlnd.),| esss(bitlndz), been extended with a representation of models such that the
-l esss(bi tinds), ..., -l esss(bitind,). 13) value of each bit in a bit-vector can be retrieved efficiently

this considerably simplified model analysis.

Note now we do not need axioms like (10) (introducin%rour experimental results show that already non-tuned gen-

equalities between bit-index terms) any more. al purpose instantiation-based systems are close iorperf

Theorem 2: The Skolem predicates encoding is sound angqance and in some examples outperform highly optimized

) . : edicated SMT solvers. These initial results are very encou
complete: a formula obtained by the precise ranges encodin

is satisfiable if and only if the corresponding formula obésl gf?gnzgdf v;/t(;et;etllev: tTgi.r']nstagt'a:ft::;gS;? (r:farseor;e:]rds [;: a
by the Skolem predicates encoding is satisfiable. u u y explorting P uct y

) . optimizing inference selection.
Proof: An adaptation of results from [1], [8]. " Let us now discuss different effects of our encodings on

IV. ANALYSIS OF PROOF CALCULI FOREPR the EPR reasoners. First we note that the size of bit-vectors

We compare general purpose first-order reasoners withdirectly related to the size of the search space. Thezefor
dedicated SMT solvers on the benchmarks generated fré{UCing the size of bit-vectors in the encodings is a promis
industrial memory designs. Since our encodings are failitg "€S€arch direction. Moreover, large ranges of bit-indexes
the EPR fragment we focus on instantiation-based firstrord&/Ce clauses with large numbers of equational literals([1kg.
reasoners which are especially efficient in this fragmest, §! 9eneral, instantiation-based methods are more toleant
witnessed by recent CASC competitichdnstantiation-based ¢/auses with many literals than resolution-based methiode s
methods are general purpose reasoning methods for first-oﬁﬁi‘e numper of literals in clauses does not increase duriag th
logic which are based on combining efficient propositional, inStantiation process. Nevertheless equational axiomd.@s
more generally ground, reasoning techniques with insttiati €& Produce numerous redundant inferences by substithting
of first-order formulas. Instantiation-based methods heza- Vvariable B with different indexes during equational reasoning.
fore well-suited for reasoning with fragments closely tetbto All this instantiations are redundant and can be avoided as
propositional logic such as the EPR fragment and in pagticuShown in Section llI-C. .
decide the EPR fragment. We consider two sate-of-the-art-€t US compare our approach of encoding bit-vector and
instantiation-based reasoners: the Darwin system [3gban 2/7ay reasoning into the EPR fragment with approaches used
the Model Evolution calculus [2] and the iProver system [15], N SMT solvers. Reasoning in SMT solvers is done at the
based on thénst-Gen calculus [10]. ground level and frequently results in full bit-blastingsikig

The Model Evolution calculus can be seen as a lifing dirSt-order logic we can use higher levels of abstractionchhi
efficient propositional DPLL calculus into first-order logi Can result in memory/bit-vector size independent reagpnin
together with a number of DPLL-style techniques such &¥€ believe this can lead to better scalability of our apphoac
(dynamic) backtracking and lemma learning. The Model Evd? 1arge memories and bit-vectors. On the other hand, SMT

lution calculus is space efficient since only the candidaB9!Vers have advanced built-in bit-vector functions whack
needed in many memory designs. Although it is possible to

http://www.cs.miami.edu/ tptp/CASC/ bit-blast such functions in our approach, a better approach

would be to devise encodings of these functions into the ERRthe design. Undoing or preventing this linearizationefev
fragment. if it was not done as aggressively as possible), allowed us
A further research direction is to strengthen our encodings significantly reduce the amount of long bit-vectors ang th
by introducing higher level abstractions and by more sdphisamount of bit-indexes involved in the generated EPR ingsanc
cated encoding of bit-vector reasoning. Such an encoding dar FUBs 1 and2. For the other FUBs the maximal width of
also pave the way for using powerful resolution-based firdtit-vectors remained unchanged. Benchmark results ore thes
order reasoners such as Vampire [23], as the current ergodimodified FUBs are reported in Table 3.
tends to produce very long clauses which are known to belt is well understood that solvers might perform particlylar
hard for resolution-based reasoners. well or badly on SAT vs UNSAT problems, and we aim
to evaluate the selected solvers and encoding methods from
this angle as well. To generate SAT instances, we manually
In this section, we evaluate the three above-discussedisourtroduced several common types of bugs into the designs or
and complete encodings of problems with bit-vectors angrification instances (such bugs include mismatches eatwe
arrays into EPR on two fastest EPR solvers, iProver [15] atite corresponding read or write enables, mixture in therorde
Darwin [3]. We further compare their performance to thaif data bits, incorrect or missing constraints (3) conmecthe
of the fastest SMT solvers for the theo®@F_AUFBV — corresponding write data of the compared slices of speeifica
Boolector [5] and MathSAT [6]. We used a standard, antibn and implementation designs, etc.). Tables 4 and 5 tepor
straightforward, encoding of RTL descriptions of hardwire runtime results orb FUBs obtained by these manipulations
the theoryQF_AUF BV (for example, we haven't used thefrom the equivalence checking problems evaluated in Tables
abstraction technique in [11] to reduce the number of inredlv and 3, respectively.
bits during the encoding). With the incomplete encoding The formulas checked for SAT/UNSAT correspond to the
of [14], iProver returned spurious models on all problemaduction step formulas [24] at depths smaller or equél to
which are UNSAT with the complete encodings; therefore wle depths needed to prove the induction invariant statieg t
do not report here the EPR solver results with this encodingquality of memories (1) and the read data (2). For the sake
of performance efficiency, checking these formulas theli¢ sp
into two independent runs of the solvers; in one run, théainit
In our experiments, we use five equivalence checking protalue of the main clock was set to true, while in the second
lem instances originating from a recent micro-processsigile check it was set to false.
at Intel. Each problem instance corresponds to an equis@len
checking problem between an RTL functional block (FUBP: Performance results
and the corresponding FUB in the schematic model. One of the most important observations based on our
The first group of experiments reported in Table 2 correxperimental results is that already at this initial stagen-
spond to the original RTL and schematic FUBs. The schematimed general purpose instantiation-based methods caa sol
model contains lots of bit-level reasoning, and as a resuidustrial-size hardware verification problems within agen-
the resulting EPR instances contain lots of bit-level eignat able time limit. Moreover, there are a number of problems
(using the bit-indexes). On such instances, the abstractivhere instantiation-based solvers outperform highlyrojsted
techniques are less efficient, and the solvers that do nty re&SMT solvers, see Tables 2-5. In particular, instantiabased
employ the bit-vector level reasoning can perform almost asethods perform well on the problems with long bit-vectors
efficiently as on the problems with lots of reasoning at highesuch as problems FUB 4 and FUB 5 (Tables 2-3), with max-
bit-vector level reasoning. imal bit-vector sizes 994 and 1047 respectively. We believe
Recall that in EPR encodings often there is a need to writeis is one of the promising aspects of the instantiatioseba
axioms at bit level, say in equations like (4). As explainedpproach which is achieved due to a higher level reasoning.
above, one expects that existence of a large amount of suchet us note that SMT solvers and an instantiation-based
index constants will negatively affect the performance BRE solver iProver are all using SAT solvers as the back-end.
solvers. To evaluate this point experimentally, for eachiveq In the case of Boolector it is PrecoSAT and in the case
alence checking benchmark we tried to produce an equivaleftMathSAT and iProver it is MiniSAT. Recently developed
instance involving significantly fewer bit-indexes. Thraris- PrecoSAT is a highly optimized propositional solver which
formation was performed by manually editing the RTL andion the latest SAT competition. Thus, comparing MathSAT
SCH descriptions and changing compilation switches whamd iProver better highlights the differences between SMT
generating the model-checking instances (e.g., the natd-sand instantiation approaches since the same SAT solver is
functions) from hardware descriptions. In brief, becaush® employed. We can see that iProver outperforms MathSAT on
way how the compiler works, linearization (or flattening) ofmany problems both in SAT and UNSAT categories.
(nested) structures or modules, causes creation of lorg bitThese experimental results indicate that instantiatiased
vectors containing the original bit-vector fields of stwets methods and SMT technology complement each other and
and bit-vectors of modules as sub-vectors. This phenomermth are useful alternatives for industrial-size hardweee
is an artifact of compilation and does not change the meaniifigation. There are still a number of problems were SMT

V. EXPERIMENTAL EVALUATION

A. Description of benchmarks

solvers perform better than instantiation-based methess, assertion and the transition relation for every unrolliregith.
pecially on satisfiable problems. Therefore we are plantongOne of our major next goals in the EPR related model-
explore applicability of recent advances in bit-vectos@ang checking research is to combine the ability of solving bit-
developed in the SMT framework [5] into instantiation-béisevector and array reasoning instances in EPR at the word level
reasoning. with the EPR-based BMC proposed in [17] for bit-blasted
Let us compare our different encodings. Tables 2-5 indicatedel-checking instances. Furthermore, we believe th& EP
that there is no clear winner among our encodings. Theresglvers can be optimized on model checking instances ezsult
a trade-off between concise, higher-level encodings swch feom this combined encodings.
precise ranges and Skolem predicates encodings; and more eXhis reported and future work is part of an ongoing re-
plicit bit-index pre-instantiation encoding. These tabhow search collaboration between Intel's formal technologyugr
that explicit encodings are better for unsatisfiable pnoisle developing efficient model-checking and equivalence cimeck
whereas concise encodings are better for satisfiable pnsblesolutions for Intel's chip design project and between the-Un
The reason for this can be that in many cases low lewarsity of Manchester. The developed word-level equiveden
reasoning is unavoidable for unsatisfiable problems wiserednecking method will replace the more traditional sequnti
for satisfiable problems it is sufficient to consider concisequivalence checking solution implemented in Intel's ssgu
representations. tial equivalence checking tool, Seqver [12], [13], [14].

Tables 2-5 show experiments with longer/shorter bit-wectacknowledgements. We would like to thank the developers of
encodings. The reduction of bit-vector sizes was not alwaggolector and MathSAT for their collaboration on this work.
successful, only in two first FUBs there was a noticeable
reduction in the maximal bit-vector size: in FUB 1 from 286 REFERENCES
to 185 and in FUB 2 from 640 to 203, in other three casefl] Baumgartner, P., A. Fuchs, H. de Nivelle, C. Tinelli. Qouting fi-
the instances have Changed but the max bit-vector size was hite models by reduction to function-free clause logic.) Applied

unchanged. We can see that in some cases shorter bit-vectgrssod 2907 i ; -
ged. f%'j Baumgartner P., C. Tinelli. The model evolution calaiks a first-order

lead to performance improvement and therefore in our future DPLL method. Artif. Intell. 172(4-5): 591-632, 2008.

work we will study how to reduce bit-vector sizes in our[3] Baumgartner P., A. Fuchs, C. Tinelli. Implementing thedél Evolution

. Calculus. Inter. J. on Artificial Intelligence Tools 15(B1-52, 2006.
encodlngs. [4] Biere A., A. Cimatti, E. Clarke, Y. Zhu. Symbolic model @tking
Finally, we run Darwin on several groups of benchmarks without BDDs, TACAS 1999.

(including the simplest FUBs 1_3) with time limit of 500 [5]1 Brummayer R., A. Biere. Boolector: An efficient SMT sotvéor bit-
vectors and arrays, TACAS 2009.

seconds, but unfortunately it could not solve any Slngl%] Bruttomesso R., A. Cimatti, A. Franzén, A. Griggio, Relfastiani. The
problem. The reason can be the large number of clauses in MathSAT 4 SMT solver, CAV 2008.

the resulting problems which ranges from 30 thousands t@] Bradiey, AR., Manna Z., Sipma H.B. What's decidable abarrays?

. VMCAI 2006.
pver 10_0 thousands_ Qf clauses. We be|_|e_ve that a _mOdu@j Claessen K., N. Sorensson. New techniques that impM&E€E-style
integration of propositional reasoning as it is done in fero model finding. Workshop on Model Computation (VODEL), 2003.
is advantageous on such problems. The problem of reducilﬁg Een N., N. Sorensson. An extensible SAT-solver. SAD20602-518.
. . h [10] Ganzinger H., Korovin K. New directions in instant@iibased theorem
the size of the encodings is also needed to be addressed. proving, LICS 2003.
[11] Johannsen P. Reducing bitvector satisfiability protdeto scale down
VI. CONCLUSIONS AND FUTURE WORK design sizes for RTL property checking, HLDVT 2001.

. . e 2] Kaiss, D., S. Goldenberg, Z. Hanna, Z. Khasidashviiq@&r: a sequen-
The aim of this work was to explore the scalability anél tial equivalence verifier for hardware designs, ICCD 2006.

potential of several approaches to first-order logic theoregi3] Khasidashvili, ., D. Kaiss, D. Bustan. A compositibtizeory for post-
proving in soIving industrial-sized verification problerm} reboot observational equivalence checking of hardwareCABI 2009.

. . . . 14] Khasidashvili Z., Kinanah M., Voronkov A. Verifying @ialence of
volvmg reasoning with bit-vectors and arrays, and to campa[memories using a first order logic theorem prover. FMCAD 2009

them with SMT-based techniques. Taking into account thab] Korovin, K. iProver—an instantiation-based theorerover for first-order
the EPR solvers are currently less optimized on industrial logic (system description), IJCAR 2008.

. Kroening D., Strichman ODecision Procedures, Springer, 2008.
sized problems Compared to more mature SMT solvers, % Navarro Pérez J. A., A. Voronkov. Encodings of Bounddd. Model

reported experiential results and theoretical analysiscaie Checking in Effectively Propositional Logic. CADE 2007.
that several first-order proof calculi do have a great padeimt [18] Navarro-Pérez J.A., A. Voronkov. Proof systems fdeetively propo-

. . . . sitional logic, IJCAR 2008.
this domain. Furthermore, we believe that smarter enccndlqgg] McCarthy, J., J. Painter. Correctness of a compiler dsithmetic

into EPR of the problems with bit-vectors and arrays can be " expressions. Symposium in Applied Mathematics, Vol. 19tHdeatical
developed by exploring abstraction and refinement teclasiqu | dASP&CtS of E("wmIOlll\}efB,SC'e”CebA’T‘de,”Ca”ﬁMachelmat'Ca'_dSﬂdﬂﬁl | 7
- . . e Moura, L.M., N. Bjgrner. Deciding effectively progitional logic
S|mllar to those proposed for accelerating SMT solving ar{ using DPLL and substitution sets. IJCAR 2008.
this can make the EPR-based approaches even more efficigat. de Moura, L.M., N. Bjgrner. Z3: An efficient SMT solverATAS 2008.
Another big promise of using EPR solvers in model checkk?2] Ge Y., de Moura L.M. Complete instantiation for quawtfi SMT
ing is that bounded model checking problems have a succi formulas, CAY 2009.
9 e g P Riazanov, A., A. Voronkov. The design and implememtatdf Vampire,
encoding into EPR, such that the size of the BMC formulas is Al Communications, 15(2-3):91-110, 2002.
not affected by the unrolling bound [17]: unlike the SAT-bds [24] Sheeran, M., S. Singh, G. Stalmarck. Checking safeperties using

BMC [4], it is not needed to replicate copies of the temporal "duction and a SAT-solver, FMCAD 2000.

Solver Boolector MathSAT iProver pre-inst || iProver Skolemize || iProver precise
Test clock=0/1 clock=0/1 clock=0/1 clock=0/1 clock=0/1
FUB 1 0.39/0.18 13.0/35 16/11.6 13/1.2 9.1/12.8
FUB 2 0.36/0.3 77147 19/76 6.7/11.6 42 1 78.3
FUB 3 0.05/0.04 0.8/0.9 1.4/04 3.6/1.8 41147
FUB 4 0.13/138.5 26 / t-o 48/51.1 44 | t-o 42/ t-o
FUB 5 5861.26 / 3.2|| 160.15/ 31.75 179.24/ 13.3 t-0 / 680.94| 1132.36/ 329.1
TOTAL || 5862.19 / 142.04 207.65/ t-0 188.94/ 84 t-o/t-o 1229.56 / t-o0
Fig. 2. Equivalence checking UNSAT problem instances with longvbittors.
Solver Boolector MathSAT iProver pre-inst || iProver Skolemize || iProver precise
Test clock=0/1 clock=0/1 clock=0/1 clock=0/1 clock=0/1
FUB 1 0.28/0.18 12.0/3.8 16/6.4 6.6 / 40.3 8.6/11
FUB 2 0.32/0.34 1471115 1.8/19.0 9.0/43.1 19.6/31.3
FUB 3 0.04 / 0.04 0.8/0.9 1.2/04 3.6/1.9 41/4.7
FUB 4 || 0.13/138.8 t-o/to t-o/t-o 43.7 / t-0 42.2] t-o
FUB 5 t-0/2.98| 158.94/31.71] 149.88/11.08 t-0 / 592.3|| 1084.7 / 320.33
TOTAL || t-0/142.34 t-o/t-o t-o/t-o t-o/t-o 1159.2/ t-o0
Fig. 3. Equivalence checking UNSAT problem instances with shdstewvectors.
Solver Boolector || MathSAT || iProver pre-inst || iProver Skolemize || iProver precise
Test clock=0/1 || clock=0/1 clock=0/1 clock=0/1 clock=0/1
FUB 1 | 0.14/0.14| 36.3/34.9 51/11.2 1.4/1.2 9.0/29.3
FUB 2 || 0.22/0.24|| 50/ 38.9 5.3/15.3 6.3/11.5 24.4157.5
FUB 3 || 0.04/0.04 3.2/3.3 15.1/0.9 26.41/1.7 6.2/2.7
FUB 4 | 0.14/0.42 t-o/ t-o0 147.5/ t-0 39.7/ t-0 46.7 | 46.4
FUB5 | 1.66/ 1.56 t-o/ t-o0 63.65 / 62.57 46.58 / 48.51|| 379.68 / 439.95
TOTAL 22124 t-o/t-o 236.65 / t-0 120.38 / t-0|| 465.98 / 575.85
Fig. 4. Equivalence checking SAT problem instances with long bittars.
Solver Boolector || MathSAT || iProver pre-inst || iProver Skolemize || iProver precise
Test clock=0/1 || clock=0/1 clock=0/1 clock=0/1 clock=0/1
FUB 1 | 0.14/0.16| 42.8/36.9 5.0/104 571717 8.3/11.9
FUB 2 || 0.21/0.26|| 92.2/ 48.4 6.1/11.4 10.3/47.9 10.5/32.3
FUB 3 || 0.04/0.04 3.1/3.2 15.3/1.0 26.6 /1.6 6.0/2.7
FUB 4 | 0.14/0.38 t-o/ t-o0 129.5/t-0 44.0/ t-o 441/ 47.4
FUB5 | 1.66/1.54 t-o/t-o 291.48 / 92.93 43.61/ 42.89|| 424.71 / 511.34
TOTAL || 2.19/ 2.38 t-o/ t-o0 447.38 / t-0 130.21 / t-o|| 493.61 / 605.64

Fig. 5. Equivalence checking SAT problem instances with shortevdstors.

