
Encoding Industrial Hardware Verification Problems
into Effectively Propositional Logic

Moshe Emmer, Zurab Khasidashvili
Intel Israel Design Center

Haifa 31015, Israel
{memmer,zurabk}@iil.intel.com

Konstantin Korovin, Andrei Voronkov
School of Computer Science,

University of Manchester, UK
korovin@cs.man.ac.uk, andrei@voronkov.com

Abstract—Word-level bounded model checking and equiva-
lence checking problems are naturally encoded in the theory
of bit-vectors and arrays. The standard practice of deciding
formulas of such theories in the hardware industry is either
SAT- (using bit-blasting) or SMT-based methods. These methods
perform reasoning on a low level but perform it very efficiently.
To find alternative potentially promising model checking and
equivalence checking methods, a natural idea is to lift reasoning
from the bit and bit-vector levels to higher levels. In such an
attempt, in [14] we proposed translating memory designs into the
Effectively PRopositional (EPR) fragment of first-order logic.

The first experiments with using such a translation have
been encouraging but raised some questions. Since the high-level
encoding we used was incomplete (yet avoiding bit-blasting) some
equivalences could not be proved. Another problem was that
there was no natural correspondence between models of EPR
formulas and bit-vector based models that would demonstrate
non-equivalence and hence design errors.

This paper addresses these problems by providing more re-
fined translations of equivalence checking problems arising from
hardware verification into EPR formulas. We provide three such
translations and formulate their properties. All three tra nslations
are designed in such a way that models of EPR problems can be
translated into bit-vector models demonstrating non-equivalence.

We also evaluate the best EPR solvers on industrial equivalence
checking problems and compare them with SMT solvers designed
and tuned for such formulas specifically. We present empirical
evidence demonstrating that EPR-based methods and solversare
competitive.

I. I NTRODUCTION

Use of theorem proving in hardware and software verifi-
cation is not new. A first classification of the use of the-
orem proving in formal verification would be to divide it
into Higher-Order Logic (HOL) and First-Order Logic (FOL)
theorem proving. Because HOL theorem proving is highly
interactive and requires from the user both an expertise in
theorem proving and a good familiarity of the design (or
program) under verification, the use of higher-order theorem
proving in hardware verification is limited to particular styles
of design for which no good fully-automatic verification
methods exist.1 Unlike HOL, there are highly efficient fully
automatic FOL theorem provers, so the potential of FOL for
a wider use in formal verification is significantly higher.

This work is partially supported by EPSRC and the Royal Society.
1This by no means diminishes the importance of the use of HOL theorem

proving in verification – in certain areas of verification it is indispensable.

In this paper we are interested in equivalence checking and
model checking problems in hardware verification involving
decision procedures for bit-vectors and arrays. Such problems
can be solved efficiently by Satisfiability Modulo Theories
(SMT) [16] solvers [5], [6], [21]. More precisely, we are
interested in problems in the theory of fixed-size bit-vectors
and extensional arrays, known as the theoryQF AUFBV .
It has also been shown [14] that such problems can be
encoded into the Effectively Propositional (EPR) fragmentof
FOL, which is decidable and for which efficient FOL solvers
exist [20], [15], [3]. The EPR fragment consists of first-order
formulas which in clausal normal form contain no function
symbols other than constants.

The current understanding (on which many experts in the
field agree) is that FOL solvers are good at ”pure first-order
problems” involving formulas with (interleaving and nested)
universal and existential quantifiers, while SMT solvers are
best at quantifier-free theories.2 In this paper we set out to
investigate the scalability of EPR solvers with different proof-
calculi to real-life problems involving reasoning with bit-
vectors and arrays, and comparing their performance with the
best SMT solvers for the theoryQF AUFBV . We propose
several sound and complete encodings of problems in this
theory into EPR, and discuss and experimentally evaluate
the advantages and disadvantages of different encodings. We
also discuss and experimentally evaluate advantages and dis-
advantages of different proof calculi for FOL with respect
to solving the EPR problems arising from industrial scale
hardware verification.

To the best of our knowledge, no similar analysis was
reported before. We find this analysis interesting and important
especially because the significance of the EPR fragment in
software and hardware verification has been realized only
recently [17], [18], by showing that many interesting veri-
fication problems can be encoded in this fragment and can
often be solved efficiently. We hope that the theoretical and
experiential analysis reported in this work will help in cross-
learning between the calculi and algorithms employed in SMT
and FOL approaches, for the class of problems with bit-vectors
and arrays.

2Few SMT solvers, like Z3, do support limited quantified theories; see [22]
for further references.



In the next section, we recall a sound but incomplete
encoding of problems with bit-vectors and arrays into EPR,
as described in [14]. As a consequence of incompleteness, the
powerful abstraction of the size of bit-vectors and arrays on
which the encoding to EPR is based, is often the source of false
counter-examples in verification. Debugging of verification
failures is the main source of inefficiency in hardware design
projects, and false failures (also called false negatives,caused
by the nature of the verification tool or methodology rather
than an actual bug in the design) are simply unacceptable.
In Section III, we therefore propose several approaches to
achieving the completeness of encoding to EPR, thereby
eliminating the possibility of false negatives.

In Section III, and further in Section IV, we analyze the
advantages and disadvantages of the proposed sound and
complete encodings to EPR, and relate these to the strengths
and weaknesses, relative to the problems we are interested in,
of several important proof calculi employed in the best EPR
solvers (the winners of recent theorem proving competitions
in the EPR and other categories). Extensive experimental
results comparing the performance of the best solvers for EPR
problems with the performance of winning SMT solvers in the
category of bit-vectors and arrays on hardware verification
problems arising from real-life Intel micro-processor design
are reported in Section V. The benchmarks were selected and
organized carefully so to expose the strengths and weaknesses
of different decision procedures, and their sensitivity tothe
nature of the benchmarks (such as the presence of extensive
bit-level reasoning as opposed to really bit-vector level rea-
soning, the design style, the writing style of RTL, the nature
of compilation of RTL and schematic descriptions into model-
checking instances). Conclusions appear in Section VI.

II. T HE RELATIONAL ENCODING

In this paper we consider the theory of fixed-size bit-vectors
and extensional arrays. We assume that bit-vector arithmetic
operators are synthesized (or bit-blasted) in the verification
front-end, and the solver engines do not receive arithmetic
operations in the expressions to solve.

For arrays, we assume the standard operations: read (or
select), write (or store), and equality (if the array dimensions
are the same), and the standard consistency and extensionality
axioms [19], [7], [16]:

mem{i← e}(i) = e;
mem{i← e}(j) = mem(j), if j 6= i;
(∀j : mem1 (j) = mem2 (j))→ mem1 = mem2 .

The encodings of the theory of bit-vectors and arrays that
we consider here are all refinements of an encoding proposed
in [14], called therelational encoding (as opposed to the
algebraic encoding that was also considered there and was
shown not to scale on even small verification problems). To
explain the relational encoding and to describe our contribution
clearly, we choose to use as the running example slightly
modified toy specification and implementation designs used
as the running example in [14].

Fig. 1. Specification and Implementation memories

The toy designs are depicted in Figure 1. The specification
design corresponds to the register-transfer level description
(RTL), while the implementation design corresponds to its
schematic implementation (SCH). The specification model
contains a memorysmem with 64 rows and 71 columns,
its address bit-vectoraddr is of width 12, and it is used
to pass the memory address for both write and read oper-
ations: bitsaddr[5 : 0] are used for the write operation
and bits addr[11 : 6] are used for the read operation.
Further,swrite andsread denote the write and read data
vectors, respectively, of width71, andwren andrden are the
control bits enabling write and read operations, respectively.
The bits wren and rden, as well as the clockclock
and addressaddr, are shared between the specification and
implementation designs. The implementation design has mem-
ory imem with the same dimensions assmem. 3 The write
operation in the implementation model is different: bit-vector
dataiwrite is split into two parts during the write operation
– iwrite[70 : 36] and iwrite[35 : 0]. Each of the
parts is written to the corresponding part ofimem, so the
implementation memory is shown split into two parts. Beyond
the boundaries of the implementation memory unit the data is
bitwise negated before being written to the implementation
memory and after being read from it, so the write data
iwrite (respectively, read datairead) in the implemen-
tation memory is the negation of the write (respectively, read)
data in the specification memory.

With the relational encoding [14] of memory equivalence
checking problems into EPR, any bit-vectorb is considered as
a relation on integers. Thus, for every integerk, it holds that
b(k) is true if and only if thekth bit of b is 1. If b does not
have thekth bit, the relational encoding in [14] assumes that
b(k) is either true or false. Such a representation of bit-vectors
is a powerful abstraction, since, instead of considering a bit-
vector a mapping from a finite range of integers to booleans,
as is done in the SMT theoryQF AUFBV , a bit-vector is
now a mapping fromall integers to booleans. The width of bit-
vectors is thus abstracted away. In the relational encoding, a
memory becomes a binary relation: the first argument denotes
an address and the second a bit. For example,imem(a, k)
denotes the value of thek-th bit of the element at the address

3Intel’s logic extraction tool can identify memories and address decoders
in the schematic models [14].



a in imem.
Let us now recall the relational encoding (as in [14])

of our running example. First, define the correspondence
between the specification and the implementation designs as
the conjunction of correspondence of the memories and of the
read data.

∀A∀B(imem(A,B)↔ ¬smem(A,B)). (1)

∀B(iread(B)↔ ¬sread(B)). (2)

The input write data correspondence is specified as follows:

∀B(iwrite(B)↔ ¬swrite(B)). (3)

To be able to use the relational approach, one should identify
bit-vectors in the design used as addresses and add equations
enabling to decide when any pair of addresses is equal. For
example, in our running example, we might need formu-
las describing when the termwriteAddr corresponding to
addr[5 : 0] is equal to the termreadAddr corresponding
to addr[11 : 6]. Since the bit indexes involved in these
two bit-vectors are different (in particular, are shifted), the
corresponding bit-index constantsbitInd0, . . . ,bitInd11

are introduced, and the following axiom is added:

(writeAddr = readAddr)↔
((addr(bitInd0)↔ addr(bitInd6)) ∧ . . .∧
(addr(bitInd5)↔ addr(bitInd11))).

(4)

The transition relation for the specification memory is as
follows, where the prime symbol′ is used to denote next-state
variables:

∀A(clock∧ wren ∧A = writeAddr→
∀B(smem′(A,B)↔ swrite(B)));

∀A(¬(clock∧ wren ∧A = writeAddr)→
∀B(smem′(A,B)↔ smem(A,B))).

(5)

Splitting bit-vectors into parts is done by introducing pred-
icates true on bits belonging to the LSB part. For the running
example, predicateless36 is introduced, intended to hold
(only) on bits with numbers strictly less than36. We also
introduce propositional variableswrenh1 and wrenh2 for
enabling writing into the two parts of the memory.

wrenh1 ↔ wren ∧ clock;
wrenh2 ↔ wren ∧ clock. (6)

The transition relation for the implementation memory is
then given as follows:

∀A(wrenh1 ∧A = writeAddr→
∀B(less36(B)→ (imem′(A,B)↔ iwrite(B))));

∀A(¬(wrenh1 ∧ A = writeAddr)→
∀B(less36(B)→ (imem′(A,B)↔ imem(A,B))));

∀A(wrenh2 ∧A = writeAddr→
∀B(¬less36(B)→ (imem′(A,B)↔ iwrite(B))));

∀A(¬(wrenh2 ∧ A = writeAddr)→
∀B(¬less36(B)→ (imem′(A,B)↔ imem(A,B)))).

(7)
The definitions of the read operations for the specification

memory are as follows.

clock ∧ rden→ ∀B(sread′(B)↔ smem(readAddr, B));
¬(clock ∧ rden)→ ∀B(sread′(B)↔ sread(B)).

The definitions of the read operations for the implementa-
tion memory are similar; one should only replacesread and
smem by iread andimem.

III. R ELATIONAL ENCODINGS ELIMINATING SPURIOUS

MODELS

Unfortunately, as pointed out in [14], the powerful abstrac-
tion resulting from considering bit-vectors as functions on all
integers comes in the expense of loosing the completeness
of the encoding – false negatives (i.e, counter-examples that
are not real) are possible. For example, ifa, b, c represent bit-
vectors of length 1, the formula

a = b ∨ a = c ∨ b = c (8)

is valid, but it is not valid in the abstraction since its negation
is satisfiable.

In order to avoid the possibility of false negatives (i.e., spuri-
ous models), we would like the relational encoding to become
aware of the ranges of bit-vectors and arrays involved in circuit
operation, and we would like to record this information in the
translation. The main idea of the refined encoding – let us call
it range-aware relational encoding to EPR – is that for every
formula that we generate during the encoding, the range of bits
in the involved bit-vectors or arrays is explicitly encodedin
the formula using the less-predicates and bit-index constants
(such asless36 or bitInd5). For this to work, we need to
relate the less predicates introduced during the encoding with
the bit-index constants introduced during the encoding. Note
that there is no need to relate a bit-indexbitIndk with a less
predicatelessn for many pairs(k, n): it might be irrelevant
to capture the fact that

lessn(bitIndk) if k < n;
¬lessn(bitIndk) otherwise. (9)

Next we discuss several ways to eliminate false negatives,
and discuss the advantages and disadvantages of each ap-
proach.

A. Encoding 1: precise ranges

Let us first define range-predicates: For a pair of non-
negative integersn ≤ m, let us define

range[m,n](B) ↔ lessm+1(B) ∧ ¬lessn(B).

When equality between arrays is introduced, it should be
guaranteed that there will be no bits beyond the range of the
data on which the array equality will fail. For example, we
write the invariant formula (1) for memories as

∀A∀B(range[70,0](B)→ (imem(A,B)↔ ¬smem(A,B))).

When equality between bit-vectors of the same range is in-
troduced, we explicitly restrict the corresponding equivalence
of bits to the relevant bit-range. For example, we now write
the formula (7) as



∀A(wrenh1 ∧A = writeAddr→
∀B(range[35,0](B)→ (imem′(A,B)↔ iwrite(B))));

∀A(¬(wrenh1 ∧A = writeAddr)→
∀B(range[35,0](B)→ (imem′(A,B)↔ imem(A,B))));

∀A(wrenh2 ∧A = writeAddr→
∀B(range[70,36](B)→ (imem′(A,B)↔ iwrite(B))));

∀A(¬(wrenh2 ∧A = writeAddr)→
∀B(range[70,36](B)→ (imem′(A,B)↔ imem(A,B)))).

Similarly, instead of (2) we now write

∀B(range[70,0](B)→ (iread(B)↔ ¬sread(B))).

We add axioms stating that bit-index terms corresponding
to different indexes are not equal. For a less-predicate like
less36, that has been introduced, we add the axiom

∀B(less36(B)↔
(B = bitInd0) ∨ . . . ∨ (B = bitInd35)).

(10)

How can the range-aware encoding solve the incomplete-
ness of the relational encoding of [14]? With the relational
encoding, the equation (8) is represented with the following
formula, which is false already for 2-bit bit-vectors, say
a = 10, b = 00, c = 11.

(∀B(a(B)↔ b(B))) ∨
(∀B(a(B)↔ c(B))) ∨
(∀B(b(B)↔ c(B))).

With the range-aware relational encoding, the same formula
is represented by

(∀B(range[0,0](B)→ a(B)↔ b(B))) ∨
(∀B(range[0,0](B)→ a(B)↔ c(B))) ∨
(∀B(range[0,0](B)→ b(B)↔ c(B))).

From the axiomatization (10) of theless and range
predicates, we conclude that the above formula is equivalent
to the one below, which is clearly true.

(a(bitInd0)↔ b(bitInd0)) ∨
(a(bitInd0)↔ c(bitInd0)) ∨
(b(bitInd0)↔ c(bitInd0)).

Note that with the precise-ranges relational encoding the
widths of bit-vectors and the dimensions of arrays are still
abstracted away. This is different from the information spec-
ified to SMT solvers in the theory of fixed-size bit-vectors
and extensional arrays. However, since our modeling of every
bit-vector or array operations explicitly encodes the relevant
ranges, the bit-vector width and array size information be-
comes redundant.

Theorem 1: The precise ranges encoding is sound and
complete: an EPR formula obtained by the precise ranges
encoding is satisfiable if and only if it is satisfiable over bit-
vectors of the specified size.

B. Encoding 2: bit-index pre-instantiation

In the precise-ranges encoding, the axioms like (10) intro-
duce many equalities between terms describing bit-indexes.
Dealing with many such equalities may significantly slow
down the EPR solvers. This is explained in the next section.
The most straightforward way to avoid these equalities be-
tween the bit-index terms (and still retain the completeness)
is to pre-instantiate all quantifiers ranging over bit-indexes
with concrete index values. This is a meaningful alternative
in the case where there is a lot of bit-wise reasoning, like
in schematic models, and most of the bit-indexes introduced
during pre-instantiation would have been introduced anyway
with the precise-ranges approach.

This approach is sensitive to the amount of bit-index con-
stants that will be introduced during pre-instantiation. In 64-bit
based real-life micro-processor designs, there normally are no
bit-vectors longer than around71 bits (which consist of64 bits
of data and several other encryption bits and flags). However,
because of the writing style of RTL and Schematic, and the
way many RTL compilers work, often long vectors are created
from nested structures. For example, in our toy example, if two
different bit-vectors of width6 were used for the write and
read addresses instead of using a12-bit vectoraddr, there
will be no need to introduce bitsbitInd6, . . . ,bitInd11 to
the instance. Similarly, if the write and read data bit-vectors
swrite and sread were defined as the LSB and MSB
halves of a data bit-vectorsdata[141 : 0], or as a structure
with two fields [70 : 0] swrite and [70 : 0] iwrite, the
functionality of the design would not change but the encoding
with index pre-instantiation would force us to introduce extra
bit-indexesbitInd71, . . . ,bitInd141. In our experiments
below, we will see how introduction of bit-indexes caused by
the RTL and SCH writing style and compilation of RTL and
SCH into the model-checking instance can affect the solvers
performance.

C. Encoding 3: Skolem predicates

We now introduce a smarter way to avoid introduction of
equalities between bit-index terms as in the less predicateax-
ioms like (10). Our approach can be seen as reasoning modulo
a fixed domain of indexes and is inspired by approaches used
in state-of-the-art finite model finders [1], [8].

First, note that the Skolemization of the invariant formu-
las (1) and (2) introduces Skolem constants. For example,
let boolean variablereadeq denote the truth value of the
equality (2):

readeq↔ ∀B(range[70,0](B)→ (iread(B)↔ ¬sread(B))).

This formula is translated into a collection of following
clauses, wheresk0 is a fresh Skolem constant:

readeq ∨ ¬iread(sk0) ∨ ¬sread(sk0);
readeq ∨ iread(sk0) ∨ sread(sk0);
readeq ∨ ¬less0(sk0);
readeq ∨ less71(sk0);
sread(B) ∨ ¬iread(B) ∨ less0(B) ∨ ¬less71(B) ∨ readeq;
iread(B) ∨ ¬sread(B) ∨ less0(B) ∨ ¬less71(B) ∨ readeq.

(11)



On the clauses containing occurrences of Skolem constants,
we perform the following transformation: For each Skolem
constantski we introduce a new unary predicateskPi and
the following axiom, wherek, . . . ,m is the index range
corresponding toski.

skPi(bitIndk) ∨ . . . ∨ skPi(bitIndm). (12)

Informally if skPi(bitIndj) is true then we can assign
ski to be equalbitIndj . Further, whereverski occurs in
a clauseC(ski, X1, . . . Xn) then we replace this clause with
¬skPi(Y ) ∨ C(Y,X1, . . .Xn). After this transformation, the
first four formulas in (11) will have the following form:

readeq ∨ ¬iread(B) ∨ ¬sread(B) ∨ ¬skP0(B);
readeq ∨ iread(B) ∨ sread(B) ∨ ¬skP0(B);
readeq ∨ ¬less0(B) ∨ ¬skP0(B);
readeq ∨ less71(B) ∨ ¬skP0(B).

Then we can define predicateslessi for i as follows: e.g.
for less3 we have unit clauses:

less3(bitInd0),less3(bitInd1),less3(bitInd2),
¬less3(bitInd3), . . . ,¬less3(bitIndn).

(13)

Note now we do not need axioms like (10) (introducing
equalities between bit-index terms) any more.

Theorem 2: The Skolem predicates encoding is sound and
complete: a formula obtained by the precise ranges encoding
is satisfiable if and only if the corresponding formula obtained
by the Skolem predicates encoding is satisfiable.

Proof: An adaptation of results from [1], [8].

IV. A NALYSIS OF PROOF CALCULI FOREPR

We compare general purpose first-order reasoners with
dedicated SMT solvers on the benchmarks generated from
industrial memory designs. Since our encodings are fallinginto
the EPR fragment we focus on instantiation-based first-order
reasoners which are especially efficient in this fragment, as
witnessed by recent CASC competitions4. Instantiation-based
methods are general purpose reasoning methods for first-order
logic which are based on combining efficient propositional,or
more generally ground, reasoning techniques with instantiation
of first-order formulas. Instantiation-based methods are there-
fore well-suited for reasoning with fragments closely related to
propositional logic such as the EPR fragment and in particular
decide the EPR fragment. We consider two sate-of-the-art
instantiation-based reasoners: the Darwin system [3], based on
the Model Evolution calculus [2] and the iProver system [15],
based on theInst-Gen calculus [10].

The Model Evolution calculus can be seen as a lifting of
efficient propositional DPLL calculus into first-order logic
together with a number of DPLL-style techniques such as
(dynamic) backtracking and lemma learning. The Model Evo-
lution calculus is space efficient since only the candidate

4http://www.cs.miami.edu/˜tptp/CASC/

model is growing during the proof search (and optionally, the
set of lemmas if lemma learning is applied). On the other
hand, such lifting to the first-order logic requires to compute
expensive context unifiers and considerably complicates dy-
namic backtracking and lemma learning, generally rendering
them not as effective as in the propositional case.

The Inst-Gen calculus is based on a modular combination
of propositional reasoning with refined instantiations of first-
order formulas. One of the distinctive features of the Inst-
Gen approach is that it allows one to employ off-the-shelf
efficient propositional solvers (currently iProver integrates
MiniSAT [9]) for reasoning with propositional abstractions
of first-order clauses, guiding the instantiation inferences and
simplification of clauses. We believe that such a modular
integration of industrial-strength propositional solvers gives
a considerable advantage when solving large real-life prob-
lems. Another important requirement from a solver used in a
verification environment is to produce models for satisfiable
problems. Such models correspond to bugs in the design and
it is crucial to have a model representation amendable to
efficient analysis. As a byproduct of this work, iProver has
been extended with a representation of models such that the
value of each bit in a bit-vector can be retrieved efficiently;
this considerably simplified model analysis.

Our experimental results show that already non-tuned gen-
eral purpose instantiation-based systems are close in perfor-
mance and in some examples outperform highly optimized
dedicated SMT solvers. These initial results are very encour-
aging and we believe that instantiation-based reasoners can
be tuned further by exploiting the problem structure and by
optimizing inference selection.

Let us now discuss different effects of our encodings on
the EPR reasoners. First we note that the size of bit-vectors
is directly related to the size of the search space. Therefore
reducing the size of bit-vectors in the encodings is a promising
research direction. Moreover, large ranges of bit-indexespro-
duce clauses with large numbers of equational literals like(10).
In general, instantiation-based methods are more tolerantto
clauses with many literals than resolution-based methods since
the number of literals in clauses does not increase during the
instantiation process. Nevertheless equational axioms as(10)
can produce numerous redundant inferences by substitutingthe
variableB with different indexes during equational reasoning.
All this instantiations are redundant and can be avoided as
shown in Section III-C.

Let us compare our approach of encoding bit-vector and
array reasoning into the EPR fragment with approaches used
in SMT solvers. Reasoning in SMT solvers is done at the
ground level and frequently results in full bit-blasting. Using
first-order logic we can use higher levels of abstraction which
can result in memory/bit-vector size independent reasoning.
We believe this can lead to better scalability of our approach
to large memories and bit-vectors. On the other hand, SMT
solvers have advanced built-in bit-vector functions whichare
needed in many memory designs. Although it is possible to
bit-blast such functions in our approach, a better approach



would be to devise encodings of these functions into the EPR
fragment.

A further research direction is to strengthen our encodings
by introducing higher level abstractions and by more sophisti-
cated encoding of bit-vector reasoning. Such an encoding can
also pave the way for using powerful resolution-based first-
order reasoners such as Vampire [23], as the current encoding
tends to produce very long clauses which are known to be
hard for resolution-based reasoners.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate the three above-discussed sound
and complete encodings of problems with bit-vectors and
arrays into EPR on two fastest EPR solvers, iProver [15] and
Darwin [3]. We further compare their performance to that
of the fastest SMT solvers for the theoryQF AUFBV –
Boolector [5] and MathSAT [6]. We used a standard, and
straightforward, encoding of RTL descriptions of hardwareto
the theoryQF AUFBV (for example, we haven’t used the
abstraction technique in [11] to reduce the number of involved
bits during the encoding). With the incomplete encoding
of [14], iProver returned spurious models on all problems
which are UNSAT with the complete encodings; therefore we
do not report here the EPR solver results with this encoding.

A. Description of benchmarks

In our experiments, we use five equivalence checking prob-
lem instances originating from a recent micro-processor design
at Intel. Each problem instance corresponds to an equivalence
checking problem between an RTL functional block (FUB)
and the corresponding FUB in the schematic model.

The first group of experiments reported in Table 2 corre-
spond to the original RTL and schematic FUBs. The schematic
model contains lots of bit-level reasoning, and as a result
the resulting EPR instances contain lots of bit-level equations
(using the bit-indexes). On such instances, the abstraction
techniques are less efficient, and the solvers that do not really
employ the bit-vector level reasoning can perform almost as
efficiently as on the problems with lots of reasoning at higher,
bit-vector level reasoning.

Recall that in EPR encodings often there is a need to write
axioms at bit level, say in equations like (4). As explained
above, one expects that existence of a large amount of such
index constants will negatively affect the performance of EPR
solvers. To evaluate this point experimentally, for each equiv-
alence checking benchmark we tried to produce an equivalent
instance involving significantly fewer bit-indexes. This trans-
formation was performed by manually editing the RTL and
SCH descriptions and changing compilation switches when
generating the model-checking instances (e.g., the next-state
functions) from hardware descriptions. In brief, because of the
way how the compiler works, linearization (or flattening) of
(nested) structures or modules, causes creation of long bit-
vectors containing the original bit-vector fields of structures
and bit-vectors of modules as sub-vectors. This phenomenon
is an artifact of compilation and does not change the meaning

of the design. Undoing or preventing this linearization (even
if it was not done as aggressively as possible), allowed us
to significantly reduce the amount of long bit-vectors and the
amount of bit-indexes involved in the generated EPR instances
for FUBs 1 and2. For the other FUBs the maximal width of
bit-vectors remained unchanged. Benchmark results on these
modified FUBs are reported in Table 3.

It is well understood that solvers might perform particularly
well or badly on SAT vs UNSAT problems, and we aim
to evaluate the selected solvers and encoding methods from
this angle as well. To generate SAT instances, we manually
introduced several common types of bugs into the designs or
verification instances (such bugs include mismatches between
the corresponding read or write enables, mixture in the order
of data bits, incorrect or missing constraints (3) connecting the
corresponding write data of the compared slices of specifica-
tion and implementation designs, etc.). Tables 4 and 5 report
runtime results on5 FUBs obtained by these manipulations
from the equivalence checking problems evaluated in Tables2
and 3, respectively.

The formulas checked for SAT/UNSAT correspond to the
induction step formulas [24] at depths smaller or equal to3 –
the depths needed to prove the induction invariant stating the
equality of memories (1) and the read data (2). For the sake
of performance efficiency, checking these formulas there split
into two independent runs of the solvers; in one run, the initial
value of the main clock was set to true, while in the second
check it was set to false.

B. Performance results

One of the most important observations based on our
experimental results is that already at this initial stage,non-
tuned general purpose instantiation-based methods can solve
industrial-size hardware verification problems within a reason-
able time limit. Moreover, there are a number of problems
where instantiation-based solvers outperform highly optimised
SMT solvers, see Tables 2–5. In particular, instantiation-based
methods perform well on the problems with long bit-vectors
such as problems FUB 4 and FUB 5 (Tables 2–3), with max-
imal bit-vector sizes 994 and 1047 respectively. We believe
this is one of the promising aspects of the instantiation-based
approach which is achieved due to a higher level reasoning.

Let us note that SMT solvers and an instantiation-based
solver iProver are all using SAT solvers as the back-end.
In the case of Boolector it is PrecoSAT and in the case
of MathSAT and iProver it is MiniSAT. Recently developed
PrecoSAT is a highly optimized propositional solver which
won the latest SAT competition. Thus, comparing MathSAT
and iProver better highlights the differences between SMT
and instantiation approaches since the same SAT solver is
employed. We can see that iProver outperforms MathSAT on
many problems both in SAT and UNSAT categories.

These experimental results indicate that instantiation-based
methods and SMT technology complement each other and
both are useful alternatives for industrial-size hardwarever-
ification. There are still a number of problems were SMT



solvers perform better than instantiation-based methods,es-
pecially on satisfiable problems. Therefore we are planningto
explore applicability of recent advances in bit-vector reasoning
developed in the SMT framework [5] into instantiation-based
reasoning.

Let us compare our different encodings. Tables 2–5 indicate
that there is no clear winner among our encodings. There is
a trade-off between concise, higher-level encodings such as
precise ranges and Skolem predicates encodings; and more ex-
plicit bit-index pre-instantiation encoding. These tables show
that explicit encodings are better for unsatisfiable problems
whereas concise encodings are better for satisfiable problems.
The reason for this can be that in many cases low level
reasoning is unavoidable for unsatisfiable problems whereas
for satisfiable problems it is sufficient to consider concise
representations.

Tables 2–5 show experiments with longer/shorter bit-vector
encodings. The reduction of bit-vector sizes was not always
successful, only in two first FUBs there was a noticeable
reduction in the maximal bit-vector size: in FUB 1 from 286
to 185 and in FUB 2 from 640 to 203, in other three cases
the instances have changed but the max bit-vector size was
unchanged. We can see that in some cases shorter bit-vectors
lead to performance improvement and therefore in our future
work we will study how to reduce bit-vector sizes in our
encodings.

Finally, we run Darwin on several groups of benchmarks
(including the simplest FUBs 1-3) with time limit of 500
seconds, but unfortunately it could not solve any single
problem. The reason can be the large number of clauses in
the resulting problems which ranges from 30 thousands to
over 100 thousands of clauses. We believe that a modular
integration of propositional reasoning as it is done in iProver
is advantageous on such problems. The problem of reducing
the size of the encodings is also needed to be addressed.

VI. CONCLUSIONS AND FUTURE WORK

The aim of this work was to explore the scalability and
potential of several approaches to first-order logic theorem
proving in solving industrial-sized verification problemsin-
volving reasoning with bit-vectors and arrays, and to compare
them with SMT-based techniques. Taking into account that
the EPR solvers are currently less optimized on industrial
sized problems compared to more mature SMT solvers, the
reported experiential results and theoretical analysis indicate
that several first-order proof calculi do have a great potential in
this domain. Furthermore, we believe that smarter encodings
into EPR of the problems with bit-vectors and arrays can be
developed by exploring abstraction and refinement techniques
similar to those proposed for accelerating SMT solving and
this can make the EPR-based approaches even more efficient.

Another big promise of using EPR solvers in model check-
ing is that bounded model checking problems have a succinct
encoding into EPR, such that the size of the BMC formulas is
not affected by the unrolling bound [17]: unlike the SAT-based
BMC [4], it is not needed to replicate copies of the temporal

assertion and the transition relation for every unrolling depth.
One of our major next goals in the EPR related model-
checking research is to combine the ability of solving bit-
vector and array reasoning instances in EPR at the word level
with the EPR-based BMC proposed in [17] for bit-blasted
model-checking instances. Furthermore, we believe that EPR
solvers can be optimized on model checking instances resulted
from this combined encodings.

This reported and future work is part of an ongoing re-
search collaboration between Intel’s formal technology group
developing efficient model-checking and equivalence checking
solutions for Intel’s chip design project and between the Uni-
versity of Manchester. The developed word-level equivalence
checking method will replace the more traditional sequential
equivalence checking solution implemented in Intel’s sequen-
tial equivalence checking tool, Seqver [12], [13], [14].

Acknowledgements. We would like to thank the developers of
Boolector and MathSAT for their collaboration on this work.

REFERENCES

[1] Baumgartner, P., A. Fuchs, H. de Nivelle, C. Tinelli. Computing fi-
nite models by reduction to function-free clause logic. J. of Applied
Logic, 2007.

[2] Baumgartner P., C. Tinelli. The model evolution calculus as a first-order
DPLL method. Artif. Intell. 172(4-5): 591-632, 2008.

[3] Baumgartner P., A. Fuchs, C. Tinelli. Implementing the Model Evolution
Calculus. Inter. J. on Artificial Intelligence Tools 15(1):21-52, 2006.

[4] Biere A., A. Cimatti, E. Clarke, Y. Zhu. Symbolic model checking
without BDDs, TACAS 1999.

[5] Brummayer R., A. Biere. Boolector: An efficient SMT solver for bit-
vectors and arrays, TACAS 2009.

[6] Bruttomesso R., A. Cimatti, A. Franzén, A. Griggio, R. Sebastiani. The
MathSAT 4 SMT solver, CAV 2008.

[7] Bradley, A.R., Manna Z., Sipma H.B. What’s decidable about arrays?
VMCAI 2006.

[8] Claessen K., N. Sörensson. New techniques that improveMACE-style
model finding. Workshop on Model Computation (MODEL), 2003.

[9] Eén N., N. Sörensson. An extensible SAT-solver. SAT 2003: 502-518.
[10] Ganzinger H., Korovin K. New directions in instantiation-based theorem

proving, LICS 2003.
[11] Johannsen P. Reducing bitvector satisfiability problems to scale down

design sizes for RTL property checking, HLDVT 2001.
[12] Kaiss, D., S. Goldenberg, Z. Hanna, Z. Khasidashvili. Seqver: a sequen-

tial equivalence verifier for hardware designs, ICCD 2006.
[13] Khasidashvili, Z., D. Kaiss, D. Bustan. A compositional theory for post-

reboot observational equivalence checking of hardware, FMCAD 2009.
[14] Khasidashvili Z., Kinanah M., Voronkov A. Verifying equivalence of

memories using a first order logic theorem prover. FMCAD 2009.
[15] Korovin, K. iProver–an instantiation-based theorem prover for first-order

logic (system description), IJCAR 2008.
[16] Kroening D., Strichman O.Decision Procedures, Springer, 2008.
[17] Navarro Pérez J. A., A. Voronkov. Encodings of BoundedLTL Model

Checking in Effectively Propositional Logic. CADE 2007.
[18] Navarro-Pérez J.A., A. Voronkov. Proof systems for effectively propo-

sitional logic, IJCAR 2008.
[19] McCarthy, J., J. Painter. Correctness of a compiler forarithmetic

expressions. Symposium in Applied Mathematics, Vol. 19, Mathematical
Aspects of Computer Science, American Mathematical Society, 1967.

[20] de Moura, L.M., N. Bjørner. Deciding effectively propositional logic
using DPLL and substitution sets, IJCAR 2008.

[21] de Moura, L.M., N. Bjørner. Z3: An efficient SMT solver, TACAS 2008.
[22] Ge Y., de Moura L.M. Complete instantiation for quantified SMT

formulas, CAV 2009.
[23] Riazanov, A., A. Voronkov. The design and implementation of Vampire,

AI Communications, 15(2-3):91–110, 2002.
[24] Sheeran, M., S. Singh, G. Stalmarck. Checking safety properties using

induction and a SAT-solver, FMCAD 2000.



Solver Boolector MathSAT iProver pre-inst iProver Skolemize iProver precise
Test clock=0/1 clock=0/1 clock=0/1 clock=0/1 clock=0/1

FUB 1 0.39 / 0.18 13.0 / 3.5 1.6 / 11.6 1.3 / 1.2 9.1 / 12.8
FUB 2 0.36 / 0.3 7.7 / 4.7 1.9 / 7.6 6.7 / 11.6 42 / 78.3
FUB 3 0.05 / 0.04 0.8 / 0.9 1.4 / 0.4 3.6 / 1.8 4.1 / 4.7
FUB 4 0.13 / 138.5 26 / t-o 4.8 / 51.1 44 / t-o 42 / t-o
FUB 5 5861.26 / 3.2 160.15 / 31.75 179.24 / 13.3 t-o / 680.94 1132.36 / 329.1
TOTAL 5862.19 / 142.04 207.65 / t-o 188.94/ 84 t-o / t-o 1229.56 / t-o

Fig. 2. Equivalence checking UNSAT problem instances with long bit-vectors.

Solver Boolector MathSAT iProver pre-inst iProver Skolemize iProver precise
Test clock=0/1 clock=0/1 clock=0/1 clock=0/1 clock=0/1

FUB 1 0.28 / 0.18 12.0 / 3.8 1.6 / 6.4 6.6 / 40.3 8.6 / 11
FUB 2 0.32 / 0.34 14.7 / 11.5 1.8 / 19.0 9.0 / 43.1 19.6 / 31.3
FUB 3 0.04 / 0.04 0.8 / 0.9 1.2 / 0.4 3.6 / 1.9 4.1 / 4.7
FUB 4 0.13 / 138.8 t-o / t-o t-o / t-o 43.7 / t-o 42.2 / t-o
FUB 5 t-o / 2.98 158.94 / 31.71 149.88 / 11.08 t-o / 592.3 1084.7 / 320.33
TOTAL t-o / 142.34 t-o / t-o t-o / t-o t-o / t-o 1159.2/ t-o

Fig. 3. Equivalence checking UNSAT problem instances with shorterbit-vectors.

Solver Boolector MathSAT iProver pre-inst iProver Skolemize iProver precise
Test clock=0/1 clock=0/1 clock=0/1 clock=0/1 clock=0/1

FUB 1 0.14 / 0.14 36.3 / 34.9 5.1 / 11.2 1.4 / 1.2 9.0 / 29.3
FUB 2 0.22 / 0.24 50 / 38.9 5.3 / 15.3 6.3 / 11.5 24.4 / 57.5
FUB 3 0.04 / 0.04 3.2 / 3.3 15.1 / 0.9 26.4 / 1.7 6.2 / 2.7
FUB 4 0.14 / 0.42 t-o / t-o 147.5 / t-o 39.7 / t-o 46.7 / 46.4
FUB 5 1.66 / 1.56 t-o / t-o 63.65 / 62.57 46.58 / 48.51 379.68 / 439.95
TOTAL 2.2 / 2.4 t-o / t-o 236.65 / t-o 120.38 / t-o 465.98 / 575.85

Fig. 4. Equivalence checking SAT problem instances with long bit-vectors.

Solver Boolector MathSAT iProver pre-inst iProver Skolemize iProver precise
Test clock=0/1 clock=0/1 clock=0/1 clock=0/1 clock=0/1

FUB 1 0.14 / 0.16 42.8 / 36.9 5.0 / 10.4 5.7 / 71.7 8.3 / 11.9
FUB 2 0.21 / 0.26 92.2 / 48.4 6.1 / 11.4 10.3 / 47.9 10.5 / 32.3
FUB 3 0.04 / 0.04 3.1 / 3.2 15.3 / 1.0 26.6 / 1.6 6.0 / 2.7
FUB 4 0.14 / 0.38 t-o / t-o 129.5 / t-o 44.0 / t-o 44.1 / 47.4
FUB 5 1.66 / 1.54 t-o / t-o 291.48 / 92.93 43.61 / 42.89 424.71 / 511.34
TOTAL 2.19 / 2.38 t-o / t-o 447.38 / t-o 130.21 / t-o 493.61 / 605.64

Fig. 5. Equivalence checking SAT problem instances with shorter bit-vectors.


