
Boosting Multi-Core Reachability Performance with
Shared Hash Tables

Alfons Laarman, Jaco van de Pol, Michael Weber
{a.w.laarman,vdpol,michaelw}@cs.utwente.nl

Formal Methods and Tools, University of Twente, The Netherlands

Abstract—This paper focuses on data structures for multi-
core reachability, which is a key component in model checking
algorithms and other verification methods. A cornerstone of
an efficient solution is the storage of visited states. In related
work, static partitioning of the state space was combined with
thread-local storage. This solution leaves room for improvements.
This paper presents a solution with a shared state storage. It is
based on a lockless hash table implementation and scales better.
The solution is specifically designed for the cache architecture
of modern CPUs. Because model checking algorithms impose
loose requirements on the hash table operations, their design
can be streamlined substantially compared to related work on
lockless hash tables. The resulting speedups are analyzed and
compared with related tools. Our implementation outperforms
two state-of-the-art multi-core model checkers, SPIN (presented
at FMCAD 2006) and DiVinE, by a large margin, while placing
fewer constraints on the load balancing and search algorithms.

I. INTRODUCTION

Many verification problems are highly computational inten-
sive tasks that can benefit from extra speedups. Considering the
recent hardware trends, these speedups can only be delivered
by exploiting the parallelism of the new multi-core CPUs.

Reachability, or full exploration of the state space, is a
subtask of many verification problems [6], [8]. In model
checking, reachability has in the past been parallelized using
distributed systems [6]. With shared-memory systems, these
algorithms can benefit from the low communication costs as
has been demonstrated already [1]. In this paper, we show how
the performance of state-of-the-art multi-core model checkers,
like SPIN [13] and DiVinE [1], can be greatly improved using a
carefully designed concurrent hash table as shared state storage.

Motivation: Holzmann and Bošnacki used a shared hash
table with fine-grained locking in combination with the stack-
slicing algorithm in their multi-core extension of the SPIN
model checker [12], [13]. This shared storage enabled the
parallelization of many of the model checking algorithms in
SPIN: safety properties, partial order reduction and reachability.
Barnat et al. implemented the same method in the DiVinE
model checker [1]. They chose to implement the classic method
of static state space partitioning, as used in distributed model
checking [3]. They found the static partitioning method to scale
better on the basis of experiments. The authors also mention
that they were not able to develop a potentially better solution
for shared state storage, namely the use of a lockless hash
table. Thus it remains unknown whether reachability, based on
shared state storage, can scale.

Worker 1 Worker 2

Worker 3 Worker 4
QueueQueue

QueueQueue

store store

storestore

(a) Static partitioning

store

Worker 1 Worker 2

Worker 4 Worker 3

Stack

Stack

Stack

Stack

(b) Stack slicing

Fig. 1. Different architectures for model checkers

TABLE I
DIFFERENCES BETWEEN ARCHITECTURES

Arch. Sync. points Pros / Cons
Fig. 1(a) Queue local (cache efficient) storage / static load

balancing, high comm. costs, limited to BFS
Fig. 1(b) Shared store,

stack
low comm. costs / specific load balancing,
limited to (pseudo) DFS

Shared
store

Shared store,
(queue)

low comm. costs, flexible load balancing, flexi-
ble exploration algorithm / scalability?

Using a shared state storage has further benefits. Fig. 1 shows
the different architectures discussed thus far. Their differences
are summarized in Table I and have been extensively discussed
by Barnat et al. [3]. They also investigate a more general
architecture with a shared storage and arbitrary load-balancing
strategy (not necessarily stack-slicing). Such a solution is both
simpler and more flexible, in the sense that it allows for more
freedom in the choice of the exploration algorithm, including
(pseudo) DFS, which enables fast searches for deadlocks and
error states [20]. Holzmann already demonstrates this [12],
but could not show desirable scalability of SPIN (as we will
demonstrate). The stack-slicing algorithm [12], is a specific
case of load balancing that requires DFS. In fact, any well-
investigated load-balancing solution [21] can be used and
tuned to the specific environment, for example, to support
heterogeneous systems or BFS exploration. Inggs and Barringer
use a lossy shared hash table [14], resulting in reasonable
speedups at the cost of precision (states can potentially be
revisited), but give little details on the implementation.

Contribution: We present a data structure for efficient
concurrent storage of states. This enables scaling parallel
implementations of reachability for many desirable exploration
algorithms. The precise needs which parallel model checking
algorithms impose on shared state storage are evaluated and a

fitting solution is proposed given the identified requirements.
Experiments show that our implementation of the shared storage
scales significantly better than an implementation using static
partitioning, but also beats state-of-the-art model checkers. By
analysis, we show that our design will scale beyond current
state-of-the-art multi-core processors. The experiments also
contribute to a better understanding of the performance of the
latest versions of SPIN and DiVinE.

Overview: Section II presents background on reachability,
load balancing, hashing, parallel algorithms and multi-core
systems. Section III presents the lockless hash table, which we
designed for shared state storage. But only after we evaluated
the requirements that fast parallel algorithms impose on such
a shared storage. In Section IV, the performance is evaluated
against that of DiVinE 2 [2] and SPIN. A fair comparison can
be made between the three model checkers on the basis of a
set of models from the BEEM database which report the same
number of states for both SPIN and DiVinE. We end this paper
by putting the results we obtained into context, and an outlook
on future work (Section V).

II. PRELIMINARIES

Reachability in Model Checking: In model checking, a
computational model of the system under verification (hardware
or software) is constructed, which is then be used to compute all
possible states of the system. The exploration of all states can be
done symbolically, e.g., using binary decision diagrams (BDDs)
to represent sets of states, or by enumerating and explicitly
storing all states. While symbolic methods are attractive for a
certain set of models, they are not a silver bullet: due to BDD
explosion, sometimes plain enumerative methods are faster. In
this paper, we focus on enumerative model checking.

Enumerative reachability analysis can be used to check for
deadlocks and invariants and also to store the whole state
space and verify multiple properties of the system at once.
Reachability is an exhaustive search through the state space.
The algorithm calls for each state the next-state function to
obtain its successors until no new states are found (Alg. 1).
We use an open set T , which can be implemented as a stack
or queue, depending on the preferred exploration order: depth
or breadth-first. The initial state s0 is obtained from the model
and added to T . In the loop starting on Line 1, a state is taken
from T , its successors are computed using the model (Line 3)
and each new successor state is put into T again for later
exploration. To determine which state is new, a closed set V
is used. V can be implemented with a hash table.

Possible ways to parallelize Alg. 1 have been discussed in the
introduction. A common denominator of all these approaches is
that the strict BFS or DFS order of the sequential algorithm is
sacrificed in favor of thread-local open sets (fewer contention
points). When using a shared state storage (in a general setup
or with stack-slicing), a thread-safe set V is required, which
will be discussed in the following section.

Load Balancing: A naive parallelization of reachability
can be realized as follows: perform a depth-limited sequential
BFS exploration and hand off the found states to several threads

Data: Sequence T = {s0}, Set V = ∅
1 while state ← T.get() do
2 count ← 0;
3 for succ in next-state(state) do
4 count ← count + 1;
5 if V.find-or-put(succ) then
6 T.put(succ);

7 if 0 == count ... report deadlock ...
Algorithm 1: Reachability analysis

that start executing Alg. 1 (T = {part of BFS exploration} and
V is shared). This is called static load balancing. For many
models this will work due to common diamond-shaped state
spaces. However, models with synchronization points or strict
phase structure sometimes exhibit helix-shaped state spaces.
Hence, threads run out of work when they reach a converge
point in their exploration. A well-known problem that behaves
like this is the Towers of Hanoi puzzle; when the smallest disk
is on top of the tower only one move is possible.

Sanders [21] describes dynamic load balancing in terms
of a problem P , a (reduction) operation work and a split
operation. Proot is the initial problem. Sequential execution
takes Tseq = T (Proot) time units. A problem is (partly) solved
when calling work(P, t), which takes min(t, T (P)) units of
time. For parallel reachability, work(P, t) is Alg. 1, where t
has to be added as an extra input that limits the number of
iterations of the while loop on Line 1 (and Proot = T = {s0}).
When threads become idle, they can poll others for work. The
receiver will then split its own problem instance (split(P) =
{P1, P2}, T (P) = T (P1)+T (P2)) and send one of the results
to the polling thread.

Parallel architectures: We consider multi-core x86 server
and desktop systems. These systems can process a large number
of instructions per second, but have a relatively low memory
bandwidth. Multiple levels of cache are used to continuously
feed the cores with data. Some of these caches are shared
among multiple cores (often L2) and others are local (L1),
depending on the architecture of the CPU and number of CPUs.
The cache coherence protocol ensures that each core in each
CPU has a global view of the memory. It transfers blocks of
memory to local caches and synchronizes them if a local block
is modified by other cores. Therefore, if independent writes are
performed on subsequent memory locations (on the same cache
line), a problem known as cache line sharing (false sharing)
occurs, causing gratuitous synchronization and overhead.

The cache coherence protocol cannot be preempted. To
efficiently program these machines, few options are left. One
way is to completely partition the input [3], thus ensuring
per-core memory locality at the cost of increased inter-die
communication. An improvement of this approach is to pipeline
the communication using ring buffers, this allows prefetching
(explicit or hardwired). This scheme was explored, e.g., by
Monagan and Pearce [17]. The last alternative is to minimize
the memory working set of the algorithm [19]. We define
the memory working set as the number of different memory

2

locations that the algorithm updates in the time window that
these usually stay in local cache. A small working set minimizes
coherence overhead.

Locks: It is common to ensure mutual exclusion for a
critical section of code by locks. However, for resources with
high contention, locks become infeasible. Lock proliferation
improves on this by creating more locks on smaller resources.
Region locking is an example of this, where a data structure is
split into separately locked regions based on memory locations.
However, this method is still infeasible for computational tasks
with very high throughput. This is caused by the fact that
the lock itself introduces another synchronization point; and
synchronization between processor cores takes time.

Lockless Algorithms: For high-throughput systems, lock-
free algorithms (without mutual exclusion) are preferred. Lock-
free algorithms guarantee system-wide progress, i.e., always
some thread can continue. If an algorithm does not strictly
provide progress guarantees (only statistically), but otherwise
avoids explicit locks by the same techniques as used in lock-
free solutions, it is called lockless. Lockless algorithms often
have considerably simpler implementations, at no performance
penalty. Lastly, Wait-free algorithms guarantee per-thread
progress, i.e., all threads can continue.

Many modern CPUs implement a Compare & Swap opera-
tion (CAS) which ensures atomic memory modification while
at the same time preserving data consistency if used in the
correct manner. This can be done by reading the value from
memory, performing the desired computation on it and writing
the result back using CAS (Alg. 2). If the latter returns true,
the modification succeeded, if not, the computation needs to
be redone with the new value, or some other form of collision
resolution should be applied.

Pre: word 6= null
Post:(∗wordpre = testval⇒ ∗wordpost = newval)∧

(∗wordpre 6= testval⇒ ∗wordpost = ∗wordpre)
atomic bool CAS(int *word, int testval, int newval)

Algorithm 2: “Compare&Swap” specification

Lockless algorithms can achieve a high level of concurrency.
However, an instruction like CAS easily costs 100–1000
instruction cycles depending on the CPU architecture. Thus,
abundant use defies its purpose.

Quantifying Parallelism: Parallelism is usually quanti-
fied by normalizing the performance gain with regard to a
sequential run (speedup): S = Tseq/Tpar. Linear speedups
grow proportional to the number of cores and indicate that an
algorithm scales well. Ideal speedup is achieved when S ≥ N .
For a fair comparison of scalability, it is important to use the
fastest tool for Tseq , or speedups will not be comparable, since
better optimized code is harder to scale (e.g., [13]).

Hashing: A well-studied method for storing and retrieving
data with amortized time complexity O(1) is hashing [16]. A
hash function h is applied to the data, yielding an index in
an array of buckets that contain the data or a pointer to the
data. Since the domain of data values is usually unknown and

much larger than the image of h, hash collisions occur when
h(D1) = h(D2), with D1 6= D2. Structurally, collisions can be
resolved either by inserting lists in the buckets (chaining) or by
probing subsequent buckets (open addressing). Algorithmically,
there is a wealth of options to maintain the “chains” and
calculate subsequent buckets [9]. The right choice depends
entirely on the requirements dictated by the algorithms that
use the hash table.

III. A LOCKLESS HASH TABLE

In principle, Alg. 1 seems easy to parallelize, in practice
it is difficult to do this efficiently because of its memory
intensive behavior, which becomes more obvious when looking
at the implementation of set V . In this section, we present an
overview of the options in hash table design. There is no silver
bullet design and individual design options should be chosen
carefully considering the requirements stipulated by the use of
the hash table. Therefore, we evaluate the demands that the
parallel model checking algorithms place on the state storage
solution. We also mention additional requirements stemming
from the targeted hardware and software systems. Finally, we
present a specific hash table design.

A. Requirements on the State Storage

Our goal is to realize an efficient shared state storage for
parallel model checking algorithms. Traditional hash tables
associate a piece of data to a unique key in the table. In model
checking, we only need to store and retrieve state vectors,
therefore the key is the state vector itself. Henceforth, we
will simply refer to it as data. Our specific model checker
implementation introduces additional requirements, discussed
later. First, we list the definite requirements on the state storage:

• The storage needs only one operation: find-or-put.
This operation inserts the state vector if it is not found or
yields a positive answer without side effects. We require
find-or-put to be concurrently executable to allow
sharing the storage among the different threads. Other
operations are not necessary for reachability algorithms,
since the state space is growing monotonically. By
exploiting this feature we can simplify the algorithms,
thus lowering the strain on memory, and avoiding cache
line sharing. Our choice is in sharp contrast to standard
literature on concurrent hash tables, which often favors a
complete solution, which is optimized for more general
access patterns [7], [19].

• The storage should not require continual memory allo-
cation, for the obvious reasons that this behavior would
increase the memory working set.

• The use of pointers on a per-state basis should be avoided.
Pointers take a considerable amount of memory when
large state spaces are explored (more than 108 states are
easily reachable with today’s model checkers), especially
on 64-bit machines. In addition, pointers increase the
memory working set.

• The time efficiency of find-or-put should scale with
the number of processes executing it in parallel. Ideally,

3

the individual operations should — on average — not be
slowed down by other operations executing at the same
time, thus ensuring close-to linear speedup. Many hash
table algorithms have a large memory working set due
to their probing behavior or reordering behavior upon
insertions. They suffer performance degradation in high
throughput situations as is the case for us.

Specifically, we do not require the state storage to be
resizable. The available memory on a system can safely be
claimed for the table, because the largest part will be used for
it eventually anyway. In sequential operation and especially in
presence of a delete operation (shrinking tables), one would
consider resizing for the obvious reason that it improves locality
and thus cache hits. In a concurrent setting, however, these
cache hits have the opposite effect of causing the earlier
described cache line sharing among CPUs. We experimented
with lockless and concurrent resizing mechanisms and observed
large decreases in performance.

Furthermore, the design of the LTSmin tool [5], which we
extended with a multi-core reachability, also introduces some
specific requirements:

• The storage data consists only of integer arrays or vectors
of known and fixed length. This is the encoding format
for state vectors employed by our language front-ends.

• The storage is targeted at common x86 architectures, using
only the available (atomic) instructions.

While the compatibility with the x86 architecture allows for
concrete analysis, the applicability of our design is not limited
to it. Lessons learned here are transferable to other architectures
with similar memory hierarchy and atomic operations.

B. Hash Table Design

We determined that a low memory working set is one of
the key factors to achieve maximum scalability. Also, we
opt for simplicity whenever the requirements allow for it.
From experience we know that complexity of a solution
arises automatically when introducing concurrency. These
considerations led us to the following design choices:

• Open addressing, since the alternative chaining hash
table design would incur in-operation memory allocation
or pre-allocation at different addresses, both leading to a
larger memory working set.

• Walking-the-line is the name we gave to linear probing
on a cache line, followed by double hashing (also
employed elsewhere [7], [11]). Linear probing allows
a core to benefit fully from a loaded cache line, while
double hashing realizes better distribution.

• Separated data (vectors) in an indexed data array (of
size buckets × |vector|) ensures that the bucket array
stays short1 and subsequent probes can be cached.

• Hash memoization speeds up probing, by storing the
hash (or part of it) in a bucket. This avoids expensive
lookups in the data array as much as possible [7].

1E.g., 1 GB for a 32-bit memoized hash and 228 buckets

• Lockless operation on the bucket array using a dedicated
value to indicate unused buckets. One bit of the hash can
be used to indicate whether the vector was already written
to the data array or whether writing is still in progress [7].

• Compare-and-swap is used as an atomic primitive on
the buckets, which are precisely in either of the following
distinguishable states: empty, being written and complete.

C. Hash Table Operations

Alg. 3 shows the find-or-put operation. Buckets are
represented by the Bucket array, the separate data by the Data
array and hash functions used for double hashing by hashi.
Probing continues (Line 4) until either a free bucket is found
for insertion (Line 8–10), or the data is found to be in the hash
table (Line 14). Too many probes indicate a table size mismatch,
which simply causes the application to abort. The for loop on
Line 5 handles the walking-the-line probing behavior (Alg. 4).
The other code inside this loop handles the synchronization
among threads. We explain this part of the algorithm now in
detail.

Buckets store memoized hashes and the write status bit of
the data in the Data array. The possible values of the buckets
are thus: EMPTY, 〈h, WRITE〉 and 〈h, DONE〉, where h is the
memoized hash. If an empty bucket is encountered on a probe
sequence, the algorithm tries to claim it by atomically writing
〈h, WRITE〉 to it (Line 7). After finishing the writing of the
data, 〈h, DONE〉 is written to the bucket (Line 9). Non-empty
buckets prompt the algorithm to compare the memoized hashes
(Line 11). Only if they match, the value in the data array is
compared with the vector (Line 13).

Data: size, Bucket[size], Data[size]
input : vector
output : seen

1 count ← 1;
2 h ← hashcount(vector);
3 index ← h mod size;
4 while count < THRESHOLD do
5 for i in walkTheLineFrom(index) do
6 if EMPTY = Bucket[i] then
7 if CAS(Bucket[i], EMPTY, 〈h, WRITE〉) then
8 Data[i]← vector;
9 Bucket[i]← 〈h, DONE〉;

10 return false;

11 if 〈h,−〉 = Bucket[i] then
12 while 〈−, WRITE〉 = Bucket[i] do ..wait.. done
13 if Data[i] = vector then
14 return true;

15 count ← count + 1;
16 index ← hashcount(vector) mod size;

Algorithm 3: The find-or-put algorithm

Several aspects of the algorithm guarantee correct lockless
operation:

4

Data: cache line size, Walk[cache line size]
input : index
output : Walk[cache line size]

1 start← bindex/cache line sizec× cache line size;
2 for i ← 0 to cache line size− 1 do
3 Walk[i]← start + (index + i) mod cache line size;

Algorithm 4: Walking the (cache) line

• Whenever a write started for a hash value, the state of
the bucket can never become empty again, nor can it be
used for any other hash value. This ensures that the probe
sequence remains deterministic and cannot be interrupted.

• The CAS operation on Line 7 ensures that only one thread
can claim an empty bucket, marking it as non-empty with
the hash value to memoize and with state WRITE.

• The while loop on Line 12 waits until the write to the
data array has been completed.

Critical synchronization between threads occurs when multi-
ple threads try to write to an empty bucket. The CAS operation
ensures that only one will succeed. The others carry on in
their probing sequence, either finding another empty bucket
or finding the state vector in another bucket. This design can
be seen as a lock on the lowest possible level of granularity
(individual buckets), but without a true locking structure and
associated additional costs. The algorithm implements the “lock”
as while loop, which resembles a spinlock (Line 12). Although
it could be argued that this algorithm is therefore not lock-
free, it is possible to ensure local progress in the case that
the “blocking” thread dies or hangs (making the algorithm
wait-free). Wait-freeness is commonly achieved by making
each thread fulfil local invariants, whenever they are not (yet)
met by other threads [10]. Our measurements show, however,
that under normal operation the loop on Line 12 is rarely hit
due to the preceding hash memoization check (Line 11). Thus,
we took the pragmatic choice of keeping the implementation
as simple as possible.

Our implementation of the described algorithm requires exact
guarantees from the underlying memory model. Reordering of
operations by compilers and processors needs to be avoided
across the synchronization points, otherwise the implementation
becomes incorrect. It is, for example, a common optimization
to execute the body of an if statement before the actual
branching instruction. Such a speculative execution would
keep the processor pipeline busy, but would be a disastrous
reordering when applied to Line 7 and Line 8: the actual
writing of the data would happen before the bucket is marked
as full, allowing other threads to write to the same bucket.
Likewise, reordering Line 8 and Line 9 would prematurely
indicate that writing the data has completed.

Unfortunately, the ANSI C99 standard does not state any
requirements on the memory model. The implementation would
depend on the combination of CPU architecture and compiler.
Our implementation uses the GNU gcc compiler for 64-bit x86
target platforms. A gcc built-in is used for the CAS operation
and reads and writes from and to buckets are marked volatile.

Alg. 3 was modeled in PROMELA and checked for dead-
locks with SPIN. One bug concerning the combination of write
bit and memoized hash was found and corrected.

IV. EXPERIMENTS

A. Methodology

We implemented the hash table of the previous section in our
own model checking toolset LTSmin, which we discuss further
in the following section. For our experiments, we reuse not only
the input models, but also the next-state implementation
of DiVinE 2.2. Therefore, a fair comparison with DiVinE 2.2
can be made. Furthermore, we performed experiments with
the latest multi-core capable version of the model checker
SPIN 5.2.4 [13] (DiVinE models were mechanically translated
to SPIN’s PROMELA input language). For our experiments,
we chose full state space exploration via reachability as load
generator for our state storage. Reachability exhibits similar
access patterns as more complex verification algorithms, but
reduces the code footprint and therefore potential pollution of
our measurements with noise.

All model checkers were configured for maximum
performance. For all tools, we compiled models to C with
high optimization settings (-O3) (DiVinE also contains
a model interpreter). SPIN’s models were compiled
with the following flags: -O3 -DNOCOMP -DNOFAIR
-DNOREDUCE -DNOBOUNDCHECK -DNOCOLLAPSE
-DNCORE=N -DSAFETY -DMEMLIM=100000; To run the
models we used the options: -m10000000 -c0 -n -w28.

We performed our experiments on AMD Opteron 8356 16-
core servers with 64 GB RAM, running a patched Linux 2.6.32
kernel.2 All tools were compiled using gcc 4.4 in 64-bit mode
with maximal compiler optimizations (-O3).

A total of 31 models from the BEEM database [18] have been
used in the experiments (we filtered out models which were
too small to be interesting, or too big to fit into the available
memory). Every run was repeated at least four times, to exclude
any accidental fluctuation in the measurements. Special care
has been taken to keep all the parameters across the different
model checkers the same. Especially SPIN provides a rich
set of options with which models can be tuned to perform
optimal. Using these parameters on a per-model basis could
give faster results than presented here. It would, however, say
little about the scalability of the core algorithms. Therefore,
we decided to leave all parameters the same for all the models.
We avoid resizing of the state storage in all cases by increasing
the initial hash table size to accommodate 228 states (enough
for all benchmarked input models).

B. Results

Figure 2 shows the run times of only three models for all
model checkers. We observe that DiVinE is the fastest model

2Experiments showed large regressions in scalability on newer 64-bit Linux
kernels (degrading runtimes with 10+ cores). Despite being undetected since
at least version 2.6.20 (released in 2007!), they were easily exhibited by our
model checker. With a repeatable test case, the Linux developers quickly
provided a patch: https://bugzilla.kernel.org/show bug.cgi?id=15618

5

checker for sequential reachability. Since the last published
comparison between DiVinE and SPIN [1], DiVinE has been
improved with a model compiler. SPIN is only slightly slower
than DiVinE and shows the same linear curve but with a gentler
slope. We suspect that the gradual performance gains are caused
by the cost of the inter-thread communication (see Table I).

Fig. 2. (Log-scale) Runtimes in SPIN, LTSmin and DiVinE 2 (3 models)

LTSmin is slower in the sequential cases. We verified that
the allocation-less hash table design causes this behavior; with
smaller hash table sizes the sequential runtimes match those of
DiVinE. We did not bother optimizing these results, because
with two cores, LTSmin is already at least as fast as DiVinE.

Fig. 7, 8 and 9 show the speedups measured with LTSmin3,
DiVinE and SPIN (note that we normalize with Tseq of DiVinE,
the fastest sequential tool). On 16 cores, LTSmin shows a two-
fold improvement over DiVinE and a four-fold improvement
over SPIN. We attribute the difference in scalability for DiVinE
to the extra synchronization points needed for the inter-process
communication by DiVinE. Recall that the model checker uses
static state space partitioning, hence most successor states are
enqueued at other cores than the one which generated them.
Another disadvantage of DiVinE is its use of a management
thread, which causes the regression at 8 and 16 cores.

SPIN shows inferior scalability even though it uses (like
LTSmin) a shared hash table. SPIN also balances load based on
stack slicing. We can only guess that the locking mechanism
used in SPIN’s hash table (region locking) are not as efficient
as our lockless hash table. However, in LTSmin we obtained
far better results even with the slower pthread locks. It
might also be that stack slicing does not have a consistent
granularity, because it uses the (irregular) search depth as a
time unit (using the terms from Sec. II: T (work(P0, depth))�
T (work(P1, depth))).

Remark. A potential reason for the limited scalability of
SPIN could be a memory bandwidth bottleneck. We tested this
hypothesis by enabling SPIN’s smaller, collapsed state vectors
(-DCOLLAPSE). We carried out a full SPIN benchmark run

3Additional figures and more detail can be found in extended report [15].

Fig. 3. Total runtime/speedup of SPIN, DiVinE 2.2 and LTSmin

with collapsing enabled and saw little improvement compared
to the speedup results without COLLAPSE.4 These results are
consistent with the observation that LTSmin is faster, despite
generally producing larger state vectors than both, SPIN and
DiVinE (Table II): in LTSmin, each state variable gets 32-bit
aligned (for API reasons, not performance).

Fig. 3 shows the total times and average speedups over all
models and for all model checkers. Nineteen models could
only be used because only for those, all tools report similar
state counts (less than 20% difference; recall that for SPIN,
models are translated from DVE to PROMELA).

C. Shared Storage Parameters

To verify our claims about the hash table design, we collected
internal measurements and performed synthetic benchmarks
for stress testing. First, we measured how often the write
“lock” was hit. Fig. 4 plots the lock hits against the number of
cores for several different sized models. For readability, only
the worst-performing, and thus most interesting, models were
chosen. Even then, the number of lock hits is a very small
fraction of the number of find-or-put calls (equal to the
number of transitions, typically in the hundreds of millions).

4http://fmt.cs.utwente.nl/∼laarman/spin/

6

Fig. 4. Counting how often the algorithm “locks”

Fig. 5. Effect of fill rate and r/w-ratio on average throughput

We measured how the average throughput of Alg. 3 (number
of find-or-put calls) is affected by the table fill rate, the
table size and the read/write ratio. Fig. 5 illustrates the effects
of different read/write ratios on the hash table using synthetic
input data. The average throughput remains largely unaffected
by a high fill rate, even up to 95 % (as for Fig. 6 in the
Appendix, which plots the same lines for different table sizes).
We conclude that the asymptotic time complexity of open-
addressing hash tables poses little real problems in practice.
However, an observable side effect of oversized hash tables
is lower throughput for low fill rates due to increased cache
misses. Our hash table design amplifies this effect because it
uses a pre-allocated data array and no pointers. This explains
the lower sequential performance of LTSmin.

We also measured the effect of varying the state vector size
and did not find any noticeable change in the speedup behavior
(except for the expected lower throughput due to higher data
movement). This shows that hash memoization and a separate
data array perform well. Walking-the-line probing shows better
performance and scalability than double hashing alone, due to
cache effects. Although slower on average, walking-the-line
followed by double hashing beats simple linear probing at fill-

rates above 95 % (in particular, on slower memory subsystems),
because it leads to better distribution and thus fewer probes.

V. DISCUSSION AND CONCLUSIONS

We designed a hash table suitable for application in reacha-
bility analysis. We implemented it as part of a model checker
together with different exploration algorithms (pseudo BFS and
pseudo DFS) and explicit load-balancing. We demonstrated the
efficiency of the complete solution by comparing the absolute
speedups to SPIN 5.2.4 and DiVinE 2.2, both leading tools in
this field. We claim two times better scalability than DiVinE and
four times better than SPIN on average (Fig. 3), with individual
results far exceeding these numbers. We also investigated the
behavior of the hash table under different fill rates and found
it to live up to the imposed requirements.

Limitations: Without the use of pointers the current design
cannot easily cope with variably sized state vectors. In our
model checker, this does not pose a problem because states are
always represented by a vector of a static length. Our model
checker LTSmin5 can handle different front-ends. It connects to
DiVinE-cluster, DiVinE 2.2, PROMELA (via NIPSVM [22]),
mCRL, mCRL2 and ETF (internal symbolic representation of
state spaces). Some of these input languages require variably
sized vectors (NIPS). We solve this by an initial exploration
which continues until a vector of stable size is found, and
aborts when none can be found up to a fixed bound. So far,
this limitation did not pose a problem.

For LTSmin, the results in the sequential case turn out to be
around 20% slower than DiVinE 2.2. One of the culprits for
this performance loss are the already mentioned suboptimal
utilization of cache effects for small models (we verified that
larger models suffer much less from this effect). Embracing
pointers and allocation could be a potential remedy, however, it
is unclear whether such a solution still scales when it actually
matters (i.e., for large models).

Further performance is lost in an extra level of indirection
(function calls) due to the design of LTSmin, which strictly
separates the language front-end from the exploration algo-
rithms. We are willing to pay this price in exchange for the
increased modularity of our tool.

Discussion: We make several observations:
• We provide evidence that centralized state storage can

be made to scale at least as well as static state space
partitioning, contrary to prior belief [3].

• We also show that scalability is not as dependent on long
state vectors and transition delays as earlier thought [12].
In fact, we argue that a scaling implementation performs
better with smaller state vectors, because the number of
operations performed per loaded byte is higher, thus closer
to the strengths of modern multi-core systems.

• Shared state storage is also more flexible [3], for example
allowing pseudo DFS (like the stack-slicing algorithm)
and fast deadlock/invariant searches [20]. Moreover, it
facilitates explicit load balancing algorithms, enabling the

5http://fmt.cs.utwente.nl/tools/ltsmin/

7

exploitation of heterogeneous systems. From preliminary
experiments with load balancing we conjecture that
overhead is negligible compared to static load balancing.

• Performance-critical parallel software needs adaptation to
modern architectures (steep memory hierarchies). The per-
formance difference between DiVinE, SPIN and LTSmin
is an indication. DiVinE uses an architecture which is
directly derived from distributed model checking and the
goal of SPIN was for “these new algorithms [. . .] to
interfere as little as possible with the existing algorithms
for the verification of safety and liveness properties” [12].
With LTSmin, we had the opportunity to tune our design
to the architecture of our target machines, with excellent
pay-off. We noticed that avoiding cache line sharing and
keeping a simple design was instrumental in the outcome.

• Holzmann conjectured that optimized sequential code does
not scale well [13]. In contrast, our parallel implementation
is faster in absolute numbers and also exhibits excellent
scalability. We suspect that the (entirely commendable)
design choice of SPIN’s multi-core implementation to
support most of SPIN’s existing features unchanged is
detrimental to scalability.
Applicability: The components of our reachability can

be reused directly for other model checking applications.
The hash table and the load balancing algorithms can be
reused to realize scalable multi-core (weak) LTL model
checking [1], [2], symbolic exploration and space-efficient
enumerative exploration. We experimented with the latter using
tree compression [4] based on our hash table. Results are very
promising and we intend to follow up on that.

Future work: By exploring the possible solutions and
gradually improving this work, we found a wealth of variables
hiding in the algorithms and the models of the BEEM database.
As can be seen from the figures, different models show different
scalability. A valid question is how much this can be improved.

By now we have some ideas where these differences come
from. For example, an initial version of the exploration
algorithm employed static load balancing by means of an
initial BFS exploration and handing off the states from the
last level to all threads. Several models where insensitive to
this static approach, others, like hanoi and frogs, are very
sensitive due to the shape of their state spaces. Dynamic load
balancing did not come with a noticeable performance penalty
for the other models, but hanoi and frogs are still in the
bottom of the figures. However, we have yet to see the options
exhausted to improve these results by shared-memory load
balancing techniques, at least to the point that the shape of the
state space of these models allow.

We did not consider other types of hash tables, like Cuckoo
hashing or Hopscotch hashing [11]. Cuckoo hashing is an
unlikely candidate, since it requires updates on many locations
upon inserts, easily resulting in extraneous cache coherence
overhead. Hopscotch hashing could be considered because it
combines a low memory working set with constant lookup times
even under higher load factors. However, Hopscotch hashing
increases the memory working set for insertions, potentially

sacrificing some speedup. It would still be interesting to
investigate its performance relative to our hash table.

VI. ACKNOWLEDGEMENTS

We thank Anton Starikov and the CMS group at UTwente
for making their cluster available for our experiments. We
thank Petr Ročkai and Jiřı́ Barnat for their support on the
DiVinE toolkits, and for reading a draft of this paper. Cliff
Click and Gerard Holzmann also gave helpful comments on
a draft version. Elwin Pater implemented the bridge between
DiVinE and LTSmin. The Linux developers provided patches
remedying performance regressions on newer kernels.

REFERENCES

[1] Jiřı́ Barnat, Luboš Brim, and P. Ročkai. Scalable multi-core LTL model-
checking. In Model Checking Software, volume 4595 of LNCS, pages
187–203. Springer, 2007.

[2] Jiřı́ Barnat, Luboš Brim, and Petr Ročkai. DiVinE 2.0: High-Performance
Model Checking. In 2009 International Workshop on High Performance
Computational Systems Biology (HiBi 2009), pages 31–32. IEEE Com-
puter Society Press, 2009.

[3] Jiřı́ Barnat and Petr Ročkai. Shared hash tables in parallel model checking.
Electronic Notes in Theoretical Computer Science, 198(1):79 – 91, 2008.
Proceedings of the 6th International Workshop on Parallel and Distributed
Methods in verifiCation (PDMC 2007).

[4] Stefan Blom, Bert Lisser, Jaco van de Pol, and Michael Weber. A
database approach to distributed state space generation. Electron. Notes
Theor. Comput. Sci., 198(1):17–32, 2008.

[5] Stefan Blom, Jaco van de Pol, and Michael Weber. LTSmin: Distributed
and symbolic reachability. In Proceedings of CAV 2010, LNCS. Springer,
2010. (accepted for publication).

[6] Luboš Brim. Distributed verification: Exploring the power of raw
computing power. In Luboš Brim, Boudewijn Haverkort, Martin
Leucker, and Jaco van de Pol, editors, Formal Methods: Applications
and Technology, volume 4346 of LNCS, pages 23–34. Springer, August
2006.

[7] Cliff Click. A lock-free hash table. Talk at JavaOne 2007, http://www.
azulsystems.com/events/javaone 2007/2007 LockFreeHash.pdf, 2007.

[8] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Terminator:
Beyond safety. In Proceedings of CAV 2006, pages 415–418, 2006.

[9] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms, Third Edition. The MIT Press, 3
edition, September 2009.

[10] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming.
Morgan Kaufmann, March 2008.

[11] Maurice Herlihy, Nir Shavit, and Moran Tzafrir. Hopscotch hashing.
Distributed Computing, pages 350–364, 2008.

[12] Gerard J. Holzmann. A stack-slicing algorithm for multi-core model
checking. Electronic Notes in Theoretical Computer Science, 198(1):3 –
16, 2008. Proceedings of the 6th International Workshop on Parallel and
Distributed Methods in verifiCation (PDMC 2007).

[13] Gerard J. Holzmann and Dragan Bošnacki. The design of a multicore
extension of the SPIN model checker. IEEE Trans. Softw. Eng.,
33(10):659–674, 2007.

[14] Cornelia P. Inggs and Howard Barringer. Effective state exploration for
model checking on a shared memory architecture. Electr. Notes Theor.
Comput. Sci., 68(4), 2002.

[15] Alfons Laarman, Jaco van de Pol, and Michael Weber. Boosting Multi-
Core Reachability Performance with Shared Hash Tables. ArXiv e-prints,
1004.2772, April 2010.

[16] Witold Litwin. Linear hashing: a new tool for file and table addressing.
In VLDB ’1980: Proceedings of the sixth international conference on
Very Large Data Bases, pages 212–223. VLDB Endowment, 1980.

[17] Michael Monagan and Roman Pearce. Parallel sparse polynomial
multiplication using heaps. In ISSAC ’09: Proceedings of the 2009
international symposium on Symbolic and algebraic computation, pages
263–270, New York, NY, USA, 2009. ACM.

[18] Radek Pelánek. BEEM: Benchmarks for explicit model checkers. In Proc.
of SPIN Workshop, volume 4595 of LNCS, pages 263–267. Springer,
2007.

8

[19] Chris Purcell and Tim Harris. Non-blocking hashtables with open
addressing. Distributed Computing, pages 108–121, 2005.

[20] Nageshwara V. Rao and Vipin Kumar. Superlinear speedup in parallel
state-space search. Foundations of Software Technology and Theoretical
Computer Science, pages 161–174, 1988.

[21] Peter Sanders. Lastverteilungsalgorithmen fur parallele tiefensuche.
number 463. In in Fortschrittsberichte, Reihe 10. VDI. Verlag, 1997.

[22] Michael Weber. An embeddable virtual machine for state space generation.
In D. Bosnacki and S. Edelkamp, editors, Proceedings of the 14th
International SPIN Workshop, volume 2595 of Lecture Notes in Computer
Science, pages 168–186, Berlin, 2007. Springer Verlag.

APPENDIX

Additional analysis can be found in an extended report [15].

Fig. 6. Effect of size vs r/w-ratio on average throughput

TABLE II
MODEL DETAILS FOR DIVINE, LTSMIN AND SPIN

BEEM Model
Reachable States State Vector Size [Byte]

DiVinE, LTSmin SPIN DiVinE SPIN LTSmin

anderson.6 18,206,917 18,206,919 25 68 76
at.5 31,999,440 31,999,442 20 68 56
at.6 160,589,600 — 20 — 56
bakery.6 11,845,035 11,845,035 24 48 80
bakery.7 29,047,471 27,531,713 24 48 80
blocks.4 104,906,622 88,987,772 23 44 88
brp.5 17,740,267 — 24 — 72
cambridge.7 11,465,015 — 60 — 208
elevator_planning.2 11,428,767 11,428,769 36 52 140
firewire_link.5 18,553,032 — 66 — 200
fischer.6 8,321,728 8,321,730 27 92 72
frogs.4 17,443,219 17,443,221 33 68 120
frogs.5 182,772,126 182,772,130 38 68 140
hanoi.3 14,348,907 14,321,541 63 116 228
iprotocol.6 41,387,484 — 43 — 148
iprotocol.7 59,794,192 — 47 — 164
lamport.8 62,669,317 62,669,317 22 52 68
lann.6 144,151,628 — 28 — 80
lann.7 160,025,986 — 35 — 100
leader_filters.7 26,302,351 26,302,351 36 68 120
loyd.3 239,500,800 214,579,860 18 44 64
mcs.5 60,556,519 53,779,475 26 68 84
needham.4 6,525,019 — 51 — 112
peterson.7 142,471,098 142,471,100 30 56 100
phils.6 14,348,906 13,956,555 45 140 120
phils.8 43,046,720 — 48 — 128
production_cell.6 14,520,700 — 42 — 104
szymanski.5 79,518,740 79,518,740 30 60 100
telephony.4 12,291,552 12,291,554 24 56 80
telephony.7 21,960,308 21,960,310 28 64 96
train-gate.7 50,199,556 — 43 — 128

Fig. 7. Speedup of BEEM models with LTSmin (DiVinE as base case)

Fig. 8. Speedup of BEEM models with DiVinE 2.2 (DiVinE as base case)

Fig. 9. Speedup of BEEM models with SPIN (DiVinE as base case)

9

