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ABSTRACT
We have developed an extension of ACL2 that includes the
implementation of hash-based association lists and func-
tion memoization; this makes some algorithms execute more
quickly. This extension, enabled partially by the implemen-
tation of Hash-CONS, represents ACL2 objects in a canoni-
cal way, thus the comparison of any two such objects can
be determined without the cost of descending through their
CONS structures. A restricted set of ACL2 user-defined
functions may be memoized; the underlying implementation
may conditionally retain the values of such function calls so
that if a repeated function application is requested, a pre-
viously computed value may instead be returned. We have
defined a fast association list access and update functions
using hash tables. We provide a file reader that identifies
and eliminates duplicate representations of repeated objects,
and a file printer that produces output with no duplicate
subexpressions.
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1. INTRODUCTION
We have developed a canonical representation for ACL2

objects and a function memoization mechanism to facilitate
reuse of previously computed results. We include procedures
to read and print ACL2 expressions in such a way that that
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repetition of some ACL2 objects is eliminated, thereby per-
mitting a kind of on-the-fly file compression. Our implemen-
tation does not alter the semantics of ACL2 except to add
a handful of definitions.

The executable portion of the ACL2 logic is a first-order
logic of recursive functions [7, 8]. Objects of the ACL2 logic
include complex rationals, symbols, characters, and strings.
In addition, a pair of any two objects may be created with
the CONS function, thus there are five distinct data types.
ACL2 functions require ACL2 objects as arguments and re-
turn ACL2 objects. The functional nature of ACL2 logic
permits the canonical representation of ACL2 objects; that
is, we may represent two logically equal objects by using
only one copy.

The ACL2 logic is a formalization of a superset of a subset
of Common Lisp, and the basic axioms of ACL2 provide def-
initions for almost 200 Common Lisp functions. The ACL2
theorem-proving system uses Common Lisp itself to provide
the underlying representation for ACL2 data objects and
function definitions. In the implementation of the ACL2
logic, ACL2 objects are represented by Common Lisp ob-
jects of the same type, and the ACL2 pairing (CONS) oper-
ation is internally implemented by the Common Lisp CONS

procedure. In Common Lisp, CONS is guaranteed to provide a
new pair, distinct from any previously created pair. We have
defined a new ACL2 function HONS that is logically identical
to the ACL2 CONS function, but whose implementation usu-
ally reuses an existing pair if its components are identical to
the components of an existing pair. A record of ACL2 HONS

objects is kept, and when an ACL2 function calls HONS we
search for an existing identical pair before allocating a new
pair; this operation been called Hash CONSing.

It appears that Hash CONSing was first conceived by A.
P. Ershov [4] in 1957, to speed up the recognition of com-
mon subexpressions. Ershov showed how to collapse trees to
minimal DAGs by traversing trees bottom up, and he used
hashing to eliminate the re-evaluation of common subex-
pressions. Later, Eiichi Goto [5] implemented a Lisp system
with a built-in Hash CONS operation: his h-CONS cells
were rewrite protected and free of duplicate copies, and Goto
used this Hash CONS operation to facilitate the implemen-
tation of a symbolic algebra system he developed.



Memoizing functions also has a long history. In 1967,
Donald Michie proposed using memoized functions to im-
prove the performance of machine learning [9, 10]. Rote
learning was improved by a learning function not forgetting
what it had previously learned; this information was stored
as a memoized function values.

The use of Hash CONSing has appeared many times. For
instance, Henry Baker using Hash CONS to improve the
rewriting performance [1] of the Boyer (and Moore) rewrit-
ing benchmark [6]. Baker used both Hash CONSing and
function memoization improve the speed of the Takeuchi
function [2], exactly in the spirit of our implementation, but
without the automated, system-wide integration we report
here.

Our implementation permits memoization of user-defined
ACL2 functions. During execution a user may enable or dis-
able function memoization on an individual function basis,
may clear memoization tables, or even may keep a stack of
memoization tables. This facility takes advantage our imple-
mentation where have only one copy of each distinct ACL2
object. Due to the functional nature of ACL2, it is sufficient
to have at most one copy of any data structure; thus, a user
may arrange to keep data canonicalized. Our implementa-
tion extends to the entire ACL2 system the benefits enjoyed
by BDDs: canonicalization, memoization, and fast equality
check.

We have defined various algorithms using these features,
and we have observed, in some cases, substantial perfor-
mance increases. For instance, we have implemented un-
ordered set intersection and union operations that operate
in time roughly linear in the size of the sets. Without using
arrays, we defined a canonical representation for Boolean
functions using ACL2 objects. We have investigated the
performance of rewriting and tree consensus algorithms to
good effect, and we believe function memoization offers in-
teresting opportunities to simplify algorithm definition while
simultaneously providing performance improvements.

Our presentation is split into pieces, which we start by
providing an example. We present our logical extensions to
ACL2 by exhibiting a collection of ACL2 definitions. For
a few of these definitions, we have defined Common Lisp
implementations that provide for unique object representa-
tion and function memoization. We recommend that the
reader try to keep the logical definitions separate from their
underlying Common Lisp implementation. We present sev-
eral algorithms designed to take advantage of these features,
and we compare their performance with existing ACL2 al-
gorithms. Our preliminary results suggest that substantial
performance improvement opportunities exist.

2. EXAMPLES
We begin with an example that demonstrates the utility

of function memoization. This definition of the Fibonacci
function exhibits an exponential increase in its runtime as
its input argument value increases.

(defun fib (x)
(declare (xargs :guard (natp x)))
(mbe
:logic
(cond ((zp x) 0)

((= x 1) 1)
(t (+ (fib (- x 1)) (fib (- x 2)))))

:exec

(if (< x 2)
x

(+ (fib (- x 1)) (fib (- x 2))))))

By using the ACL2 function TIME$, we measure the time to
execute a call to the FIB function. Below is the output col-
lected running OpenMCL (a Common Lisp implementation)
on a 1 GHz Apple G4 PowerBook. The first call is made be-
fore memoization is enabled. Note that we have eliminated
some of the output provided by the TIME$ function when
used with OpenMCL.

ACL2 !>(time$ (fib 40))
(FIB 40) took 16.072 seconds to run.
102334155

ACL2 !>(memoize ’fib)
The guard for FIB trivially implies
the guard conjecture for T.
Summary
Form: CHECK-CONDITION-GUARD
Rules: NIL
Warnings: None
Time: 0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
FIB

ACL2 !>(time$ (fib 40))
(FIB 40) took 0 milliseconds (0.000 seconds) to run.
102334155

ACL2 !>(time$ (fib 100))
(FIB 100) took 0 milliseconds (0.000 seconds) to run.
354224848179261915075
ACL2 !>(unmemoize ’fib)
FIB
ACL2 !>

We see that once the function FIB is identified as a function
for which function calls should be memoized, that the exe-
cution times are substantially reduced. Finally, we can pre-
vent FIB from being further memoized; in fact, UNMEMOIZE
eliminates the previously memoized values.

This contrived example is just that, contrived. A more
sensible implementation would make provisions for record-
ing previously computed values or computing with a linear-
time, tail-recursive algorithm.

(defun f1 (fx-1 fx n-more)
(declare (xargs :guard (and (natp fx-1)

(natp fx)
(natp n-more))))

(if (zp n-more)
fx

(f1 fx (+ fx-1 fx) (1- n-more))))

(defun fib2 (x)
(declare (xargs :guard (natp x)))
(if (zp x)

x
(f1 0 1 (1- x))))

(defthm fib2-is-fib
(implies (natp x)

(equal (fib2 x)
(fib x))))

We can prove that function FIB2 is equal to FIB, thus we
can maintain a simple recursive definition while still provid-
ing an implementation that is roughly linear in time and
space to the input argument. Thus, function memoization,



by itself, is nothing more than a convenient dynamic pro-
gramming mechanism; however, when we combine canon-
ical data representation with memoization, we sometimes
observe substantial performance improvements.

We next consider another somewhat contrived example,
but this example exhibits the cooperation of function mem-
oization with canonical object representation. Consider the
second and third function definitions below; these two func-
tions are provably equivalent.

(defun my-len (x)
(declare (xargs :guard t))
(if (atom x)

0
(1+ (my-len (cdr x)))))

(defun make-list-of-numbers (n)
(declare (xargs :guard (natp n)))
(if (zp n)

nil
(hons (my-len (make-list-of-numbers (1- n)))

(make-list-of-numbers (1- n)))))

(defun make-list-of-numbers2 (n)
(declare (xargs :guard (natp n)))
(if (zp n)

nil
(let ((rest (make-list-of-numbers2 (1- n))))

(hons (my-len rest) rest))))

(defthm make-list-of-number-functions-are-the-same
(equal (make-list-of-numbers n)

(make-list-of-numbers2 n)))

(defmacro bvl (variable new-value)
(declare (xargs :guard t))
‘(mv-let

(erp result state)
(assign ,variable ,new-value)
(declare (ignore result))
(value (not erp))))

Our measurements show function MAKE-LIST-OF-NUMBERS

to have an exponential execution time cost. The equiv-
alent function MAKE-LIST-OF-NUMBERS2 only computes the
remainder of the list once, making the execution linear. Just
the execution of (MAKE-LIST-OF-NUMBERS 22) requires sev-
eral seconds, while the execution of (MAKE-LIST-OF-NUMBERS2
20000) finishes in 13 seconds.

ACL2 !>(time$ (make-list-of-numbers 22))
(MAKE-LIST-OF-NUMBERS 22) took 3.580 seconds to run.
(21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0)

ACL2 !>(bvl list-20000
(time$ (make-list-of-numbers2 20000)))

(MAKE-LIST-OF-NUMBERS2 20000) took 13.141 seconds to run.
T

ACL2 !>(memoize ’make-list-of-numbers)
The guard for MAKE-LIST-OF-NUMBERS trivially implies
the guard conjecture for T.
Summary
Form: CHECK-CONDITION-GUARD
Rules: NIL
Warnings: None
Time: 0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
MAKE-LIST-OF-NUMBERS

ACL2 !>(bvl list3-20000

(time$ (make-list-of-numbers 20000)))
(MAKE-LIST-OF-NUMBERS 20000) took 13.251 seconds to run.
T

ACL2 !>(unmemoize ’make-list-of-numbers)
MAKE-LIST-OF-NUMBERS

By memoizing the function MAKE-LIST-OF-NUMBERS, we see
execution time comparable to that of MAKE-LIST-OF-NUMBERS2.
If we memoize both MY-LEN and MAKE-LIST-OF-NUMBERS,
then the execution time of MAKE-LIST-OF-NUMBERS is fur-
ther reduced.

ACL2 !>(memoize ’make-list-of-numbers)
The guard for MAKE-LIST-OF-NUMBERS trivially implies
the guard conjecture for T.

Summary
Form: CHECK-CONDITION-GUARD
Rules: NIL
Warnings: None
Time: 0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
MAKE-LIST-OF-NUMBERS

ACL2 !>(memoize ’my-len)
The guard for MY-LEN trivially implies
the guard conjecture for T.

Summary
Form: CHECK-CONDITION-GUARD
Rules: NIL
Warnings: None
Time: 0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
MY-LEN
ACL2 !>(bvl list3-20000

(time$ (make-list-of-numbers 20000)))
(MAKE-LIST-OF-NUMBERS 20000) took 0.153 seconds to run.
T

Thus, when defining a function, it may possible to use
memoization to observe whether further development effort
might provide better execution performance.

3. ACL2 FUNCTION DEFINITIONS
This section concerns only the logical definition of func-

tions using the ACL2 definition mechanism. In Section 4,
we will discuss the Common Lisp implementation of several
of these functions, but their underlying Common Lisp im-
plementation is not necessary to understand these functions.
Functions that have special Common Lisp implementations
are marked as having an under the hood implementation.

Our first three definitions are logically trivial.

(defun hons (x y)
(declare (xargs :guard t))
;; Has an "under the hood" implementation.
(cons x y))

(defun hons-equal (x y)
(declare (xargs :guard t))
;; Has an "under the hood" implementation.
(equal x y))

(defun hons-copy (x)
(declare (xargs :guard t))
;; Has an "under the hood" implementation.
x)

For our collections of functions that operate on associa-
tions lists (alists), we have defined the predicate HONS-ALISTP



that recognized well-formed alists. We note that any as-
sociation list recognized by ALISTP is also recognized by
HONS-ALISTP, as it allows any symbol to terminate the end
of an association list. We use this final symbol to differ-
entiate association lists that might have identical key-value
pairs.

(defun hons-alistp (x)
(declare (xargs :guard t))
(if (atom x)

(symbolp x)
(and (consp (car x))

(hons-alistp (cdr x)))))

(defthm alistp-implies-hons-alistp
(implies (alistp l)

(hons-alistp l)))

We access key-value pairs in association list Y with key X us-
ing the function ASSOC-HONS-EQUAL. We define another func-
tion HONS-GET, which is just defined to call ASSOC-HONS-EQUAL;
its purpose involves its underlying definition.

(defun assoc-hons-equal (x y)
(declare (xargs :guard (hons-alistp y)))
(cond ((atom y) nil)

((hons-equal x (car (car y))) (car y))
(t (assoc-hons-equal x (cdr y)))))

(defun hons-get (x l)
(declare (xargs :guard (hons-alistp l)))
;; Has an "under the hood" implementation.
(assoc-hons-equal x l))

To update an association list recognized by the predicate
HONS-ALISTP, we define two semantically equivalent func-
tions, HONS-ACONS and HONS-ACONS!, that add a new key-
value pair to associations list L.

(defun hons-acons (key value l)
(declare (xargs :guard (hons-alistp l)))
;; Has an "under the hood" implementation. Note:
;; under the hood, the key will be made unique,
;; but the alist and its top-level pairs are built
;; with CONS, not HONS.
(cons (cons (hons-copy key) value) l))

(defun hons-acons! (key value l)
(declare (xargs :guard (hons-alistp l)))
;; Has an "under the hood" implementation. The
;; (HONS KEY VALUE) below will cause VALUE to have
;; a unique representation, which, for large
;; structures, may require a substantial amount of
;; work.
(hons (hons (hons-copy key) value) l))

We define a read object function HONS-READ-OBJECT that has
a semantics identical to READ-OBJECT, but that uses HONS

instead of CONS to construct all pairs.

(defun hons-read-object (channel state)
(declare
(xargs :stobjs state

:guard
(and (state-p state)

(symbolp channel)
(open-input-channel-p
channel :object state))))

;; Has an "under the hood" implementation.
(read-object channel state))

Finally, we define two functions that remove key-value
pairs that have duplicate keys in association lists recognized
by HONS-ALISTP; their internal implementation provides bet-
ter compression speed than just defining these functions as
written below.

(defun hons-shrink-alist! (alst ans)
(declare
(xargs :guard (and (hons-alistp alst)

(hons-alistp ans))))
;; Has an "under the hood" implementation.
(cond
((atom alst) ans)
(t (let ((p (hons-get (car (car alst)) ans)))

(cond
(p (hons-shrink-alist! (cdr alst) ans))
(t (hons-shrink-alist!

(cdr alst)
(hons-acons! (car (car alst))

(cdr (car alst))
ans))))))))

(defun hons-shrink-alist (alst ans)
(declare
(xargs :guard (and (hons-alistp alst)

(hons-alistp ans))))
;; Has an "under the hood" implementation.
(cond
((atom alst) ans)
(t (let ((p (hons-get (car (car alst)) ans)))

(cond
(p (hons-shrink-alist (cdr alst) ans))
(t (hons-shrink-alist

(cdr alst)
(hons-acons (car (car alst))

(cdr (car alst))
ans))))))))

We have defined a number of other functions that have
ACL2 system-level definitions, but these functions allow a
user to influence the operation of the underlying definitions.
We present these definitions later (Section 5).

4. HONS SYSTEM IMPLEMENTATION
The implementation of the HONS system involves sev-

eral facets: canonical representation of ACL2 data, function
memoization, and the use of Lisp hash tables to improve
the performance of association list operations. We discuss
each of these in turn, and we mention some subtle interre-
lationships. Although it is not necessary to understand the
discussion in this section, it may permit some users to better
use the HONS system. This section may be confusing for some
ACL2 users as it makes references to Lisp implementation
features.

The mechanical implementation of the ACL2 system is
actually written as a Lisp program that is layered on top of
a Common Lisp system implementation. ACL2 data con-
stants are implemented with their corresponding counter-
parts in Common Lisp; that is, ACL2 CONS pairs, strings,
characters, numbers, and symbols, are implemented with
their specific Common Lisp counterpart. This choice per-
mits a number of ACL2 primitive functions to be imple-
mented with their Common Lisp analog, but, there are in-
deed differences. ACL2 is a logic, and as such, it does not
specify anything to do with physical storage or execution
performance. When ACL2 is used, the knowledgeable user
can write functions to facilitate the reuse of some previously
computed values. For instance, the previously introduced



function MAKE-LIST-OF-NUMBERS2 is more efficient than the
equivalent function MAKE-LIST-OF-NUMBERS; the LET form
requires only one recursive call instead of the two calls pre-
scribed in MAKE-LIST-OF-NUMBERS.

There are three mechanisms that are provided by the HONS
system: hash CONS, function memoization, and fast associa-
tion list operations. The function memoization mechanism
takes advantage of the canonical representation of data ob-
jects provided by the HONS operation as does the fast asso-
ciation list operation mechanism. Each time a HONS pair
is created, its arguments are themselves converted, if neces-
sary, to uniquely represented objects.

The ACL2 universe is recursively closed under the CONS

pairing operation and the atoms. Hash CONS is logically
identical to CONS, but a set of tables are used to record each
HONS pair. In fact, our implementation provides a stack
of such tables; thus a new environment of HONS tables can
be requested, used, and then released. When a HONS pair is
requested, the implementation checks, in the current set of
tables, whether the requested pair already exists. If not, a
new pair is created and a record of that pair is made; other-
wise, a reference to the previously created pair is returned.
Thus, any data object created with a HONS operation has
a unique representation, as does every subcomponent. We
also arrange for strings to have a unique representation –
only one copy of each different string is kept – and when
any string is paired by a HONS operation, add the string to
our unique table of strings. A system-wide benefit of having
a canonical representation for data is that equality compar-
isons between any two data objects can be done in constant
time.

User-defined functions with defined and verified guards
can be memoized. When a function is memoized, a user-
supplied condition restricts the domain when memoization
is attempted. When the condition is satisfied, memoization
is attempted (assuming that memoization for the function
is presently enabled); otherwise, the function is just eval-
uated. Each memoized function has a hash table that is
used to keep track of a unique list of function arguments
paired with their values. If appropriate, for each function
the corresponding table is checked to see if a previous call
with exactly the same arguments already exists in the ta-
ble: if so, then the associated value is returned; if not, then
the function is evaluated and a new key-value pair is added
to the table of memoized values so that some future call
will benefit from the memoization. With ACL2 user func-
tions memoization can be dynamically enabled and disabled.
There is an ACL2 function that clears a specific memoiza-
tion table. And finally, just as with the HONS table, a stack
of these function memoization tables are maintained; that
is, it is possible to memoize a function, use it a bit, set the
memoized values aside, start a new table, use it, and then
return to the original table.

A part of our HONS system provides a fast lookup operation
for association lists. When a pair is added to an association
list using the function HONS-ACONS or HONS-ACONS!, our sys-
tem also records the key-value pair in an associated hash
table. So long as a user only used these two functions when
placing key-value pairs on an association list, the key-value
pairs in corresponding hash table will be synchronized with
the key-value pairs in the association list. Later, if HONS-GET
is used to lookup a key, then instead of performing a linear
search of the association list we consult the associated hash

table. If a user does not strictly follow this discipline, then a
linear search may be required. In some sense, these associa-
tion lists are much like ACL2 arrays, but without the burden
of explicitly naming the arrays. The ACL2 array COMPRESS

function is provided by the functions HONS-SHRINK-ALIST

and HONS-SHRINK-ALIST!. There are user-level ACL2 func-
tions that allow the associated hash tables to be cleared and
removed.

5. SYSTEM CONTROL FUNCTIONS
The HONS system provides a number of ACL2 user func-

tions that are logically identity functions, but that provide
system-level side effects such as enabling or disabling func-
tion memoization. These functions allow a user to more
tightly control the use of the underlying resources used to
implement fast association lists, function memoization, and
canonical data representation.

For the active HONS, function memoization, and fast asso-
ciation list support data structures, we have functions that
permit these data structures to be cleared and initialized.
All of the ACL2 functions and macros presented in this sec-
tion have under the hood implementations.

(defun clear-hash-tables ()
(declare (xargs :guard t))
;; Clears the underlying hash tables that are
;; used to determine whether a new HONS (CONS)
;; pair already exists.
nil)

(defun clear-hons-acons-table ()
(declare (xargs :guard t))
;; Clears table that is used to identify an
;; association list with a hash table for
;; hash-based access.
nil)

(defun clear-memo-tables ()
(declare (xargs :guard t))
;; For all memoized functions, clears tables of
;; memoized values.
nil)

(defun init-hash-tables ()
(declare (xargs :guard t))
;; Like CLEAR-HASH-TABLES, but actually removes
;; the underying hash tables and creates new hash
;; tables.
nil)

(defun init-hons-acons-table ()
(declare (xargs :guard t))
;; Like CLEAR-MEMO-TABLES, but removes underlying
;; hash table and creates a new "HONS-ACONS" hash
;; table.
nil)

(defun flush-hons-get-hash-table-link (x)
(declare (xargs :guard t))
;; Breaks the link between association list X and
;; its corresponding a hash table if such a link
;; exists, thus permitting the garbage collection
;; of that hash table.
x)

To permit the creation of a fresh environment for all un-
derlying tables, we provide the HT-LET macro. The side
effects of using this macro are dramatic, as a completely
new environment is created where the HONS table is saved



and a new one is created; all key-value tables for function
memoization are also set aside and new, empty tables are
created. Upon a user’s thread of control leaving this macro,
the original tables are restored.

(defmacro ht-let (x)
;; HT-LET causes the evaluation of X to take place
;; in an environment similar to that produced by a
;; call of CLEAR-HASH-TABLES, CLEAR-MEMO-TABLES,
;; and CLEAR-HONS-ACONS-TABLE, i.e., the HONSing
;; hash table, the function memoization hash
;; tables, and the HONS-ACONS tables are cleared.
;; Upon conclusion of the evaluation of X, the
;; previously existing tables are restored. The
;; user may wish to HONS-COPY in and HONS-COPY out
;; some terms.
x)

The functions MEMOIZE-WITH-CONDITION-FN and UNMEMOIZE

have rather innocent looking semantics, but they enable and
disable memoization. Function MEMOIZE-WITH-CONDITION-FN

could cause errors due to compilation problems. A macro
MEMOIZE is provided in an associated ACL2 book that makes
the use of the MEMOIZE-WITH-CONDITION-FN easier for the
usual cases. The argument CONDITION is an ACL2 term
that is evaluated to see if memoization should be attempted;
this term must satisfy the same guards as the guards pro-
vided by the function FN that is to be memoized. The argu-
ments HINTS and OTF-FLG are provided to provide hints to
the ACL2 system when it ensures that the term CONDITION

satisfies the guards for FN.

(defun memoize-with-condition-fn
(fn condition hints otf-flg)
;; It is an error to call memoize on something
;; that is not a user-defined ACL2 function
;; symbol. It is also an error to call memoize on
;; a function that is currently memoized.
(declare (xargs :guard (and (symbolp fn)

(pseudo-termp condition)))
(ignore condition hints otf-flg))

;; Has an "under the hood" implementation.
fn)

(defun unmemoize (fn)
;; It is an error to call unmemoize on something
;; not memoized.
(declare (xargs :guard (symbolp fn)))
fn)

(defmacro memo-on (fn x)
;; It is an error to execute memo-on unless FN is
;; already memoized. MEMO-ON causes X to be
;; evaluated in an environment in which FN is
;; memoized.
(declare (ignore fn))
x)

(defmacro memo-off (fn x)
;; It is an error to execute memo-off unless FN is
;; already memoized. MEMO-OFF causes X to be
;; evaluated in an environment in which FN is not
;; memoized.
(declare (ignore fn))
x)

This concludes the definition of ACL2 system-level func-
tions used to define and implement the HONS system.

6. BOOKS FOR THE HONS SYSTEM

To more easily take advantage of the our HONS system,
we have defined a book that contains additional definitions
and lemmas. Here we present a few of these definitions so
as to make more clear some of our use idioms. Some of
the comments in the HONS-HELP book refer to underlying
implementations issues, which provide a potential user with
additional intuition about some of the system issues.

To simplify the memoization of functions, we the HONS-HELP
book defines the function MEMOIZE. This function, in turn,
uses the MEMOIZE-WITH-CONDITION macro that calls the ACL2
system-level function MEMOIZE-WITH-CONDITION-FN described
earlier.

(defmacro memoize-with-condition
(fn condition &key hints otf-flg)
‘(memoize-with-condition-fn

,fn ,condition ,hints ,otf-flg))

(defun memoize (fn)
;; It is an error to call memoize on something not
;; an ACL2 user function. It is also an error to
;; call memoize on a function that is currently
;; memoized.
(declare (xargs :guard (symbolp fn)))
;; fn
(memoize-with-condition fn ’’t))

To simplify the creation of data structures, we have de-
fined the macros HONS-LIST and HONS-LIST* that operate
just like the ACL2 macros LIST and LIST*. Actually, there is
another book, HONS-HELP2, that defines a number of aliases;
in this book we define aliases for functions and macros that
begin with HONS-. For instance, HIST is defined as an alias
for HONS-LIST and HIST* is defined as an alias for HONS-LIST*.
Thus, a user can evaluate (HIST* 1 2 3) and see (1 2 .

3) printed.
Since it is not possible to distinguish between data struc-

tures that include structure sharing, we have defined a mech-
anism to count the number of actual HONS (CONS) elements.
We first defined a tail-recursive version of LEN.

(defun hons-len1 (x acc)
(declare (xargs :guard (natp acc)))
(if (atom x)

acc
(hons-len1 (cdr x) (+ 1 acc))))

(defun hons-len (x)
(declare (xargs :guard t))
(hons-len1 x 0))

We next define a function that collects each unique subtree
in a term into an association list.

(defun cons-subtrees (x al)
;; (CONS-SUBREES X NIL) is an alist that
;; associates each subtree of X with the constant
;; T, without duplication.
(declare (xargs :guard (hons-alistp al)))
(cond ((atom x) al)

((hons-get x al) al)
(t (cons-subtrees

(car x)
(cons-subtrees (cdr x)

(hons-acons x t al))))))

Finally, we just count the length of the resulting association
list after throwing away the associated hash table. The sym-
bol ’number-subtrees is used to reduce the chances of an-
other association list being identical to the one constructed



for the purposes of counting the number of entries created
by CONS-SUBTREES.

(defun number-subtrees (x)
(declare (xargs :guard t))
(hons-len (flush-hons-get-hash-table-link

(cons-subtrees x ’number-subtrees))))

Finally, we define some set operations that appear to have
quadratic performance, but because of our use of our fast
association list mechanism, these set operations generally
exhibit linear performance in the size of the sets. Objects
in the sets may be any object, but better performance will
be provided if pairs are constructed with HONS. The function
BUILD-FAST-ALIST-FROM-LIST just builds an (fast) associa-
tion list from a list of data objects.

(defun build-fast-alist-from-list (l acc)
(declare (xargs :guard (hons-alistp acc)))
(hons-put-list l t acc))

(defun hons-intersection1 (l al acc)
(declare (xargs :guard (hons-alistp al)))
(cond ((atom l) acc)

((hons-get (car l) al)
(hons-intersection1 (cdr l) al

(cons (car l) acc)))
(t (hons-intersection1 (cdr l) al acc))))

(defun hons-intersection (l1 l2)
(declare (xargs :guard t))
(let ((temp-table

(build-fast-alist-from-list
l2 ’*hons-intersection-alist*)))

(let ((ans (hons-intersection1 l1 temp-table nil)))
(let ((temp-table

(flush-hons-get-hash-table-link
temp-table)))

(declare (ignore temp-table))
ans))))

(defun hons-set-diff1 (l al acc)
(declare (xargs :guard (hons-alistp al)))
(cond ((atom l) acc)

((hons-get (car l) al)
(hons-set-diff1 (cdr l) al acc))

(t (hons-set-diff1 (cdr l) al
(cons (car l) acc)))))

(defun hons-set-diff (l1 l2)
(declare (xargs :guard t))
(let ((temp-table (build-fast-alist-from-list

l2 ’*hons-set-diff-alist*)))
(let ((ans (hons-set-diff1 l1 temp-table nil)))

(let ((temp-table
(flush-hons-get-hash-table-link
temp-table)))

(declare (ignore temp-table))
ans))))

(defun hons-union (l1 l2)
(declare (xargs :guard t))
(let ((temp-table (build-fast-alist-from-list

l2 ’*hons-union-alist*)))
(let ((ans (hons-set-diff1 l1 temp-table l2)))

(let ((temp-table
(flush-hons-get-hash-table-link
temp-table)))

(declare (ignore temp-table))
ans))))

With a list of 100,000 numbers we can compute the set
intersection, union, and set difference in under one second.

Below, we have already initialized the ACL2 top-level vari-
able LOTS-OF-NUMBERS to a list containing 100,000 different
natural numbers. Note that we have used more abbrevi-
ations from the HONS-HELP2 book; i.e., HEN for HONS-LEN,
HSET-DIFF for HONS-SET-DIFF, HUNION for HONS-UNION, and
HINTERSECTION for HONS-INTERSECTION.

ACL2 !>(time$ (hen (hintersection
(@ lots-of-numbers)
(@ lots-of-numbers))))

(HEN (HINTERSECTION (@ LOTS-OF-NUMBERS)
(@ LOTS-OF-NUMBERS)))

took 702 milliseconds (0.702 seconds) to run.
100000

ACL2 !>(time$ (hen (hunion
(@ lots-of-numbers)
(@ lots-of-numbers))))

(HEN (HUNION (@ LOTS-OF-NUMBERS)
(@ LOTS-OF-NUMBERS)))

took 652 milliseconds (0.652 seconds) to run.
100000

ACL2 !>(time$ (hen (hset-diff
(@ lots-of-numbers)
(@ lots-of-numbers))))

(HEN (HSET-DIFF (@ LOTS-OF-NUMBERS)
(@ LOTS-OF-NUMBERS)))

took 680 milliseconds (0.680 seconds) to run.
0

7. CONCLUSION
The introduction of function memoization into ACL2 makes

the implementation of dynamic programming problems eas-
ier as it eliminates the need to store and retrieve previously
computed values. The canonical representation of ACL2
data enables fast association list operations and often re-
duces memory requirements. Using these features we have
defined the BDD ITE operator with just 10 lines of ACL2
code. We have also verified its implementation.

We believe the system-wide benefits of unique object rep-
resentation will take some time to realize. We continue to
discover new ways of implementing even basic functions with
improved performance using the HONS system. We have used
these techniques to implement a consensus algorithm for
phylogenetic trees that is much faster than the best avail-
able implementations [3]. We have used the HONS system to
implement a rewriter that have impressive performance, al-
beit on a small set of examples. The HONS system essentially
makes hash tables available to the ACL2 user with a simple
semantics.
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