Hidden Markov Classifiers for Music Genres.

Igor Karpov (ikarpov@rice.edu)
Rice University
Comp 540 Term Project Fall 2002
The Problem

- Classify digitally sampled music by genres or other categories.
- Categories are defined by “likeness” to other members.
- Solution should be quick, flexible and accurate.
Motivation

- Organize large digital libraries.
- Search for music by melody/sound (second project).
- Understand music better.
Early Considerations.

- Look for common patterns in music.
- The nature of music is sequential.
- Digitally sampled (WAV, MP3, etc.) formats?
 - More readily available and practical.
 - Raw information – harder to deal with.
- Symbolic (MIDI, melody) formats?
 - Less readily available in practical applications.
 - Different order information – some information is lost, some is gained.
Early Considerations.

- Is melodic information enough?
- Consider orchestration, emphasis, etc.
- What are good models for this data?
- Learn from speech recognition, pattern recognition, digital signal processing.
Previous Work: Folk Music Classification Using Hidden Markov Models.

- Wei Chai and Barry Varcoe and MIT Media Laboratory.
- Input: monophonic symbolic pieces of folk music from Germany, Austria and Ireland.
- Product: 2- and 3-country classifiers using HMMs.
- Results:
 - Hidden state number doesn’t matter much (2, 3, 4, 6).
 - Strict left-right and left-right models are better.
 - Interval-sequence representation worked best.
 - 2-way accuracies of 75%, 77% and 66%, 3-way 63%
Previous Work: Music Classification using Neural Networks

- Paul Scott – last year’s term project at Stanford.
- Data: 8 audio CDs in 4 genre categories + 4 audio CDs in 4 artist categories.
- Algorithm: Multi-feature vectors extracted as input to a 20-10-3 feed-forward ANN.
- Product: 4-way genre classifier and 4-way artist classifier.
- Results: genre classification 94.8% accurate, artist classification 92.4% accurate.
- Problematic experimental setup.
Previous Work: Distortion Discriminant Analysis for Audio Fingerprinting.

- Chris Burges et al at Microsoft Research.
- Task: find short audio clips in 5 hours of distorted audio.
- Product: new algorithm for feature extraction (fingerprinting) of audio streams.
- Key: linear neural network does Oriented Principal Component Analysis (OPCA).
- Signal/noise-optimal dimensionality reduction.
Dataset.

- 47-70 songs/genre in MP3 format compressed from 44.1 kHz stereo.
- Converted to Wave-PCM linear encoding 11.025 kHz mono signal.
- Cut 10 evenly spaced ten-second segments per song = 470-700 clips/category.
- 110250 samples per clip.
- 4 categories: rock, techno/trance, classical, Celtic dance.
Dataset.

- Easily extracted from real world data
- Contains a lot of information
- Enough for humans to distinguish between genres.
The Model.

- Continuous Hidden Markov model.
- 3, 4 or 5 hidden states.
- Left-to-right architecture
The Model.

- Each state “outputs” a feature vector with probability distribution $b_j(O)$.
 - FFT-based Mel cepstral coefficients.
 - Mel cepstra with delta and acceleration information.
 - Linear prediction cepstral coefficients.
 - (to be implemented) DDA fingerprints.
Feature Extraction: FFT and Mel.

- Pre-emphasize audio signal.
- Multiply by a Hamming window function.
- Take Fourier transform of the window.
- Derive 12 Mel cepstra coefficients from the spectrum. (Models non-linear human audition).
Features of the Features.

PCA on 1024-point FFT by genre

- Celtic
- classical
- rock
- techno
Feature Extraction: Deltas and Accelerations

- For each Mel coefficient C_t, append $\Delta_t = C_t - C_{t-1}$ to the feature vector.
- For each Δ_t, append $a_t = \Delta_t - \Delta_{t-1}$ to the feature vector.
- Enhances the HMM model by adding memory of past states.
Feature Extraction: LPC.

- Linear PredictiveCoding.
- Model the signal as
 \[y_{n+1} = w_0 y_n + w_1 y_{n-1} + \ldots + w_{L-1} y_{n-L-1} + e_{n+1} \]
- Find the weights that minimize the mean squared error over the window
- 12 weights were used as a feature vector
Feature Extraction: Overall.

- Combine multiple kinds of features into hand-crafted vectors (like Paul Scott).
- Build in prior knowledge about the problem into the learning task.
- (Todo) Use optimizing feature extraction methods like DDA.
Continuous HMMs.

- Feature vectors are from a continuous domain.
- Two solutions:
 - Discretize the space by finding a representative basis and a distance measure.
 - Use continuous multivariate probability functions.
- Chose to use continuous HMMs.
Continuous HMMs

- Represent output probability by a mixture of Gaussians.
- Use EM and Baum-Welch reestimation to get the Gaussian parameters and mixture coefficients.
- What should M be? Many parameters vs. expressive power. M=1 worked well.

\[b_j(O) = \sum_{m=1}^{M} c_{jm} N(O, \mu, U_{jm}) \]
The Platform.

- HTK library, originally developed for speech recognition at Microsoft, now at Cambridge.
 - Feature extraction tools.
 - Continuous HMMs.
 - Baum-Welch and Viterbi algorithms.
 - Optimized for performance.
- Worked well – the only thing I had to write were scripts, models and data converters.
The Algorithm.

- One HMM “M” for each category
- Use Baum-Welch reestimation for 20 steps (or until convergence) to obtain M that maximizes log P(O_{training}|M).
- Use Viterbi algorithm to obtain log P(O_{test}|M) for each category.
- Pick the greatest.
Problems

- Celtic data set is similar to classical and rock and smaller than the other three.
- Failed to find MIDI copies of the dataset.
- Viterbi training did not have enough examples for the number of parameters even with 3-state HMM – undetermined parameters – Had to use Baum-Welch.
- Memory-intensive training – had to use dedicated Ultra-10s in parallel.
Results: 4-way by 12 MFCC.

- 70%/30% training/test split
- 470 clips/category
- 15 cross-validation trials per experiment
- Top: 12 Mel Cepstral Coefficients
- Bottom: delta and acceleration coefficients added.
- 4 hidden states.

<table>
<thead>
<tr>
<th>4 state HMM</th>
<th>Tech.</th>
<th>Class.</th>
<th>Rock</th>
<th>Celt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>techno</td>
<td>88.2</td>
<td>7.5</td>
<td>2.7</td>
<td>1.5</td>
</tr>
<tr>
<td>classical</td>
<td>9.1</td>
<td>74.3</td>
<td>1.7</td>
<td>14.8</td>
</tr>
<tr>
<td>rock</td>
<td>4.1</td>
<td>1.6</td>
<td>82.4</td>
<td>11.9</td>
</tr>
<tr>
<td>Celtic</td>
<td>3.6</td>
<td>13.0</td>
<td>12.2</td>
<td>71.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4 state HMM</th>
<th>Tech.</th>
<th>Class.</th>
<th>Rock</th>
<th>Celt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>techno</td>
<td>92.4</td>
<td>5.4</td>
<td>1.9</td>
<td>0.3</td>
</tr>
<tr>
<td>classical</td>
<td>3.0</td>
<td>88.1</td>
<td>2.4</td>
<td>6.4</td>
</tr>
<tr>
<td>rock</td>
<td>2.9</td>
<td>2.1</td>
<td>84.7</td>
<td>10.3</td>
</tr>
<tr>
<td>Celtic</td>
<td>1.5</td>
<td>12.1</td>
<td>14.0</td>
<td>72.4</td>
</tr>
</tbody>
</table>
Results: 4-way by 12 LPC.

- 12 LPC cepstra of 14-order LPC
- Same experimental conditions as before.

<table>
<thead>
<tr>
<th>4 state HMM</th>
<th>Tech.</th>
<th>Class.</th>
<th>Rock</th>
<th>Celt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>techno</td>
<td>85.1</td>
<td>8.9</td>
<td>3.5</td>
<td>2.5</td>
</tr>
<tr>
<td>classical</td>
<td>10.4</td>
<td>74.6</td>
<td>1.8</td>
<td>13.1</td>
</tr>
<tr>
<td>rock</td>
<td>2.2</td>
<td>2.1</td>
<td>85.3</td>
<td>10.4</td>
</tr>
<tr>
<td>Celtic</td>
<td>2.4</td>
<td>13.1</td>
<td>12.5</td>
<td>71.9</td>
</tr>
</tbody>
</table>
Results: Varying Hidden State Number.

- 660 clips per genre
- 12 Mel cepstral coefficients with deltas and accelerations (36 total features)

<table>
<thead>
<tr>
<th>4 state HMM</th>
<th>Tech.</th>
<th>Class.</th>
<th>Rock</th>
</tr>
</thead>
<tbody>
<tr>
<td>techno</td>
<td>93.4</td>
<td>4.4</td>
<td>2.2</td>
</tr>
<tr>
<td>classical</td>
<td>3.9</td>
<td>94.2</td>
<td>1.9</td>
</tr>
<tr>
<td>rock</td>
<td>2.4</td>
<td>3.3</td>
<td>94.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3 state HMM</th>
<th>5 state HMM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>techno</td>
<td></td>
</tr>
<tr>
<td>classical</td>
<td></td>
</tr>
<tr>
<td>rock</td>
<td></td>
</tr>
</tbody>
</table>

12/3/2002
Results: Generalization

- Verify that we are generalizing across songs.
- An entire song must be either all training or all test.
- Top: random selection (15 cross-validated)
- Bottom: constrained selection (15 c.v.)

<table>
<thead>
<tr>
<th>5 state HMM</th>
<th>Tech.</th>
<th>Class.</th>
<th>Rock</th>
</tr>
</thead>
<tbody>
<tr>
<td>techno</td>
<td>93.0</td>
<td>5.0</td>
<td>2.0</td>
</tr>
<tr>
<td>classical</td>
<td>5.0</td>
<td>93.6</td>
<td>1.4</td>
</tr>
<tr>
<td>rock</td>
<td>2.4</td>
<td>3.2</td>
<td>94.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5 state HMM</th>
<th>Tech.</th>
<th>Class.</th>
<th>Rock</th>
</tr>
</thead>
<tbody>
<tr>
<td>techno</td>
<td>93.2</td>
<td>5.1</td>
<td>1.7</td>
</tr>
<tr>
<td>classical</td>
<td>7.0</td>
<td>91.0</td>
<td>2.0</td>
</tr>
<tr>
<td>rock</td>
<td>2.6</td>
<td>3.4</td>
<td>94.0</td>
</tr>
</tbody>
</table>
Conclusions

- HMMs are a viable solution to the problem.
- Number of hidden states does not influence results within limits tested.
- Most information is contained in extracted feature vectors.
- Feature vectors are readily modeled by simple Gaussians.
Conclusions

- Some types of music are harder to recognize than others.
 - Less unique features identifiable by feature extraction (Celtic)
 - Sound like other genres
Conclusions

- Models generalize across songs – not just different segments of the same song.
- Better feature extraction (DDA) is the main factor for improving performance.
- Practically useful tools for sorting MP3s can be easily developed using this technique.