
BIG & QUIC: Sparse Inverse Covariance Estimation
for a Million Variables

Cho-Jui Hsieh, Mátyás A. Sustik, Inderjit S. Dhillon, Pradeep Ravikumar
Department of Computer Science

University of Texas at Austin
{cjhsieh,sustik,inderjit,pradeepr}@cs.utexas.edu

Russell A. Poldrack
Department of Psychology and Neurobiology

University of Texas at Austin
poldrack@mail.utexas.edu

Abstract
The `1-regularized Gaussian maximum likelihood estimator (MLE) has been
shown to have strong statistical guarantees in recovering a sparse inverse covari-
ance matrix even under high-dimensional settings. However, it requires solving
a difficult non-smooth log-determinant program with number of parameters scal-
ing quadratically with the number of Gaussian variables. State-of-the-art methods
thus do not scale to problems with more than 20, 000 variables. In this paper,
we develop an algorithm BIGQUIC, which can solve 1 million dimensional `1-
regularized Gaussian MLE problems (which would thus have 1000 billion pa-
rameters) using a single machine, with bounded memory. In order to do so, we
carefully exploit the underlying structure of the problem. Our innovations include
a novel block-coordinate descent method with the blocks chosen via a clustering
scheme to minimize repeated computations; and allowing for inexact computation
of specific components. In spite of these modifications, we are able to theoreti-
cally analyze our procedure and show that BIGQUIC can achieve super-linear or
even quadratic convergence rates.

1 Introduction
Let {y1,y2, . . . ,yn} be n samples drawn from a p-dimensional Gaussian distributionN (µ,Σ), also
known as a Gaussian Markov Random Field (GMRF). An important problem is that of recovering
the covariance matrix (or its inverse) of this distribution, given the n samples, in a high-dimensional
regime where n� p. A popular approach involves leveraging the structure of sparsity in the inverse
covariance matrix, and solving the following `1-regularized maximum likelihood problem:

arg min
Θ�0
{− log det Θ + tr(SΘ) + λ‖Θ‖1} = arg min

Θ�0
f(Θ), (1)

where S = 1
n

∑n
i=1(yi − µ̃)(yi − µ̃)T is the sample covariance matrix and µ̃ = 1

n

∑n
i=1 yi is

the sample mean. While the non-smooth log-determinant program in (1) is usually considered a
difficult optimization problem to solve, due in part to its importance, there has been a long line
of recent work on algorithms to solve (1): see [7, 6, 3, 16, 17, 18, 15, 11] and references therein.
The state-of-the-art seems to be a second order method QUIC [9] that has been shown to achieve
super-linear convergence rates. Complementary techniques such as exact covariance thresholding
[13, 19], and the divide and conquer approach of [8], have also been proposed to speed up the
solvers. However, as noted in [8], the above methods do not scale to problems with more than 20, 000
variables, and typically require several hours even for smaller dimensional problems involving ten
thousand variables. There has been some interest in statistical estimators other than (1) that are
more amenable to optimization: including solving node-wise Lasso regression problems [14] and
the separable linear program based CLIME estimator [2]. However the caveat with these estimators
is that they are not guaranteed to yield a positive-definite covariance matrix, and typically yield less
accurate parameters.

What if we want to solve the M -estimator in (1) with a million variables? Note that the number of
parameters in (1) is quadratic in the number of variables, so that for a million variables, we would

1

have a trillion parameters. There has been considerable recent interest in such “Big Data” problems
involving large-scale optimization: these however are either targeted to “big-n” problems with a lot
of samples, unlike the constraint of “big-p” with a large number of variables in our problem, or are
based on large-scale distributed and parallel frameworks, which require a cluster of processors, as
well as software infrastructure to run the programs over such clusters. At least one caveat with such
large-scale distributed frameworks is that they would be less amenable to exploratory data analysis
by “lay users” of such GMRFs. Here we ask the following ambitious but simple question: can we
solve theM -estimator in (1) with a million variables using a single machine with bounded memory?
This might not seem like a viable task at all in general, but note that the optimization problem in (1)
arises from a very structured statistical estimation problem: can we leverage the underlying structure
to be able to solve such an ultra-large-scale problem?

In this paper, we propose a new solver, BIGQUIC, to solve the `1-regularized Gaussian MLE prob-
lem with extremely high dimensional data. Our method can solve one million dimensional problems
with 1000 billion variables using a single machine with 32 cores and 32G memory. Our proposed
method is based on the state-of-the-art framework of QUIC [9, 8]. The key bottleneck with QUIC
stems from the memory required to store the gradient W = X−1 of the iterates X , which is a dense
p×pmatrix, and the computation of the log-determinant function of a p×pmatrix. A starting point
to reduce the memory footprint is to use sparse representations for the iterates X and compute the
elements of the empirical covariance matrix S on demand from the sample data points. In addition
we also have to avoid the storage of the dense matrix X−1 and perform intermediate computa-
tions involving functions of such dense matrices on demand. These naive approaches to reduce the
memory however would considerably increase the computational complexity, among other caveats,
which would make the algorithm highly impractical.

To address this, we present three key innovations. Our first is to carry out the coordinate descent
computations in a blockwise manner, and by selecting the blocks very carefully using an automated
clustering scheme, we not only leverage sparsity of the iterates, but help cache computations suit-
ably. Secondly, we reduce the computation of the log-determinant function to linear equation solving
using the Schur decomposition that also exploits the symmetry of the matrices in question. Lastly,
since the Hessian computation is a key bottleneck in the second-order method, we compute it inex-
actly. We show that even with these modifications and inexact computations, we can still guarantee
not only convergence of our overall procedure, but can easily control the degree of approximation
of Hessian to achieve super-linear or even quadratic convergence rates. Inspite of our low-memory
footprint, these innovations allow us to beat the state of the art DC-QUIC algorithm (which has
no memory limits) in computational complexity even on medium-size problems of a few thousand
variables. Finally, we show how to parallelize our method in a multicore shared memory system.

The paper is organized as follows. In Section 2, we briefly review the QUIC algorithm and outline
the difficulties of scaling QUIC to million dimensional data. Our algorithm is proposed in Section 3.
We theoretically analyze our algorithm in Section 4, and present experimental results in Section 5.

2 Difficulties in scaling QUIC to million dimensional data
Our proposed algorithm is based on the framework of QUIC [9]; which is a state of the art procedure
for solving (1), based on a second-order optimization method. We present a brief review of the
algorithm, and then explain the key bottlenecks that arise when scaling it to million dimensions.
Since the objective function of (1) is non-smooth, we can separate the smooth and non-smooth part
by f(X) = g(X) + h(X), where g(X) = − log detX + tr(SX) and h(X) = λ‖X‖1.

QUIC is a second-order method that iteratively solves for a generalized Newton direction using
coordinate descent; and then descends using this generalized Newton direction and line-search. To
leverage the sparsity of the solution, the variables are partitioned into Sfixed and Sfree sets:

Xij ∈ Sfixed if |∇ijg(X)| ≤ λij , and Xij = 0, Xij ∈ Sfree otherwise. (2)
Only the free set Sfree is updated at each Newton iteration, reducing the number of variables to be
updated to m = |Sfree|, which is comparable to ‖X∗‖0, the sparsity of the solution.

Difficulty in Approximating the Newton Direction. Let us first consider the generalized Newton
direction for (1): Dt = arg min

D
{ḡXt(D) + h(Xt +D)}, (3)

where ḡXt
(D) = g(Xt) + tr(∇g(Xt)TD) +

1
2

vec(D)T∇2g(Xt) vec(D). (4)

In our problem∇g(Xt) = S −X−1
t and∇2g(X) = X−1

t ⊗X−1
t , where ⊗ denotes the Kronecker

product of two matrices. When Xt is sparse, the Newton direction computation (3) can be solved

2

efficiently by coordinate descent [9]. The obvious implementation calls for the computation and
storage of Wt = X−1

t ; using this to compute a = W 2
ij +WiiWjj , b = Sij −Wij + wT

i Dwj , and
c = Xij + Dij . Armed with these quantities, the coordinate descent update for variable Dij takes
the form: Dij ← Dij − c+ S(c− b/a, λij/a), (5)
where S(z, r) = sign(z) max{|z| − r, 0} is the soft-thresholding function.

The key computational bottleneck here is in computing the terms wT
i Dwj , which take O(p2)

time when implemented naively. To address this, [9] proposed to store and maintain U = DW ,
which reduced the cost to O(p) flops per update. However, this is not a strategy we can use when
dealing with very large data sets: storing the p by p dense matrices U and W in memory would
be prohibitive. The straightforward approach is to compute (and recompute when necessary) the
elements of W on demand, resulting in O(p2) time complexity.

Our key innovation to address this is a novel block coordinate descent scheme, detailed in Section
3.1, that also uses clustering to strike a balance between memory use and computational cost while
exploiting sparsity. The result is a procedure with comparable wall-time to that of QUIC on mid-
sized problems and can scale up to very large problem instances that the original QUIC could not.

Difficulty in the Line Search Procedure. After finding the generalized Newton direction Dt,
QUIC then descends using this direction after a line-search via Armijo’s rule. Specifically, it selects
the largest step size α ∈ {β0, β1, . . . } such that X + αDt is (a) positive definite, and (b) satisfies
the following sufficient decrease condition:

f(X + αD∗) ≤ f(X) + ασδ, δ = tr(∇g(X)TD∗) + ‖X +D∗‖1 − ‖X‖1. (6)
The key computational bottleneck is checking positive definiteness (typically by computing the
smallest eigenvalue), and the computation of the determinant of a sparse matrix with dimension
that can reach a million. As we show in Appendix 6.4, the time and space complexity of classical
sparse Cholesky decomposition generally grows quadratically to dimensionality even when fixing
the number of nonzero elements in the matrix, so it is nontrivial to address this problem. Our key
innovation, detailed in Section 3.2, is an efficient procedure that checks both conditions (a) and (b)
above using Schur complements and sparse linear equation solving. The computation only uses
memory proportional to the number of nonzeros in the iterate.

Many other difficulties arise when dealing with large sparse matrices in the sparse inverse covairance
problem. We present some of them in Appendix 6.5.

3 Our proposed algorithm
In this section, we describe our proposed algorithm, BIGQUIC, with the key innovations mentioned
in the previous section. We assume that the iterates Xt have m nonzero elements, and that each
iterate is stored in memory using a sparse format. We denote the size of the free set by s and observe
that it is usually very small and just a constant factor larger than m∗, the number of nonzeros in the
final solution [9]. Also, the sample covariance matrix is stored in its factor form S = Y Y T , where
Y is the normalized sample matrix. We now discuss a crucial element of BIGQUIC, our novel block
coordinate descent scheme for solving each subproblem (3).

3.1 Block Coordinate Descent method

The most expensive step during the coordinate descent update for Dij is the computation of
wT
i Dwj , wherewi is the i-th column ofW = X−1; see (5). It is not possible to computeW = X−1

with Cholesky factorization as was done in [9], nor can it be stored in memory. Note that wi is the
solution of the linear system Xwi = ei. We thus use the conjugate gradient method (CG) to com-
pute wi, leveraging the fact that X is a positive definite matrix. This solver requires only matrix
vector products, which can be efficiently implemented for the sparse matrix X . CG has time com-
plexity O(mT), where T is the number of iterations required to achieve the desired accuracy.

Vanilla Coordinate Descent. A single step of coordinate descent requires the solution of two
linear systems Xwi = ei and Xwj = ej which yield the vectors wi, wj , and we can then compute
wT
i Dwj . The time complexity for each update would requireO(mT+s) operations, and the overall

complexity will beO(msT+s2) for one full sweep through the entire matrix. Even when the matrix
is sparse, the quadratic dependence on nonzero elements is expensive.

Our Approach: Block Coordinate Descent with memory cache scheme. In the following we
present a block coordinate descent scheme that can accelerate the update procedure by storing and

3

reusing more results of the intermediate computations. The resulting increased memory use and
speedup is controlled by the number of blocks employed, that we denote by k.

Assume that only some columns of W are stored in memory. In order to update Dij , we need both
wi and wj ; if either one is not directly available, we have to recompute it by CG and we call this
a “cache miss”. A good update sequence can minimize the cache miss rate. While it is hard to find
the optimal sequence in general, we successfully applied a block by block update sequence with a
careful clustering scheme, where the number of cache misses is sufficiently small.

Assume we pick k such that we can store p/k columns of W (p2/k elements) in memory. Suppose
we are given a partition of N = {1, . . . , p} into k blocks, S1, . . . , Sk. We divide matrix D into
k × k blocks accordingly. Within each block we run Tinner sweeps over variables within that block,
and in the outer iteration we sweep through all the blocks Touter times. We use the notation WSq

to
denote a p by |Sq| matrix containing columns of W that corresponds to the subset Sq .

Coordinate descent within a block. To update the variables in the block (Sz, Sq) of D, we first
compute WSz and WSq by CG and store it in memory, meaning that there is no cache miss during
the within-block coordinate updates. With Usq = DWSq maintained, the update for Dij can be
computed by wT

i uj when i ∈ Sz and j ∈ Sq . After updating each Dij to Dij + µ, we can maintain
USq

by
Uit ← Uit + µWjt, Ujt ← Ujt + µWit, ∀t ∈ Sq.

The above coordinate update computations cost only O(p/k) operations because we only update a
subset of the columns. Observe that Urt never changes when r /∈ {Sz ∪ Sq}.
Therefore, we can use the following arrangement to further reduce the time complexity. Before
running coordinate descent for the block we compute and store Pij = (wi)TSz̄q̄

(uj)Sz̄q̄
for all (i, j)

in the free set of the current block, where Sz̄q̄ = {i | i /∈ Sz and i /∈ Sq}. The term wT
i uj for

updating Dij can then be computed by wT
i uj = Pij + wT

Sz
uSz + wT

Sq
uSq . With this trick, each

coordinate descent step within the block only takes O(p/k) time, and we only need to store USz,Sq
,

which only requires O(p2/k2) memory. Computing Pij takes O(p) time for each i, j, so if we
update each coordinate Tinner times within a block, the time complexity is O(p+ Tinnerp/k) and the
amortized cost per coordinate update is only O(p/Tinner + p/k). This time complexity suggests that
we should run more iterations within each block.

Sweeping through all the blocks. To go through all the blocks, each time we select a z ∈
{1, . . . , k} and updates blocks (Sz, S1), . . . , (Sz, Sk). Since all of them share {wi | i ∈ Sz}, we
first compute them and store in memory. When updating an off-diagonal block (Sz, Sq), if the free
sets are dense, we need to compute and store {wi | i ∈ Sq}. So totally each block of W will be
computed k times. The total time complexity becomes O(kpmT), where m is number of nonzeros
in X and T is number of conjugate gradient iterations. Assume the nonzeros in X is close to the
size of free set (m ≈ s), then each coordinate update costs O(kpT) flops.

Selecting the blocks using clustering. We now show that a careful selection of the blocks using
a clustering scheme can lead to dramatic speedup for block coordinate descent. When updating
variables in the block (Sz, Sq), we would need the column wj only if some variable in {Dij | i ∈
Sz} lies in the free set. Leveraging this key observation, given two partitions Sz and Sq , we define
the set of boundary nodes as: B(Sz, Sq) ≡ {j | j ∈ Sq and ∃i ∈ Sz s.t. Fij = 1}, where the matrix
F is an indicator of the free set.

The number of columns to be computed in one sweep is then given by p +
∑
z 6=q |B(Sz, Sq)|.

Therefore, we would like to find a partition {S1, . . . , Sk} for which
∑
z 6=q |B(Sz, Sq)| is mini-

mal. It appears to be hard to find the partitioning that minimizes the number of boundary nodes.
However, we note that the number in question is bounded by the number of cross cluster edges:
B(Sz, Sq) <

∑
i∈Sz,j∈Sq

Fij . This suggests the use of graph clustering algorithms, such as METIS
[10] or Graclus [5] which minimize the right hand side. Assuming that the ratio of between-cluster
edges to the number of total edges is r, we observe a reduced time complexity ofO((p+rm)T) when
computing elements of W , and r is very small in real datasets. In real datasets, when we converge
to very sparse solutions, more than 95% of edges are in the diagonal blocks. In case of the fMRI
dataset with p = 228483, we used 20 blocks, and the total number of boundary nodes were only
|B| = 8697. Compared to block coordinate descent with random partition, which generally needs
to compute 228483 × 20 columns, the clustering resulted in the computation of 228483 + 8697
columns, thus achieved an almost 20 times speedup. In Appendix 6.6 we also discuss additional
benefits of the graph clustering algorithm that results in accelerated convergence.

4

3.2 Line Search

The line search step requires an efficient and scalable procedure that computes log det(A) and
checks the positive definiteness of a sparse matrix A. We present a procedure that has complex-
ity of at most O(mpT) where T is the number of iterations used by the sparse linear solver. We
note that computing log det(A) for a large sparse matrix A for which we only have a matrix-vector
multiplication subroutine available is an interesting subproblem on its own and we expect that nu-
merous other applications may benefit from the approach presented below. The following lemma
can be proved by induction on p:

Lemma 1. If A =
(
a bT
b C,

)
is a partitioning of an arbitrary p × p matrix, where a is a scalar

and b is a p− 1 dimensional vector then det(A) = det(C)(a−bTC−1b). Moreover, A is positive
definite if and only if C is positive definite and (a− bTC−1b) > 0.

The above lemma allows us to compute the determinant by reducing it to solving linear systems;
and also allows us to check positive-definiteness. Applying Lemma 1 recursively, we get

log detA =
p∑
i=1

log(Aii −AT(i+1):p,iA
−1
(i+1):p,(i+1):pA(i+1):p,i), (7)

where each Ai1:i2,j1:j2 denotes a submatrix of A with row indexes i1, . . . , i2 and column indexes
j1, . . . , j2. Each A−1

(i+1):p,(i+1):pA(i+1):p,i in the above formula can be computed as the solution of
a linear system and hence we can avoid the storage of the (dense) inverse matrix. By Lemma 1, we
can check the positive definiteness by verifying that all the terms in (7) are positive definite. Notice
that we have to compute (7) in a reverse order (i = p, . . . , 1) to avoid the case that A(i+1):p,(i+1):p
is non positive definite.

3.3 Summary of the algorithm
In this section we present BIGQUIC as Algorithm 1. The detailed time complexity analysis are
presented in Appendix 6.7. In summary, the time needed to compute the columns of W in block
coordinate descent, O((p + |B|)mTTouter), dominates the time complexity, which underscores the
importance of minimizing the number of boundary nodes |B| via our clustering scheme.

Algorithm 1: BIGQUIC algorithm
Input : Samples Y , regularization parameter λ, initial iterate X0

Output: Sequence {Xt} that converges to X∗.
1 for t = 0, 1, . . . do
2 Compute Wt = X−1

t column by column, partition the variables into free and fixed sets.
3 Run graph clustering algorithm based on absolute values on free set.
4 for sweep = 1, . . . , Touter do
5 for s = 1, . . . , k do
6 Compute WSs

by CG.
7 for q = 1, . . . , k do
8 Identify boundary nodes Bsq := B(Ss, Sq) ⊂ Sq (only need if s 6= q)
9 Compute WBsq

for boundary nodes (only need if s 6= q).
10 Compute UBsq , and Pij for all (i, j) the current block.
11 Conduct coordinate updates.

12 Find the step size α by the method proposed in Section 3.2.

Parallelization. While our method can run well on a single machine with a single core, here
we point out components of our algorithm that can be “embarrassingly” parallelized on any single
machine with multiple cores (with shared memory). We first note that we can obtain a good starting
point for our algorithm by applying the divide-and-conquer framework proposed in [8]: this divides
the problem into k subproblems, which can then be independently solved in parallel. Consider the
steps of our Algorithm 1 in BIGQUIC. In step 2, instead of computing columns of W one by one,
we can compute t rows of W at a time, and parallelize these t jobs. A similar trick can be used in
step 6 and 9. In step 3, we use the multi-core version of METIS (ParMETIS) for graph clustering.

5

In step 8 and 10, the computations are naturally independent. In step 15, we compute each term
in (7) independently and abort if any of the processes report non-positive definiteness. The only
sequential part is the coordinate update in step 11, but note, (see Section 3.1), that we have reduced
the complexity of this step from O(p) in QUIC to O(p/k).

4 Convergence Analysis
In this section, we present two main theoretical results. First, we show that our algorithm converges
to the global optimum even with inaccurate Hessian computation. Second, we show that by a careful
control of the error in the Hessian computation, BIGQUIC can still achieve a quadratic rate of
convergence in terms of Newton iterations. Our analysis differs from that in QUIC [9], where the
computations are all assumed to be accurate. [11] also provides a convergence analysis for general
proximal Newton methods, but our algorithm with modifications such as fixed/free set selection
does not exactly fall into their framework; moreover our analysis shows a quadratic convergence
rate, while they only show a super-linear convergence rate.

In the BIGQUIC algorithm, we compute wi in two places. The first place is the gradient compu-
tation in the second term of (4), where ∇g(X) = S −W . The second place is in the third term
of (4), where ∇2g(X) = W ⊗ W . At the first glance they are equivalent and can be computed
simultaneously, but it turns out that by carefully analysing the difference between two types of wi,
we can achieve much faster convergence, as discussed below.

The key observation is that we only require the gradient Wij for all (i, j) ∈ Sfree to conduct
coordinate descent updates. Since the free set is very sparse and can fit in memory, those Wij only
need to be computed once and stored in memory. On the other hand, the computation of wT

i Dwj

corresponds to the Hessian computation, and we need two columns for each coordinate update,
which has to be computed repeatedly.

It is easy to produce an example where the algorithm converges to a wrong point when the gradient
computation is not accurate, as shown in Figure 5(b) (in Appendix 6.5). Luckily, based on the above
analysis the gradient only needs to be computed once per Newton iteration, so we can compute it
with high precision. On the other hand, wi for the Hessian has to be computed repeatedly, so we do
not want to spend too much time to compute each of them accurately. We define Ĥt = Ŵt⊗Ŵt to be
the approximated Hessian matrix, and derive the following theorem to show that even if Hessian is
inaccurate, BIGQUIC still converges to the global optimum. Notice that our proof covers BIGQUIC
algorithm with fixed/free set selection, and the only assumption is that subproblem (3) is solved
exactly for each Newton iteration; it is the future work to consider the case where subproblems are
solved approximately.

Theorem 1. For solving (1), if ∇g(X) is computed exactly and η̄I � Ĥt � ηI for some constant
η̄, η > 0 at every Newton iteration, then BIGQUIC converges to the global optimum.

The proof is in Appendix 6.1. Theorem 1 suggests that we do not need very accurate Hessian compu-
tation for convergence. To have super-linear convergence rate, we require the Hessian computation
to be more and more accurate as Xt approaches X∗. We first introduce the following notion of
minimum norm subgradient to measure the optimality of X:

gradSij f(X) =
{
∇ijg(X) + sign(Xij)λij if Xij 6= 0,
sign(∇ijg(X)) max(|∇ijg(X)| − λij , 0) if Xij = 0.

The following theorem then shows that if we compute Hessian more and more accurately, BIGQUIC
will have a super-linear or even quadratic convergence rate.
Theorem 2. When applying BIGQUIC to solve (1), assume ∇g(Xt) is exactly computed and
∇2g(Xt) is approximated by Ht, and the following condition holds:

@(i, j) such that X∗ij = 0 and |∇ijg(X∗)| = λ. (8)

Then ‖Xt+1 −X∗‖ = O(‖Xt −X∗‖1+p) as k →∞ for 0 < p ≤ 1 if and only if

‖Ĥt −∇2g(Xt)‖ = O(‖ gradS(Xt)‖p) as k →∞. (9)

The proof is in Appendix 6.2. The assumption in (8) can be shown to be satisfied with very high
probability (and was also satisfied in our experiments). Theorem 2 suggests that we can achieve
super-linear, or even quadratic convergence rate by a careful control of the approximated Hessian
Ĥt. In the BIGQUIC algorithm, we can further control ‖Ĥt−∇2g(Xt)‖ by the residual of conjugate

6

(a) Comparison on chain graph. (b) Comparison on random graph. (c) Comparison on fmri data.

Figure 1: The comparison of scalability on three types of graph structures. In all the experiments, BIGQUIC
can solve larger problems than QUIC even with a single core, and using 32 cores BIGQUIC can solve million
dimensional data in one day.

gradient solvers to achieve desired convergence rate. Suppose the residual is bi = Xŵi − ei for
each i = 1, . . . , p, and Bt = [b1b2 . . . bp] is a collection of the residuals at the t-th iteration. The
following theorem shows that we can control the convergence rate by controlling the norm of Bt.

Theorem 3. In the BIGQUIC algorithm, if the residual matrix ‖Bt‖ = O(‖ gradS(Xt)‖p) for
some 0 < p ≤ 1 as t→∞, then ‖Xt+1 −X∗‖ = O(‖Xt −X∗‖1+p) as t→∞.

The proof is in Appendix 6.3. Since gradS(Xt) can be easily computed without additional cost, and
residuals B can be naturally controlled when running conjugate gradient, we can easily control the
asymptotic convergence rate in practice.

5 Experimental Results
In this section, we show that our proposed method BIGQUIC can scale to high-dimensional datasets
on both synthetic data and real data. All the experiments are run on a single computing node with 4
Intel Xeon E5-4650 2.7GHz CPUs, each with 8 cores and 32G memory.

Scalability of BIGQUIC on high-dimensional datasets. In the first set of experiments, we show
BIGQUIC can scale to extremely high dimensional datasets. We conduct experiments on the fol-
lowing synthetic and real datasets:
(1) Chain graphs: the ground truth precision matrix is set to be Σ−1

i,i−1 = −0.5 and Σ−1
i,i = 1.25.

(2) Graphs with random pattern: we use the procedure mentioned in Example 1 in [12] to generate
random pattern. When generating the graph, we assume there are 500 clusters, and 90% of the edges
are within clusters. We fix the average degree to be 10.
(3) FMRI data: The original dataset has dimensionality p = 228, 483 and n = 518. For scalability
experiments, we subsample various number of random variables from the whole dataset.

We use λ = 0.5 for chain and random Graph so that number of recovered edges is close to the ground
truth, and set number of samples n = 100. We use λ = 0.6 for the fMRI dataset, which recovers
a graph with average degree 20. We set the stopping condition to be gradS(Xt) < 0.01‖Xt‖1. In
all of our experiments, number of nonzeros during the optimization phase do not exceed 5‖X∗‖0 in
intermediate steps, therefore we can always store the sparse representation of Xt in memory. For
BIGQUIC, we set blocks k to be the smallest number such that p/k columns of W can fit into
32G memory. For both QUIC and BIGQUIC, we apply the divide and conquer method proposed
in [8] with 10-clusters to get a better initial point. The results are shown in Figure 1. We can see
that BIGQUIC can solve one million dimensional chain graphs and random graphs in one day, and
handle the full fMRI dataset in about 5 hours.

More interestingly, even for dataset with size less than 30000, where p2 size matrices can fit in
memory, BIGQUIC is faster than QUIC by exploiting the sparsity. Figure 2 shows an example on
a sampled fMRI dataset with p = 20000, and we can see BIGQUIC outperforms QUIC even when
using a single core. Also, BIGQUIC is much faster than other solvers, including Glasso [7] and
ALM [17]. Figure 3 shows the speedup under a multicore shared memory machine. BIGQUIC can
achieve about 14 times speedup using 16 cores, and 20 times speedup when using 32 cores.

FMRI dataset. An extensive resting state fMRI dataset from a single individual was analyzed in or-
der to test BIGQUIC on real-world data. The data (collected as part of the MyConnectome project:
http://www.myconnectome.org) comprised 36 resting fMRI sessions collected across dif-
ferent days using whole-brain multiband EPI acquisition, each lasting 10 minutes (TR=1.16 secs,
multiband factor=4, TE = 30 ms, voxel size = 2.4 mm isotropic, 68 slices, 518 time points). The

7

Figure 2: Comparison on fMRI data with p =
20000 (the maximum dimension that state-of-the-
art softwares can handle).

Figure 3: The speedup of BIGQUIC when using
multiple cores.

data were preprocessed using FSL 5.0.2, including motion correction, scrubbing of motion frames,
registration of EPI images to a common high-resolution structural image using boundary-based reg-
istration, and affine transformation to MNI space. The full brain mask included 228,483 voxels.
After motion scrubbing, the dataset included a total 18,435 time points across all sessions.

BIGQUIC was applied to the full dataset: for the first time, we can learn a GMRF over the entire
set of voxels, instead of over a smaller set of curated regions or supervoxels. Exploratory analyses
over a range of λ values suggested that λ = 0.5 offered a reasonable level of sparsity. The result-
ing graph was analyzed to determine whether it identified neuroscientifically plausible networks.
Degree was computed for each vertex; high-degree regions were primarily found in gray matter re-
gions, suggesting that the method successfully identified plausible functional connections (see left
panel of Figure 4). The structure of the graph was further examined in order to determine whether
the method identified plausible network modules. Modularity-based clustering [1] was applied to
the graph, resulting in 60 modules that exceeded the threshold size of 100 vertices. A number of
neurobiologically plausible resting-state networks were identified, including “default mode” and
sensorimotor networks (right panel of Figure 4). In addition, the method identified a number of
structured coherent noise sources (i.e. MRI artifacts) in the dataset. For both neurally plausible and
artifactual modules, the modules detected by BIGQUIC are similar to those identified using inde-
pendent components analysis on the same dataset, without the need for the extensive dimensionality
reduction (without statistical guarantees) inherent in such techniques.

Figure 4: (Best viewed in color) Results from BIGQUIC analyses of resting-state fMRI data. Left panel: Map
of degree distribution across voxels, thresholded at degree=20. Regions showing high degree were generally
found in the gray matter (as expected for truly connected functional regions), with very few high-degree voxels
found in the white matter. Right panel: Left-hemisphere surface renderings of two network modules obtained
through graph clustering. Top panel shows a sensorimotor network, bottom panel shows medial prefrontal,
posterior cingulate, and lateral temporoparietal regions characteristic of the “default mode” generally observed
during the resting state. Both of these are commonly observed in analyses of resting state fMRI data.

Acknowledgments
This research was supported by NSF grant CCF-1320746 and NSF grant CCF-1117055. C.-J.H.
also acknowledges the support of IBM PhD fellowship. P.R. acknowledges the support of ARO via
W911NF-12-1-0390 and NSF via IIS-1149803, DMS-1264033. R.P. acknowledges the support of
ONR via N000140710116 and the James S. McDonnell Foundation.

8

References
[1] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding of community

hierarchies in large networks. J. Stat Mech, 2008.
[2] T. Cai, W. Liu, and X. Luo. A constrained `1 minimization approach to sparse precision matrix

estimation. Journal of American Statistical Association, 106:594–607, 2011.
[3] A. d’Aspremont, O. Banerjee, and L. E. Ghaoui. First-order methods for sparse covariance

selection. SIAM Journal on Matrix Analysis and its Applications, 30(1):56–66, 2008.
[4] R. S. Dembo, S. C. Eisenstat, and T. Steihaug. Inexact Newton methods. SIAM J. Numerical

Anal., 19(2):400–408, 1982.
[5] I. S. Dhillon, Y. Guan, and B. Kulis. Weighted graph cuts without eigenvectors: A multi-

level approach. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
29:11:1944–1957, 2007.

[6] J. Duchi, S. Gould, and D. Koller. Projected subgradient methods for learning sparse Gaus-
sians. UAI, 2008.

[7] J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation with the graph-
ical lasso. Biostatistics, 9(3):432–441, July 2008.

[8] C.-J. Hsieh, I. S. Dhillon, P. Ravikumar, and A. Banerjee. A divide-and-conquer method for
sparse inverse covariance estimation. In NIPS, 2012.

[9] C.-J. Hsieh, M. A. Sustik, I. S. Dhillon, and P. Ravikumar. Sparse inverse covariance estimation
using quadratic approximation. 2013.

[10] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular
graphs. SIAM J. Sci. Comput., 20(1):359–392, 1999.

[11] J. D. Lee, Y. Sun, and M. A. Saunders. Proximal newton-type methods for minimizing com-
posite functions. In NIPS, 2012.

[12] L. Li and K.-C. Toh. An inexact interior point method for `1-reguarlized sparse covariance
selection. Mathematical Programming Computation, 2:291–315, 2010.

[13] R. Mazumder and T. Hastie. Exact covariance thresholding into connected components for
large-scale graphical lasso. Journal of Machine Learning Research, 13:723–736, 2012.

[14] N. Meinshausen and P. Bühlmann. High dimensional graphs and variable selection with the
lasso. Annals of Statistics, 34:1436–1462, 2006.

[15] P. Olsen, F. Oztoprak, J. Nocedal, and S. Rennie. Newton-like methods for sparse inverse
covariance estimation. Technical report, Optimization Center, Northwestern University, 2012.

[16] B. Rolfs, B. Rajaratnam, D. Guillot, A. Maleki, and I. Wong. Iterative thresholding algorithm
for sparse inverse covariance estimation. In NIPS, 2012.

[17] K. Scheinberg, S. Ma, and D. Goldfarb. Sparse inverse covariance selection via alternating
linearization methods. NIPS, 2010.

[18] K. Scheinberg and I. Rish. Learning sparse Gaussian Markov networks using a greedy coor-
dinate ascent approach. In J. Balczar, F. Bonchi, A. Gionis, and M. Sebag, editors, Machine
Learning and Knowledge Discovery in Databases, volume 6323 of Lecture Notes in Computer
Science, pages 196–212. Springer Berlin / Heidelberg, 2010.

[19] D. M. Witten, J. H. Friedman, and N. Simon. New insights and faster computations for the
graphical lasso. Journal of Computational and Graphical Statistics, 20(4):892–900, 2011.

9

6 Appendix

The following elementary lemma shows that the residual controls the error of the CG method.
Lemma 2. If ŵi satisfies ‖Xŵi − ei‖2 < ε, then ε

σmax(X) < ‖ŵi −wi‖2 < ε
σmin(X) .

Proof. We define the residual b = Xŵi−ei, and note that the optimal solution wi satisfies Xwi =
ei. Therefore, b = Xŵi −Xwi = X(ŵi −wi), which finishes the proof.

6.1 Proof of Theorem 1

6.1.1 Background

We begin with a formal definition of the approximate Newton direction based on an approximate
Hessian.
Definition 1. Let J denote a (symmetric) subset of variables. We define the Newton direction re-
stricted to J with a positive definite approximated Hessian H as follows:

DH
J (X) ≡ arg min

D:Dij=0
∀(i,j)/∈J

tr(∇g(X)TD) +
1
2

vec(D)TH vec(D) + λ‖X +D‖1. (10)

Since H is positive definite, (10) is well-defined. For convenience, we also introduce DJ(X) ≡
D
∇2g(X)
J (X) to denote the computation using the exact Hessian.

We work within the framework of [9], but in a more general setting encompassing approximate
Newton directions. At each iteration, the iterate Yt is updated by Yt ← Yt + αtD

Ht

Jt
(Yt), where Jt

is a subset of variables chosen at iteration t, and Ht is the Hessian approximation. Under the setting
of QUIC and BIGQUIC, J1, J3, . . . denote the fixed sets, and J2, J4, . . . denote the free sets. The
sequence Jt satisfies the following Gauss-Seidel condition:⋃

j=0,...,T−1

Jt+j ⊇ N ∀t = 1, 2, . . . (11)

where N is the set including all possible (i, j) pairs. Also, we require

Ht � η ∀t = 1, 2, . . . , (12)

which is part of the assumption of Theorem 1. The setting is summarized in Algorithm 2.

Algorithm 2: General Block Quadratic Approximation method for Sparse Inverse Covariance
Learning

Input : Empirical covariance matrix S (positive semi-definite p× p), regularization parameter
matrix λ, initial Y0, inner stopping tolerance ε

Output: Sequence of Yt.
1 for t = 0, 1, . . . do
2 Generate a variable subset Jt.
3 Compute the Newton direction Dt ≡ DHt

Jt
(Yt) by (10).

4 Compute the step-size αt using an Armijo-rule based step-size selection in (6).
5 Update Yt+1 = Yt + αtDt.

6.1.2 Global convergence

We prove that the sequence {Yt}t=1,2,... converges to the global optimum, thereby generalizing
Theorem 1.

Proposition 3 in [9] states that the line search condition will be satisfied in a finite number of itera-
tions, meaning that the step size α is well defined. Next, we generalize Lemma 2 and Proposition 2
of [9] to accommodate the approximated Hessian.

10

Lemma 3. δ = δJ(X) in the line search condition (6) satisfies

δ = tr((∇g(X))TDHt) + λ‖X +DHt‖1 − λ‖X‖1 ≤ −η‖DHt‖2F . (13)

where DHt = DHt

J (X) is the minimizer of the `1-regularized quadratic approximation defined in
(10).

The proof is the same as in [9] after we replace ∇2g(X) by Ht. The following lemma shows that
DH is an indicator of optimality.

Lemma 4. For a positive definite H , X is the optimal solution of f(X) if and only if DH(X) = 0.

Proof. IfDH(X) 6= 0, then Lemma 3 shows that δ(X) < 0. According to Proposition 3 in [9] there
is a line search step α > 0 such that f(X +αDH(X))− f(X) < σαδ(X), implying that X cannot
be the optimal solution.

Conversely, if DH(X) = 0, we want to show that any direction D and step size α > 0 does not
result in a descent. Since 0 is the optimal solution of (10), we have

α tr(∇g(X)TD) +
1
2
α2 vec(D)TH vec(D) + λ‖X + αD‖1 ≥ λ‖X‖1.

So

α tr(∇g(X)TD) + λ‖X + αD‖1 − λ‖X‖1 ≥
1
2
α2 vec(D)TH vec(D).

Since g(X + αD)− g(X) = α tr(∇g(X)TD) + o(α), we have

lim
α↓0

f(X + αD)− f(X)
α

= lim
α↓0

α tr(∇g(X)TD) + o(α) + λ‖X + αD‖1 − λ‖X‖1
α

≥ lim
α↓0

α2 vec(D)TH vec(D) + o(α)
α

= 0.

We proved that no direction D is a descent direction, thus X is the global optimum.

We can further generalize Lemma 4 when a subset J of variables is used. We first define the
minimum-norm subgradient for f .

Definition 2. We define the minimum-norm subgradient gradSij f(X) as follows:

gradSij f(X) =


∇ijg(X) + λij if Xij > 0,
∇ijg(X)− λij if Xij < 0,
sign(∇ijg(X)) max(|∇ijg(X)| − λij , 0) if Xij = 0.

Lemma 4 in [9] shows that gradSij f(X) = 0 for all (i, j) ∈ J if and only if X is optimal in a
problem constrained to the subset J . Combine with Lemma 4 to prove the following:

Lemma 5. For a positive matrix H and a subset of indexes J , DH
J (X) = 0 if and only if

gradSij f(X) = 0 ∀(i, j) ∈ J .

Next, we look at a convergent subsequence Yst
just as in [9].

Lemma 6. For any convergent subsequence Yst
→ Y ∗, we have DH̄

st
≡ DH̄

Jst
(Yst

) → 0 for some
H̄ � η.

Proof. There exists an infinite index set T ⊆ {s1, s2, . . . } and µ > 0 such that ‖DHt
t ‖F > µ for all

t ∈ T . We can assume αst
< 1 for all st without loss of generality. By selecting the subsequence

st appropriately we can also assume that Hst → H̄ for some η̄ � H̄ � η.

11

Using the same arguments as outlined in the proof of Lemma 6 in [9], we get

(1− σ)η̄−2µ ≤ O(αt‖DHt
t ‖F), (14)

Again, by Lemma 3, we have

−αtδt ≥ αtη‖DHt
t ‖2F ≥ ηαt‖D

Ht
t ‖Fµ.

Since {αtδt}t → 0, it follows that {αt‖DHt
t ‖F }t → 0. Combining with Ht → H̄ we have

{αt‖DH̄
t ‖F }t → 0. Taking limit as t ∈ T and t→∞, we have

(1− σ)ηµ ≤ 0,

a contradiction which finishes the proof.

We have the tools to prove Theorem 1.

Assume a subsequence {Yt}T converges to Ȳ . Since the choice of the index set Jt selected at
each step is finite, we can further assume that Jt = J̄0 for all t ∈ T , considering an appropriate

subsequence of T if necessary. From Lemma 6, D
H̄J̄0
J̄0

(Yt) → 0 for some positive definite matrix

H̄J̄ . Therefore D
H̄J̄0
J̄0

(Ȳ) = 0. This implies

gradSij f(Ȳ) = 0 ∀(i, j) ∈ J̄1.

We can then apply Gauss-Seidel condition (11) to show

gradSij f(Ȳ) = 0 ∀(i, j) ∈ J̄t

for all t, and thus Ȳ is the optimal solution of (1).

6.2 Proof of Theorem 2

Next, we focus on proving the convergence rate of the sequence {Xt}1,2,... generated by BIGQUIC.
First, we show that under assumption (8), the updates of BIGQUIC will be equivalent to uncon-
strained Newton updates.
Lemma 7. There exists a T > 0 such that

sign((Xt)ij) = sign((X∗)ij) ∀i, j, t ≥ T,
where sign(a) can be 1,−1, 0.

Proof. First, consider the cast that X∗ij = 0. The optimality condition of (1) implies that
|∇ijg(X∗)| ≤ λ. Combined with Assumption (8), we have |∇ijg(X∗)| < λ. Since Xt → X∗

as proved in the previous section, g(Xt)→ g(X∗), so there exists a Tij > 0 such that

|∇ijg(Xt)| < λ ∀t ≥ Tij .
Therefore, from the definition of fixed set, (i, j) will be always in the fixed set when t ≥ Tij .
For other X∗ij 6= 0, there exists a Tij such that |X∗ij − (Xt)ij | < |X∗ij |/2 for all t ≥ Tij , which
implies sign((Xt)ij) = sign(X∗ij).

Combining two cases, we can take T = maxi,j Tij and finish the proof.

Lemma 7 suggests that we can divide the index set into the following two partitions:

F = {(i, j) | X∗ij 6= 0},
Z = {(i, j) | X∗ij = 0}., (15)

where Z is always in the fixed set.

According to Proposition 3 in [9], the step size equals to 1 when Xt is close to X∗. Therefore, after
a finite number of iterations, BIGQUIC solves the following unconstrained subproblem:

arg min
X,Xij=0∀(i,j)∈F

{− log detX + tr(SX) + λ‖X‖1} ≡ f̄(X), (16)

12

Moreover, by Lemma 7, after a finite number of iterationsXij will never change its sign, that implies
that the update rule for BIGQUIC is equivalent to solving the problem

arg min
X,Xij=0∀(i,j)∈F

{− log detX + tr(SX) + λ
∑
i,j

sign(X∗ij)Xij} ≡ f̄(X) (17)

with Newton’s method with step size one. The objective function of (17) is smooth and therefore we
can apply theorems derived for Newton’s method on smooth unconstrained optimization.

Newton methods on smooth unconstrained optimization

We mainly use the results from [4] that considers the case of inexact Newton methods for uncon-
strained smooth function. The inexact Newton method is defined as follows. At each iteration,
xt+1 ← xt + st, where st satisfies

∇2f(xt)st +∇f(xt) = rt, and
‖rt‖

‖∇f(xt)‖
≤ ηk. (18)

Theorem 3.3 in [4] shows that the algorithm converges linearly if ηk is upper bounded.
Theorem 4. Assume that∇2f(x) is Hölder continuous with exponent p (0 < p ≤ 1) and the inexact
Newton iterates {xt} converge to x∗. It follows that xt converges to x∗ with rate at least 1 + p if
and only if ‖rt‖ = O(‖∇f(xt)‖1+p).

A function f(x) is Hölder continuous if and only if

|f(x)− f(y)| ≤ C‖x− y‖p. (19)

In our problem, ∇2f̄(X) = ∇2g(X) = X−1 ⊗X−1 and according to [9] Xt will be in a bounded
set such that MI � Xt � mI . Therefore the objective function f̄(X) is Holders continuous. We
can write ‖rt‖ = O(‖∇f(xt)‖1+p) more formally as follows:

∃C > 0 such that
‖rt‖

‖∇f(xt)‖1+p
≤ C. (20)

The inexact Newton method is different from BIGQUIC because we exactly solve the problem, but
with approximated Hessian. However, The following derivation connects the two.

Assume Ht is the approximate Hessian in BIGQUIC, and dt is the solution of (3). As have shown
earlier, after finite number of iterations BIGQUIC updates are equivalent to solving (17) with New-
ton’s method, which implies

dt = −H−1
t ∇f̄(X).

Substitute into (18) and we have∇2f̄(xt)dt +∇f̄(xt) = rt, so

rt = dt +∇2f̄(x)−1∇f̄(x)

= (∇2f̄(x)−1 −H−1
t)∇f̄(xt).

Therefore
‖rt‖

‖∇f̄(xt)1+p‖
≤ ‖(∇

2f̄(X))−1 −H−1
t ‖

‖∇f̄(xt)‖p
.

Consider the case that p > 1. Define

∆ = ∇2g(xt)−Ht,

we have

‖∇2f̄(xt)−1 −H−1
t ‖ = ‖∇2f̄(xt)−1 −∇2f̄(xt)−1(I +∇2f̄(xt)−1∆)−1‖

= ‖∇2f̄(xt)−1∆ + o(∆)‖
≤ ‖∇2f̄(xt)−1‖‖∆‖+ o(‖∆‖).

Now for BIGQUIC,∇2f̄(xt) = X−1
t ⊗X−1

t , so we have

‖∇2f̄(Xt)−1 −H−1
t ‖ ≤ σmax(Xt)2‖∆‖+ o(‖∆‖).

13

Table 1: The time and memory requirement for sparse Cholesky factorization.

p (dimensionality) ‖A‖0 ‖L‖0 (memory usage) time (sec)
100 888 893 0.01
500 5,094 17,494 0.01

1000 9,992 57,547 0.02
5000 19,960 1,327,992 3.15

10000 99,948 5,388,053 30.00
50000 500,304 130,377,362 3245.00

Condition (20) becomes

‖rt‖
‖∇f̄(Xt)‖1+p

≤ (σmax(Xt))2‖∆‖+ o(‖∆‖)
‖∇f̄(Xt)‖p

.

Therefore, as long as
‖Ht −∇2f̄(Xt)‖ = O(‖∇f̄(Xt)‖p), (21)

rt satisfies (20), and therefore Xt → X∗ for all the variables in F (free set) with rate at least 1 + p.

Also, all the variables in the fixed set will have (Xt)ij = 0 = X∗ij as shown in Lemma 7, so
Xt → X∗ with rate at least 1 + p, thus proving the theorem.

6.3 Proof of Theorem 3

From Lemma 2, ‖ŵi − wi‖ = O(‖bi‖), so the error of computed and exact W can be bounded
by ‖Ŵ − W‖ = O(‖B‖). To further bound ‖Ĥ − ∇2g(X)‖, notice that Ĥ = Ŵ ⊗ Ŵ and
∇2g(X) = X ⊗X . Assume ∆ = Ŵ −W , then

‖Ĥ −∇2g(X)‖ ≤ ‖(W + ∆)⊗ (W + ∆)−W ⊗W‖
≤ max
‖D‖=1

‖(W + ∆)D(W + ∆)−WDW‖

= max
‖D‖=1

‖2∆DW + ∆D∆‖

≤ 2‖∆‖‖W‖+ ‖∆‖2

≤ O(‖∆‖) = O(‖B‖).
Combined with Theorem 2 we complete the proof.

6.4 Demonstration of the scalability of sparse Cholesky factorization

Recall that in the line search step, the computational bottleneck is the checking of positive defi-
niteness and the computation of the determinant of a sparse matrix with dimension that can reach
a million. In the following we motivate the conclusion that this problem cannot be expected to be
solved using sparse Cholesky factorization for matrices with dimension larger than 100,000.

The Cholesky factorization L (A = LLT) of a sparse matrixA is usually sparse, but not as sparse as
the original matrix. The sparsity depends on the permutation of indices, but there is no theoretical
guarantees. The time and space complexity for sparse Cholesky factorization is proportional to ‖L‖0
and in the following experiment we demonstrate that ‖L‖0 grows quickly in our synthetic data.

We generate random positive definite p by p matrices with p = 100, 500, 1000, 5000, 10000, 50000,
and the number of nonzero elements ‖L‖0 is shown in Table 1. We can observe that the number
of nonzeros in L (computed by MATLAB sparse Cholesky factorization with symamd to find the
permutation) grows nonlinearly with ‖A‖0 and or p and therefore other (better) solutions have to be
explored. That well motivates our Schur based approach.

6.5 Other Difficulties.

Many other difficulties arise when dealing with large sparse matrices in the sparse inverse covariance
estimation problem. Randomized coordinate descent can converge much faster than cyclic coordi-
nate descent when solving (3). This behavior is not completely understood, but empirical evidence

14

(a) Comparison of coordinate descent implemen-
tations utilizing different degrees of randomness.

(b) Comparison of the effect of different stopping
conditions used for the conjugate gradient method
for gradient computation.

Figure 5: Demonstration of two difficulties in scaling QUIC to ultra high dimensional data. Fig-
ure 5(a) shows that the degree of randomness in the coordinate descent solver is crucial for fast
convergence. Figure 5(b) shows that the accuracy of the conjugate gradient method is important in
BIGQUIC. Both figures run on ER dataset with λ = 0.5.

supports it, see Figure 5(a). In our proposed algorithm we process the variables in blocks as de-
scribed in detail in Section 3.1; however this blocking scheme removes some degree of randomness
in coordinate selection. Empirical evidence suggests that the problem can be solved by clustering,
as shown in Figure 6.

Yet another problem to be tackled is determining the proper stopping tolerance for conjugate gradient
descent (CG), the sparse linear solver we employ to compute columns of the matrix W . In Figure
5(b), we conduct another experiment that the CG stopping tolerance of gradientW = X−1 is varied
from 10−3 to 10−9, and the Hessian computation is set to be very accurate (10−13). The results show
that with a lower accurate gradient computation, the solver cannot converge to the optimal solution,
so that the accuracy highly depends on the stopping tolerance of CG of gradient. In comparison, the
Hessian computation can be inaccurate, as shown in in Section 4.

6.6 The benefit of graph clustering algorithm

In addition to the empirical number we showed in the main paper, we further provide exact count of
boundary nodes for each off-diagonal blocks in Figure 6(b). As shown in Figure 6(b), total number
of boundary nodes is 83 in a dataset with p = 693, means we only need to compute 693 + 83
columns of W in one sweep; while using a random partition requires 693×5 column computations.

As discussed in Figure 5(a), the convergence will be slow if we apply block coordinate descent to
destroy the randomness. However, with graph clustering partition, the off-diagonal elements are
minimized, so the variables are more decoupled into each block. In the extreme case, when there are
no boundary points, all the off-diagonal blocks of D and W are 0, the Newton subproblem (3) can
be decomposed into k subproblems, each for one diagonal block. So block-coordinate descent can
converge in one iteration if all the blocks are exactly minimized. Even if there are few off-diagonal
elements, after one sweep over blocks the solution can be very close to the optimum. Figure 6(a)
shows the results.

6.7 Time Analysis

In this section we present a detailed time complexity analysis. We assume k is the number of
blocks used in the coordinate descent step, T is the average number of CG iterations and Tinner is the
number of coordinate sweeps in one Newton iteration, and Touter is number of coordinate descent
sweeps within a single block. Finally, s is the size of the free set, and m is the number of nonzeros
in Xt. In step 1, BIGQUIC computes the gradient in order to partition the variables into the fixed
and free sets; this takesO(mTp) time for computingW andO(p2d) time for computing S = Y Y T .
The graph clustering algorithm in the step 3 requires O(s+ kp) flops. The block coordinate descent
method needs O((p + |B|)ToutermT) time for computing columns of W , where |B| is the number

15

(a) Convergence of different coordinate de-
scent strategies.

(b) Number of boundary nodes for each
block identified by graph clustering.

Figure 6: A demonstration of identifying blocks by clustering. Figure 6(a) shows that the convergence of
BIGQUIC is close to QUIC when blocks are identified by graph clustering algorithms. Figure 6(b) presents
the number of boundary nodes (number of column evaluations of W) is very small for each off-diagonal block,
when blocks are identified by graph clustering.

of boundary nodes, and O(pm) for computing USq
, and O(Tinnerp/k) for the coordinate descent

updates themselves. Finally, the line search steps cost O(spTL), where L is the number of the line
search steps. We can see that the time needed to compute the columns ofW , O((p+ |B|)mTTouter),
dominates the time complexity, which underscores the importance of minimizing the number of
boundary nodes |B| via our clustering scheme. BIGQUIC is summarized in Algorithm 1.

16

