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Abstract

State of the art statistical estimators for high-dimensional problems take the form
of regularized, and hence non-smooth, convex programs. A key facet of these
statistical estimation problems is that these are typically not strongly convex un-
der a high-dimensional sampling regime when the Hessian matrix becomes rank-
deficient. Under vanilla convexity however, proximal optimization methods attain
only a sublinear rate. In this paper, we investigate a novel variant of strong con-
vexity, which we call Constant Nullspace Strong Convexity (CNSC), where we re-
quire that the objective function be strongly convex only over a constant subspace.
As we show, the CNSC condition is naturally satisfied by high-dimensional sta-
tistical estimators. We then analyze the behavior of proximal methods under this
CNSC condition: we show global linear convergence of Proximal Gradient and lo-
cal quadratic convergence of Proximal Newton Method, when the regularization
function comprising the statistical estimator is decomposable. We corroborate our
theory via numerical experiments, and show a qualitative difference in the con-
vergence rates of the proximal algorithms when the loss function does satisfy the
CNSC condition.

1 Introduction

There has been a growing interest in high-dimensional statistical problems, where the number of
parameters d is comparable to or even larger than the sample size n, spurred in part by many modern
science and engineering applications. It is now well understood that in order to guarantee statistical
consistency it is key to impose low-dimensional structure, such as sparsity, or low-rank structure,
on the high-dimensional statistical model parameters. A strong line of research has thus developed
classes of regularized M -estimators that leverage such structural constraints, and come with strong
statistical guarantees even under high-dimensional settings [13]. These state of the art regularized
M -estimators typically take the form of convex non-smooth programs.

A facet of computational consequence with these high-dimensional sampling regimes is that these
M -estimation problems, even when convex, are typically not strongly convex. For instance, for
the ℓ1-regularized least squares estimator (LASSO), the Hessian is rank deficient when n < d. In
the absence of additional assumptions however, optimization methods to solve general non-smooth
non-strongly convex programs can only achieve a sublinear convergence rate [19, 21]; faster rates
typically require strong convexity [1, 20]. In the past few years, an effort has thus been made to
impose additional assumptions that are stronger than mere convexity, and yet weaker than strong
convexity; and proving faster rates of convergence of optimization methods under these assump-
tions. Typically these assumptions take the form of a restricted variant of strong convexity, which
incidentally mirror those assumed for statistical guarantees as well, such as the Restricted Isometry
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Property or Restricted Eigenvalue property. A caveat with these results however is that these statisti-
cally motivated assumptions need not hold in general, or require sufficiently large number of samples
to hold with high probability. Moreover, the standard optimization methods have to be modified in
some manner to leverage these assumptions [5, 7, 17]. Another line of research exploits a local error
bound to establish asymptotic linear rate of convergence for a special form of non-strongly convex
functions [16, 8, 6]. However, these do not provide finite-iteration convergence bounds, due to the
potentially large number of iterations spent on early stage.

In this paper, we consider a novel simple condition, which we term Constant Nullspace Strong
Convexity (CNSC). This assumption is motivated not from statistical considerations, but from the
algebraic form of standard M -estimators; indeed as we show, standard M -estimation problems even
under high-dimensional settings naturally satisfy the CNSC condition. Under this CNSC condition,
we then investigate the convergence rates of the class of proximal optimization methods; specifically
the Proximal Gradient method (Prox-GD) [14, 15, 18] and the Proximal Newton method (Prox-
Newton) [1, 2, 9]. These proximal methods are very amenable to regularized M -estimation prob-
lems: they do not treat the M -estimation problem as a black-box convex non-smooth problem, but
instead leverage the composite nature of the objective of the form F (x) = h(x)+f(x), where h(x)
is a possibly non-smooth convex function while f(x) is a convex smooth function with Lipschitz-
continuous gradient. We show that under our CNSC condition, Proximal Gradient achieves global
linear convergence when the non-smooth component is a decomposable norm. We also show that
Proximal Newton, under the CNSC condition, achieves local quadratic convergence as long as the
non-smooth component is Lipschitz-continuous. Note that in the absence of strong convexity, but
under no additional assumptions beyond convexity, the proximal methods can only achieve sublin-
ear convergence as noted earlier. We have thus identified an algebraic facet of the M -estimators
that explains the strong computational performance of standard proximal optimization methods in
practical settings in solving high-dimensional statistical estimation problems.

The paper is organized as follows. In Section 2, we define the CNSC condition and introduce
the Proximal Gradient and Proximal Newton methods. Then we prove global linear convergence
of Prox-GD and local quadratic convergence of Prox-Newton in Section 3 and 4 respectively. In
Section 5, we corroborate our theory via experiments on real high-dimensional data set. We will
leave all the proof of lemmas to the appendix.

2 Preliminaries

We are interested in composite optimization problems of the form

min
x∈Rd

F (x) = h(x) + f(x), (1)

where h(x) is a possibly non-smooth convex function and f(x) is twice differentiable convex func-
tion with its Hessian matrix H(x) = ∇2f(x) satisfying

mI ≼ H(x) ≼ MI, ∀x ∈ Rd, (2)

where for strongly convex f(x) we have m > 0; otherwise, for convex but not strongly convex f(x)
we have m = 0.

2.1 Constant Nullspace Strong Convexity (CNSC)

Before defining our strong convexity variant of Constant Nullspace Strong Convexity (CNSC), we
first provide some intuition by considering the following large class of statistical estimation problems
in high-dimensional machine learning, where f(x) takes the form

f(x) =
n∑

i=1

L(aT
i x, yi), (3)

where L(u, y) is a non-negative loss function that is convex in its first argument, ai is the observed
feature vector and yi is the observed response of the i-th sample. The Hessian matrix of (3) takes
the form

H(x) = ATD(Ax)A, (4)
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where A is a n by d design (data) matrix with Ai,: = aT
i and D(Ax) is a diagonal matrix with

Dii(x) = L
′′
(aT

i x, yi), where the double-derivative in L′′(u, y) is with respect to the first argu-
ment. It is easy to see that in high-dimensional problems with d > n, (4) is not positive definite so
that strong convexity would not hold. However, for strictly convex loss function L(·, y), we have
L

′′
(u, y) > 0 and

vTH(x)v = 0 iff Av = 0. (5)

As a consequence vTH(x)v > 0 as long as v does not lie in the Nullspace of A; that is, the Hessian
H(x) might satisfy the strong convexity bound in the above restricted sense. We generalize this
concept as follows. We first define the following notation: given a subspace T , we let ΠT (·) denote
the orthogonal projection onto T , and let T ⊥ denote the orthogonal subspace to T .

Assumption 1 ( Constant Nullspace Strong Convexity ). A twice-differentiable f(x) satisfies Con-
stant Nullspace Strong Convexity (CNSC) with respect to T (CNSC-T ) iff there is a constant vector
space T s.t. f(x) depends only on z = ΠT (x) and its Hessian matrix satisfies

vTH(z)v ≥ m∥v∥2, ∀v ∈ T (6)

for some m > 0, and ∀z ∈ T ,
H(z)v = 0, ∀v ∈ T ⊥. (7)

From the motivating section above, the above condition can be seen to hold for a wide range of loss
functions, such as those arising from linear regression models, as well as generalized linear models
(e.g. logistic regression, poisson regression, multinomial regression etc.) 1. For L

′′
(u, y) ≥ mL >

0, we have m = mLλmin(A
TA) > 0 as the constant in (6), where λmin(A

TA) is the minimum
positive eigenvalue of ATA.

Then by the assumption, any point x can be decomposed as x = z + y, where z = ΠT (x),
y = ΠT ⊥(x), so that the difference between gradient of two points can be written as

g(x1)− g(x2) =

∫ 1

0

H(s∆x+ x2)∆xds =

∫ 1

0

H(s∆z + z2)∆zds = H̃(z1, z2)∆z, (8)

where ∆x = x1−x2, ∆z = z1−z2, and H̃(z1, z2) =
∫ 1

0
H(s∆z+z2)ds is the average Hessian

matrix along the path from z2 to z1. It is easy to verify that H̃(z1,z2) satisfies inequalities (2),
(6) and equality (7) for all z1, z2 ∈ T by just applying inequalities (equality) to each individual
Hessian matrix being integrated. Then we have following theorem that shows the uniqueness of z̄
at optimal.

Theorem 1 (Optimality Condition). For f(x) satisfying CNSC-T ,

1. x̄ is an optimal solution of (1) iff −g(x̄) = ρ̄ for some ρ̄ ∈ ∂h(x̄).

2. The optimal ρ̄ and z̄ = ΠT (x̄) are unique.

Proof. The first statement is true since x̄ is an optimal solution iff 0 ∈ ∂h(x̄) +∇f(x̄). To prove
the second statement, suppose x̄1 = z̄1+ȳ1 and x̄2 = z̄2+ȳ2 are both optimal. Let ∆x = x̄1−x̄2

and ∆z = z̄1− z̄2. Since h(x) is convex, −g(x̄1) ∈ ∂h(x̄1) and −g(x̄2) ∈ ∂h(x̄2) should satisfy

⟨−g(x̄1) + g(x̄2),∆x⟩ ≥ 0.

However, since f(x) satisfies CNSC-T , by (8),

⟨−g(x̄1) + g(x̄2),∆x⟩ = ⟨−H̃(z̄1, z̄2)∆z,∆x⟩ = −∆zH̃(z̄1, z̄2)∆z ≤ −m∥∆z∥22
for some m > 0. The two inequalities can simultaneously hold only if ∆z̄ = 0. Therefore, z̄ is
unique at optimum, and thus g(x̄) = g(0) + H̃(z̄,0)z̄ and ρ̄ = −g(x̄) are also unique.

In next two sections, we review the Proximal Gradient Method (Prox-GD) and Proximal Newton
Method (Prox-Newton), and introduce some tools that will be used in our analysis.

1 Note for many generalized linear models, the second derivative L
′′
(u, y) of loss function approaches 0 if |u| → ∞. However, this

could not happen as long as there is a penalty term h(x) which goes to infinity if x diverges, which then serves as a finite constraint bound on
x.
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2.2 Proximal Gradient Method

The Prox-GD algorithm comprises a gradient descent step

xt+ 1
2
= xt −

1

M
g(xt)

followed by a proximal step

xt+1 = proxh
M (xt+ 1

2
) = arg

x
min h(x) +

M

2
∥x− xt+ 1

2
∥22, (9)

where ∥ · ∥2 means the Frobinius norm if x is a matrix. For simplicity, we will denote proxh
M (.) as

prox(.) in the following discussion when it is clear from the context. In Prox-GD algorithm, it is
assumed that (9) can be computed efficiently, which is true for most of decomposable regularizers.
Here we introduce some properties of proximal operator that can facilitate our analysis.
Lemma 1. Define ∆Px = x− prox(x), the following properties hold for proximal operation (9).

1. M∆Px ∈ ∂h(prox(x)).

2. ∥prox(x1)− prox(x2)∥22 ≤ ∥x1 − x2∥22 − ∥∆Px1 −∆Px2∥22.

2.3 Proximal Newton Method

In this section, we introduce the Proximal Newton method, which has been shown to be consider-
ably more efficient than first-order methods in many applications [1], including Sparse Inverse Co-
variance Estimation [2] and ℓ1-regularized Logistic-Regression [9, 10]. Each step of Prox-Newton
solves a local quadratic approximation

x+
t = arg

x
min h(x) +

1

2
(x− xt)

THt(x− xt) + gT
t (x− xt) (10)

to find a search direction x+ − xt, and then conduct a line search procedure to find t such that

f(xt+1) = f(xt + t(x+
t − xt))

meets a sufficient decrease condition. Note unlike Prox-GD update (9), in most of cases (10) requires
an iterative procedure to solve. For example if h(x) is ℓ1-norm, then a coordinate descent algorithm
is usually employed to solve (10) as an LASSO subproblem [1, 2, 9, 10].

The convergence of Newton-type method comprises two phases [1, 3]. In the first phase, it is possible
that step size t < 1 is chosen, while in the second phase, which occurs when xt is close enough
to optimum, step size t = 1 is always chosen and each step leads to quadratic convergence. In this
paper, we focus on the quadratic convergence phase, while refer readers to [21] for a global analysis
of Prox-Newton without strong convexity assumption. In the quadratic convergence phase, we have
xt+1 = x+

t and the update can be written as

xt+1 = proxHt

(
xt +∆xnt

t

)
, Ht∆xnt

t = −gt, (11)

where ∆xnt
t is the Newton step when h(x) is absent, and the proximal operator proxH(.) is defined

for any PSD matrix H as

proxH(x) = arg
v

min h(v) +
1

2
∥v − x∥2H . (12)

Note while we use ∥x∥2H to denote xTHx, we only require H to be PSD instead of PD. Therefore,
∥x∥H is not a true norm, and (12) might have multiple solutions, where proxH(x) refers to any
one of them. In the following, we show proxH(.) has similar properties as that of prox(.) in
previous section.
Lemma 2. Define ∆Px = x−proxH(x), the following properties hold for the proximal operator:

1. H∆Px ∈ ∂h(proxH(x)).

2. ∥proxH(x1)− proxH(x2)∥2H ≤ ∥x1 − x2∥2H .
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3 Linear Convergence of Proximal Gradient Method

In this section, we analyze convergence of Proximal Gradient Method for h(x) = λ∥x∥, where ∥ · ∥
is a decomposable norm defined as follows.
Definition 1 (Decomposable Norm). ∥ · ∥ is a decomposable norm if there are orthogonal sub-
spaces {Mi}Ji=1 with Rd = ∪J

i=1Mi such that for any point x ∈ Rd that can be written as
x =

∑
j∈E cjaj , where cj > 0 and aj ∈ Mj , ∥aj∥∗ = 1, we have

∥x∥ =
∑
j∈E

cj , and ∂∥x∥ = {ρ | ΠMj (ρ) = aj , ∀j ∈ E ; ∥ΠMj (ρ)∥∗ ≤ 1,∀j /∈ E}, (13)

where ∥ · ∥∗ is the dual norm of ∥ · ∥.

The above definition includes several well-known examples such as ℓ1-norm ∥x∥1 and group-ℓ1
norm ∥X∥1,2. For ℓ1-norm, Mj corresponds to vectors with only j-th coordinate not equal to 0,
and E is the set of non-zero coordinates of x. For group-ℓ1 norm, Mj corresponds to vectors with
only j-th group not equal to 0T and E are the set of non-zero groups of X . Under the definition, we
can profile the set of optimal solutions as follows.

Lemma 3 (Optimal Set). Let Ē be the active set at optimal and Ē+ = {j| ∥ ΠMj (ρ̄)∥∗ = λ} be its
augmented set (which is unique since ρ̄ is unique) such that ΠMj (ρ̄) = λāj , j ∈ Ē+. The optimal
solutions of (1) form a polyhedral set

X̄ =
{
x | ΠT (x) = z̄ and x ∈ Ō

}
, (14)

where Ō =
{
x | x =

∑
j∈Ē+ cjāj , cj ≥ 0, j ∈ Ē+

}
is the set of x with ρ̄ ∈ ∂h(x).

Given the optimal set is a polyhedron, we can then employ the following lemma to bound the dis-
tance of an iterate xt to the optimal set X̄ .

Lemma 4 (Hoffman’s bound). Consider a polyhedral set S = {x|Ax ≤ b, Ex = c}. For any point
x ∈ Rd, there is a x̄ ∈ S such that

∥x− x̄∥2 ≤ θ(S)
∥∥∥∥ [Ax− b]+

Ex− c

∥∥∥∥
2

, (15)

where θ(S) is a positive constant that depends only on A and E.

The above bound first appears in [11], and was employed in [4] to prove linear convergence of
Feasible Descent method for a class of convex smooth function. A proof of the ℓ2-norm version (15)
can be found in [4, lemma 4.3]. By applying (15) to the set X̄ , the distance of a point x to X̄ can be
bounded by infeasible amounts to the two constraints ΠT (x) = z and x ∈ Ō, where the latter can
be bounded according the following lemma when cj = ⟨x, āj⟩ ≥ 0, ∀j ∈ Ē+.

Lemma 5. Let Ā = span(ā1, ā2 . . . , ā|Ē+|). Suppose ∥x∥ ≤ R and ΠMj (x) = 0 for j /∈ Ē+.
Then

λ2∥x−ΠĀ(x)∥22 ≤ R2∥ρ− ρ̄∥22,
where ρ ∈ ∂h(x) and ρ̄ is as defined in Theorem 1.

Now we are ready to prove the main theorem of this section.

Theorem 2 (Linear Convergence of Prox-GD). Let X̄ be the set of optimal solutions for problem
(1), and x̄ = ΠX̄ (x) be the solution closest to x. Denote dλ = minj /∈Ē+

(
λ− ∥ΠMj (ρ̄)∥∗

)
> 0.

For the sequence {xt}∞t=0 produced by Proximal Gradient Method, we have:

(a) If xt+1 satisfies the condition that

∃j /∈ Ē+ : ΠMj (xt+1) ̸= 0 or ∃j ∈ Ē+ : ⟨xt+1, āj⟩ < 0, (16)
we then have:

∥xt+1 − x̄t+1∥22 ≤ (1− α)∥xt − x̄t∥22, α =
d2λ

M2∥x0 − x̄0∥22
(17)
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(b) If xt+1 does not satisfy the condition in (16) but xt does, then

∥xt+1 − x̄t+1∥22 ≤ (1− α)∥xt−1 − x̄t−1∥22, α =
d2λ

M2∥x0 − x̄0∥22
(18)

(c) If neither xt+1, xt satisfy the condition in (16), then

∥xt+2 − x̄t+2∥22 ≤ 1

1 + β
∥xt − x̄t∥22, β =

m

Mθ(X̄ )2
, (19)

where we recall that θ(X̄ ) is the constant determined by polyhedron X̄ from Hoffman’s
Bound (15).

Proof. Since x̄t is an optimal solution, we have x̄t = prox(x̄t − g(x̄t)/M). Let ∆xt = xt − x̄t,
ρt = M(xt+ 1

2
− xt+1) ∈ ∂h(xt+1) and H̃ = H̃(zt, z̄t). by Lemma 1, each iterate of Prox-GD

has

∥xt − x̄t∥22 − ∥xt+1 − x̄t+1∥22 ≥ ∥xt − x̄t∥22 − ∥xt+1 − x̄t∥22
= ∥∆xt∥22 − ∥prox(xt − g(xt)/M)− prox(x̄t − g(x̄t)/M)∥22
≥ ∥∆xt∥22 − ∥(xt − g(xt)/M)− (x̄t − g(x̄t)/M)∥22 + ∥ρt − ρ̄∥22/M2.

(20)

Since g(xt)− g(x̄t) = H̃∆x from (8), we have

∥xt − x̄t∥22 − ∥xt+1 − x̄t+1∥22 ≥ ∥∆xt∥22 − ∥∆xt − H̃∆xt/M∥22 + ∥ρt − ρ̄∥22/M2

≥ ∆xT
t

(
H̃/M

)
∆xt + ∥ρt − ρ̄∥22/M2

≥ m∥∆zt∥22/M + ∥ρt − ρ̄∥22/M2.

(21)

The second inequality holds since 2H̃/M − H̃2/M2 = (H̃/M)(2I − H̃/M) ≽ H̃/M . The
inequality tells us ∥xt − x̄t∥2 − ∥xt+1 − x̄t+1∥2 ≥ 0, that is, the distance to the optimal set
∥xt − x̄t∥ is monotonically non-increasing. To get a tighter bound, we consider two cases.

Case 1: ΠMj (xt) ̸= 0 for some j /∈ Ē+ or ⟨xt, āj⟩ < 0 for some j ∈ Ē+.

In this case, suppose there is j /∈ E+
t with ΠMj (xt) ̸= 0, then 2

∥ρt − ρ̄∥22 ≥ ∥ΠMj (ρt)−ΠMj (ρ̄)∥2∗ ≥ (∥ΠMj (ρt)∥∗ − ∥ΠMj (ρ̄)∥∗)2 ≥ d2λ. (22)

On the other hand, if ⟨xt, āj⟩ < 0 for some j ∈ Ē+, then we have ⟨aj , āj⟩ < 0 for ΠMj (ρt) =
λaj . Therefore

∥ρt − ρ̄∥22 ≥ ∥ΠMj (ρt)−ΠMj (ρ̄)∥22 ≥ λ2∥aj − āj∥22 = λ2(2− 2⟨aj , āj⟩) > 2λ2.

Either cases we have

∥xt − x̄t∥22 − ∥xt+1 − x̄t+1∥22 ≥ ∥ρt − ρ̄∥22
M2

≥
(

d2λ
M2∥x0 − x̄0∥22

)
∥xt − x̄t∥22. (23)

Case 2: Both xt, xt+1 do not fall in Case 1

Given ⟨xt, āj⟩ ≥ 0, ∀j ∈ Ē+ and ΠMj (xt) = 0, ∀j /∈ Ē+, then x belongs to the set Ō defined in
Lemma 3 iff ∥x − ΠĀ(x)∥22 = 0. The condition can be also scaled as λ2

mMR2 ∥x − ΠĀ(x)∥22 = 0,
where R is a bound on ∥xt∥ holds for ∀t, which must exist as long as the regularization parameter
λ > 0 in h(x) = λ∥x∥.

By Lemma 4, the distance of point xt to the polyhedral set X̄ is bounded by its infeasible amount

∥xt − x̄t∥22 ≤ θ(X̄ )2
(
∥zt − z̄∥22 +

λ2

mMR2
∥xt −ΠĀ(xt)∥22

)
, (24)

2From our definition of decomposable norm, if a vector v belongs to single subspace Mj , then ∥v∥ = ∥v∥∗ = ∥v∥2. The reason
is: By the definition, if v ∈ Mj , then v = cjaj for some cj > 0, aj ∈ Mj , ∥aj∥∗ = 1, and it has decomposable norm ∥v∥ = cj .
However, we also have ∥v∥∗ = ∥cjaj∥∗ = cj∥aj∥∗ = cj = ∥v∥. The norm equals to its dual norm only if it is ℓ2-norm.

6



where zt = ΠT (xt). Applying (24) to (21) for iteration t+ 1, we have

∥xt+1 − x̄t+1∥2 − ∥xt+2 − x̄t+2∥2

≥ m

Mθ(X̄ )2
∥∆xt+1∥2 −

λ2

M2R2
∥xt+1 −ΠĀ(xt+1)∥22 +

∥ρt+1 − ρ̄∥2

M2
.

For iteration t, we have

∥xt − x̄t∥2 − ∥xt+1 − x̄t+1∥2 ≥ m

M
∥∆zt∥22 +

∥ρt − ρ̄∥2

M2

. By Lemma 5, adding the two inequalities gives

∥xt − x̄t∥2 − ∥xt+2 − x̄t+2∥2 ≥ m

Mθ(X̄ )2
∥∆xt+1∥2 +

m

M
∥∆zt∥22 +

∥ρt+1 − ρ̄∥2

M2

≥ m

Mθ(X̄ )2
∥∆xt+1∥2 ≥ m

Mθ(X̄ )2
∥∆xt+2∥2,

which yields desired result (18) after arrangement.

We note that the descent in the first two cases is actually even stronger than stated above: from the
proofs, that the distance can be seen to reduce by a fixed constant. This is faster than superlinear
convergence since the final solution could then be obtained in a finite number of steps.

4 Quadratic Convergence of Proximal Newton Method

The key idea of the proof is to re-formulate Prox-Newton update (10) as

zt+1 = arg
z∈T

min h(z + ŷ(z)) + gT
t (z − zt) +

1

2
∥z − zt∥2Ht

(25)

where
ŷ(z) = arg

y∈T ⊥
min h(z + y), (26)

so that we can focus our convergence analysis on z = ΠT (x) as follows.

Lemma 6 (Optimality Condition). For any matrix H satisfying CNSC-T , the update

∆x = arg
d

min h(x+ d) + g(x)Td+
1

2
∥d∥2H (27)

has
F (x+ t∆x)− F (x) ≤ −t∥∆z∥2H +O(t2), (28)

where ∆z = ΠT (∆x). Furthermore, if x is an optimal solution, ∆x = 0 satisfies (27).

The following lemma then states that, for Prox-Newton, the function suboptimality is bounded by
only distance in the T space.

Lemma 7. Suppose h(x) and f(x) are Lipschitz-continuous with Lipschitz constants Lh and Lf .
In quadratic convergence phase (defined in Theorem 3), Proximal Newton Method has

F (xt)− F (x̄) ≤ L∥zt − z̄∥, (29)

where L = max{Lh, Lf} and zt = ΠT (xt), z̄ = ΠT (x̄).

By the above lemma, we have F (xt)− F (x̄) ≤ Lϵ as long as ∥zt − z̄∥ ≤ ϵ. Therefore, it suffices
to show quadratic convergence of ∥zt − z̄∥ to guarantee F (xt) − F (x̄) double its precision after
each iteration.

Theorem 3 (Quadratic Convergence of Prox-Newton). For f(x) satisfying CNSC-T with Lipschitz-
continuous second derivative ∇2f(x), the Proximal Newton update (10) has

∥zt+1 − z̄∥ ≤ LH

2m
∥zt − z̄∥2,

where z̄ = ΠT (x̄), zt = ΠT (xt), and LH is the Lipschitz constant for ∇2f(x).
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Proof. Let x̄ be an optimal solution of (1). By Lemma 6, for any PSD matrix H the update ∆x̄ = 0
satisfies (27), which means

x̄ = proxHt
(x̄+∆x̄nt), Ht∆x̄nt = −g(x̄). (30)

Then by non-expansiveness of proximal operation (Lemma 2), we have
∥xt+1 − x̄∥Ht = ∥proxHt

(xt +∆xnt
t )− proxHt

(x̄+∆x̄nt)∥Ht

≤ ∥(xt +∆xnt
t )− (x̄+∆x̄nt)∥Ht = ∥(xt − x̄) + (∆xnt

t −∆x̄nt)∥Ht

= ∥(zt − z̄) + (∆znt
t −∆z̄nt

t )∥Ht .

(31)

Since for z ∈ T , ∥Htz∥2 ≥
√
m∥z∥Ht , (31) leads to

∥xt+1 − x̄∥Ht ≤
1√
m
∥Ht(zt − z̄)−Ht(∆znt

t −∆z̄nt)∥2

=
1√
m
∥Ht(zt − z̄)− (gt − ḡ)∥2 ≤ LH

2
√
m
∥zt − z̄∥22,

(32)

where last inequality follows from Lipschitz-continuity of ∇2f(x). Since zt+1, z̄ ∈ T , we have
∥xt+1 − x̄∥Ht = ∥zt+1 − z̄∥Ht ≥

√
m∥zt+1 − z̄∥2. (33)

Finally, combining (33) with (32),

∥zt+1 − z̄∥2 ≤ LH

2m
∥zt − z̄∥22,

where quadratic convergence phase occurs when ∥zt − z̄∥ <
√

2m
LH

.

5 Numerical Experiments

In this section, we study the convergence behavior of Proximal Gradient method and Proxi-
mal Newton method on high-dimensional real data set with and without the CNSC condition.
In particular, two loss functions — logistic loss L(u, y)=log(1 + exp(−yu)) and ℓ2-hinge loss
L(u, y)=max(1 − yu, 0)2 — are used in (3) with ℓ1-regularization h(x) = λ∥x∥1, where both
losses are smooth but only logistic loss has strict convexity that implies the CNSC condition. For
Proximal Newton method we employ an randomized coordinate descent algorithm to solve sub-
problem (10) as in [9]. Figure 5 shows their convergence results of objective value relative to the
optimum on rcv1.1k, subset of a document classification data set with dimension d = 10, 192 and
number of samples n = 1000. From the figure one can clearly observe the linear convergence of
Prox-GD and quadratic convergence of Prox-Newton on problem satisfying CNSC, contrasted to
the qualitatively different behavior on problem without CNSC.

0.5 1 1.5 2 2.5 3

x 10
6

10
−8

10
−6

10
−4

10
−2

iter

ob
j

Prox−GD

 

 

logistic
L2hinge

5 10 15 20 25 30
10

−8

10
−6

10
−4

10
−2

10
0

iter

ob
j

Prox−Newton

 

 

logistic
L2hinge

Figure 1: objective value (relative to optimum) of Proximal Gradient method (left) and Proximal
Newton method (right) with logistic loss and ℓ2-hinge loss.
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Appendix: Constant Nullspace Strong Convexity
and Fast Convergence of Proximal Methods

under High-Dimensional Settings

Ian E.H. Yen Cho-Jui Hsieh Pradeep Ravikumar Inderjit Dhillon
Department of Computer Science

University of Texas at Austin
{ianyen,cjhsieh,pradeepr,inderjit}@cs.utexas.edu

1 Proof for properties of proximal operations

The proximal operator prox(.) is defined as

xt+1 = prox(xt+ 1
2
) = arg

x
min h(x) +

M

2
∥x− xt+ 1

2
∥22. (1)

Lemma 1. Define ∆Px = x− prox(x), the following properties hold for the proximal operation
(1).

1. M∆Px ∈ ∂h(prox(x)).

2. ∥prox(x1)− prox(x2)∥22 ≤ ∥x1 − x2∥22 − ∥∆Px1 −∆Px2∥22.

Proof. The first property follows directly from the optimality condition of (1). The second property
holds since for M∆Px1 ∈ ∂h(prox(x1)), M∆Px2 ∈ ∂h(prox(x2)) we have ⟨M∆Px1 −
M∆Px2,prox(x1)− prox(x2)⟩ ≥ 0, and thus,

∥x1 − x2∥2 = ∥ (prox(x1)− prox(x2)) + (∆Px1 −∆Px2)∥2

≥ ∥prox(x1)− prox(x2)∥2 + ∥∆Px1 −∆Px2∥2,
which gives the second property.

The proximal operator proxH(.) is defined for any PSD matrix H as

proxH(x) = arg
v

min h(v) +
1

2
∥v − x∥2H . (2)

Lemma 2. Define ∆Px = x−proxH(x), the following properties hold for the proximal operator:

1. H∆Px ∈ ∂h(proxH(x)).

2. ∥proxH(x1)− proxH(x2)∥2H ≤ ∥x1 − x2∥2H .

Proof. The first property follows directly from the optimality condition of (2). The second prop-
erty holds since for H∆Px1 ∈ ∂h(prox(x1)), H∆Px2 ∈ ∂h(prox(x2)) we have ⟨H∆Px1 −
H∆Px2,prox(x1)− prox(x2)⟩ ≥ 0, and thus,

∥x1 − x2∥2H = ∥ (proxH(x1)− proxH(x2)) + (∆Px1 −∆Px2)∥2H
≥ ∥proxH(x1)− proxH(x2)∥2H + ∥∆Px1 −∆Px2∥2H
≥ ∥proxH(x1)− proxH(x2)∥2H ,

where the second inequality follows from the PSD of H .
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2 Proof of Lemma 3

Lemma 3 (Optimal Set). Let Ē be the active set at optimal and Ē+ = {j| ∥ ΠMj (ρ̄)∥∗ = λ} be its
augmented set (which is unique since ρ̄ is unique) such that ΠMj (ρ̄) = λāj , j ∈ Ē+. The optimal
solutions then form a polyhedral set

X̄ =
{
x | ΠT (x) = z̄ and x ∈ Ō

}
, (3)

where Ō =
{
x | x =

∑
j∈Ē+ cjāj , cj ≥ 0, j ∈ Ē+

}
is the set of x with ρ̄ ∈ ∂h(x).

Proof. The optimality condition are g(x) = ḡ and ρ̄ ∈ ∂h(x) by Theorem 1. Since ΠT (x) = z̄,
we have g(x) = ḡ already. Therefore, we only need to show that ρ̄ ∈ ∂h(x) iff x ∈ Ō.

Suppose ρ̄ ∈ ∂h(x). Then for j /∈ Ē+, we know ∥ΠMj (ρ̄)∥∗ < 1, which means ΠMj (x) = 0, and
for j ∈ Ē+, we know ΠMj (ρ̄) = λāj , which means ΠMj (x) can be 0 or cjāj for some cj > 0.
Therefore, x must have the form x =

∑
j∈Ē+ cjāj , cj ≥ 0, j ∈ Ē+.

Now for the other direction, suppose x =
∑

j∈Ē+ cjāj , cj ≥ 0, j ∈ Ē+ and E ⊆ Ē+ is the set
for which cj > 0, j ∈ E . Then since ∥ΠMj (ρ̄)∥∗ ≤ 1, j /∈ E and for j ∈ E ⊆ Ē+ we have
ΠMj (ρ̄) = λāj , we conclude that ρ̄ ∈ ∂h(x).

3 Proof of Lemma 5

Lemma 5. Let Ā = span(ā1, ā2 . . . , ā|Ē+|). Suppose ∥x∥ ≤ R and ΠMj (x) = 0 for j /∈ Ē+.
Then

λ2∥x−ΠĀ(x)∥22 ≤ R2∥ρ− ρ̄∥22,
where ρ ∈ ∂h(x) and ρ̄ is as defined in Theorem 1.

Proof. Since ΠMj (x) = 0 for j /∈ Ē+, we have x =
∑

j∈Ē+ cjaj for some aj ∈ Mj . Then

∥x−ΠĀ(x)∥22 = ∥
∑
j∈Ē+

cjaj −
∑
j∈Ē+

cj⟨aj , āj⟩āj∥22

=
∑
j∈Ē+

c2j∥aj − ⟨aj , āj⟩āj∥22 ≤
∑
j∈Ē+

c2j∥aj − āj∥22.

Since ΠMj (ρ) = λaj , ΠMj (ρ̄) = λāj , we have

∥x−ΠĀ(x)∥22 ≤ 1

λ2

∑
j∈Ē+

c2j∥ΠMj (ρ)−ΠMj (ρ̄)∥22 ≤ R2

λ2
∥ρ− ρ̄∥22

as claimed.

4 Proof of Lemma 6

Lemma 6 (Optimality Condition). For any matrix H satisfying CNSC-T , the update

∆x = argmin
d

h(x+ d) + g(x)Td+
1

2
∥d∥2H (4)

has
F (x+ t∆x)− F (x) ≤ −t∥∆z∥2H +O(t2), (5)

where ∆z = ΠT (∆x). Furthermore, if x is an optimal solution, ∆x = 0 satisfies (4).

Proof. By smoothness of f(x) and convexity of h(x), we have

F (x+ t∆x)− F (x) = h(x+ t∆x)− h(x) + f(x+ t∆x)− f(x)

≤ t(h(x+∆x)− h(x)) + g(x)T (t∆x) +O(t2).
(6)
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Then we try to bound the descent amount predicted by gradient t(h(x+∆x)−h(x)+ g(x)T∆x).
Since ∆x is optimal solution of (4), we have

h(x+∆x) + g(x)T∆x+
1

2
∥∆x∥2H

≤h(x+ t∆x) + g(x)T (t∆x) +
1

2
∥t∆x∥2H

≤th(x+∆x) + (1− t)h(x) + g(x)T (t∆x) +
1

2
∥t∆x∥2H ,

(7)

which implies

(1− t)(h(x+∆x)− h(x)) + (1− t)g(x)T∆x+
1− t2

2
∥∆x∥2H ≤ 0, (8)

and therfore,

(h(x+∆x)− h(x)) + g(x)T∆x ≤ −1 + t

2
∥∆x∥2H = −1 + t

2
∥∆z∥2H , (9)

where ∆z = ΠT (∆x) and last inequality follows from CNSC-T of H . Let t → 1 and combine (9)
and (6), we obtain

F (x+ t∆x)− F (x) ≤ −t∥∆z∥2H +O(t2), (10)
which shows ∆x obtained from (4) is a descent direction if ∆z ̸= 0.

Now suppose x is an optimal solution of F (x). Then the ∆x defined in (4) cannot be a descent
direction, which means ∆z must be 0. However, since f(x) and H satisfy CNSC-T , when ∆z = 0,
(4) reduced to

∆x = argmin
∆y∈T ⊥

h(x+∆y). (11)

∆x = 0 satisfies (11) since x = y + z is already a minimum of h(x) + f(x), while f(x) does not
depend on y, where y = ΠT ⊥(x).

5 Proof of Lemma 7

Lemma 7. Suppose h(x) and f(x) are Lipchitz-continuous with Lipchitz constants Lh and Lf . In
quadratic convergence phase (defined in Theorem 3), Proximal Newton Method has

F (xt)− F (x̄) ≤ L∥zt − z̄∥, (12)

where L = max{Lh, Lf} and zt = ΠT (xt), z̄ = ΠT (x̄).

Proof. LWe prove (12) by showing that |f(z1) − f(z2)| ≤ Lf∥z1 − z2∥ and |h(z1 + ŷ(z1)) −
h(z2 + ŷ(z2))| ≤ Lh∥z1 − z2∥ for any z1 ∈ T , z2 ∈ T . Since f(z) does not depend on the null-
component y, the first inequality holds directly from the Lipchitz-continuity of f(z). The second
inequality holds since

h(z1 + ŷ(z1)) ≤ h(z1 + ŷ(z2)) ≤ h(z2 + ŷ(z2)) + Lh∥z1 − z2∥

and
h(z2 + ŷ(z2)) ≤ h(z2 + ŷ(z1)) ≤ h(z1 + ŷ(z1)) + Lh∥z1 − z2∥

by the definition of ŷ(z1), ŷ(z2) and Lipchitz-continuity of h(x).
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