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University of California, Berkeley

In the 1990’s, Dhillon and Parlett devised the algorithm of multiple relatively robust representa-

tions (MRRR) for computing numerically orthogonal eigenvectors of a symmetric tridiagonal matrix

T with O(n2) cost. While previous publications related to MRRR focused on theoretical aspects of

the algorithm, a documentation of software issues has been missing. In this article, we discuss the

design and implementation of the new MRRR version STEGR that will be included in the next

LAPACK release. By giving an algorithmic description of MRRR and identifying governing param-

eters, we hope to make STEGR more easily accessible and suitable for future performance tuning.
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1. INTRODUCTION

The algorithm of multiple relatively robust representations (MRRR, or MR3) for
the symmetric tridiagonal eigenvalue problem is an important improvement on
standard inverse iteration [Ipsen 1997] in that it computes orthogonal eigenvec-
tors without needing Gram-Schmidt orthogonalization. While the theoretical
foundation of the MRRR algorithm has already been described [Dhillon 1997;
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Parlett and Dhillon 1997, 2000; Dhillon and Parlett 2004a, 2004b], this article
addresses the question of how to translate the theory into reliable numeri-
cal software. Our presentation is based on the design and implementation of
STEGR, the successor to the first LAPACK 3.0 [Anderson et al. 1999] version
of the MRRR algorithm.

This article is structured as follows. In Section 2, we give a brief summary
of the most important principles behind the MRRR algorithm that are neces-
sary for understanding the code design and implementation. In Section 3, we
describe the features of the main LAPACK driver, STEGR. Later sections de-
scribe the computational routines, the most important being Sections 4 and 5
for computing the eigenvalues and eigenvectors, respectively. These two func-
tions depend upon and call a number of auxiliary functions that are explained
in Sections 6, 7, 8, 9, and 10. Finally, in Section 11 we discuss the roles of
special topics, such as performance analysis, IEEE arithmetic, parallelization,
and vectorization.

As a guiding principle, we first give a rough, but more easily understand-
able description of the main algorithm prior to a more exhaustive explana-
tion of the algorithmic details. Every section contains a subsection that ex-
plains the importance of key parameters and their impact on both accuracy and
efficiency.

In addition to the algorithmic description of the routines STEGR, LARRE,
and LARRV, we give an overview of storage requirements and a graphical
illustration of the functionalities in order to clarify the structure and design of
the software.

2. OVERVIEW OF MRRR

For a symmetric tridiagonal matrix T ∈ Rn×n, the MRRR algorithm promises to
compute a set of eigenvalues λ̂1, . . . , λ̂k and a set of vectors v̂1, . . . , v̂k , ‖v̂i‖2 = 1,
satisfying

‖(T − λ̂i I )v̂i‖ = O(nε‖T‖) (1)

|v̂T
i v̂ j | = O(nε), i �= j (2)

using O(nk) arithmetic operations. Here ε is the roundoff unit. Pairs of vec-
tors that satisfy Eq. (2) are said to be numerically orthogonal or orthogonal to
working precision. A stricter criterion for small residual norms is

‖(T − λ̂i I )v̂i‖ = O(nε|λ̂i|), (3)

demanding relatively small residuals.
Section 2.1 presents the main ideas behind the MRRR algorithm. A more

technical description is given in Section 2.2.

2.1 Informal Outline of the Underlying Ideas

Our discussion is based on the results from Dhillon [1997], Dhillon and Parlett
[2004a, 2004b], and Parlett and Dhillon [1997, 2000] that justify the MRRR
algorithm. For a review of the theory of inverse iteration, we refer to Ipsen
[1997].
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2.1.1 Issues in Standard Inverse Iteration. We consider inverse iteration
for a general symmetric matrix T and some of its important properties.

—(1A) Small residuals, in the sense of Eq. (1), are not enough to guarantee
orthogonality to working precision when eigenvalues are close.

—(1B) For an approximation λ̂ to eigenvalue λ, define
gap(λ̂) = min{|λ̂ − μ| : λ �= μ, μ ∈ spectrum(T )}. If two eigenvalues are
of the same magnitude as their gaps, then their approximate eigenvec-
tors whose residuals satisfy Eq. (3) will be orthogonal to working precision.
Stated differently: When two computed eigenvalues have a large relative gap
(relgap(λ̂) = gap(λ̂)/|λ̂|) and the corresponding computed eigenvectors satisfy
Eq. (3), then they also satisfy (2).

—(1C) If T determines an eigenvalue λ to high relative accuracy, and if λ̂

approximates λ to high relative accuracy, then it is possible to use one step
of inverse iteration with a good starting vector in order to achieve Eq. (3).
Moreover, at least one column of (T − λ̂I )−1 is sufficiently good as a starting
vector to guarantee (3), namely, the column with the largest norm.

2.1.2 A High Level Description of the MRRR Algorithm. The observations
from Section 2.1.1 suggest the following “ideal” Algorithm 1. This has been
described in more detail as Algorithm Getvec in Dhillon and Parlett [2004b].

2.1.3 Difficulties. The principal challenges facing Algorithm 1 are:

—The eigenvalue must be defined to high relative accuracy by the data. No
computed eigenvalue can have an error of less than the uncertainty in the
eigenvalue. Uncertainties in matrix entries can arise from the data itself, or
as a result of transformations. Unfortunately, small relative changes in the
entries of some tridiagonal matrices can cause large relative changes in tiny
eigenvalues.

—An approximation to an eigenvalue (however small) must be computed to
high relative accuracy.

—A good starting vector for inverse iteration must be found as inexpensively
as possible, ideally with O(n) work.

—Eigenvalues might not have large relative gaps.

—Rounding errors must not spoil the computed output.

2.1.4 MRRR: How to Overcome the Obstacles. The MRRR algorithm ad-
dresses all of these issues, resulting in an O(nk) algorithm for computing k
eigenpairs. Specifically, it is based on the following results.

Algorithm 1. High-level description of the MRRR algorithm

for each eigenvalue with a large relative gap do
Compute an eigenvalue approximation that is good to high relative accuracy.
Find the column r of (T − λ̂I )−1 with largest norm.
Perform one step of inverse iteration, (T − λ̂I )z = er .

end for
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—(2A) For a tridiagonal matrix T and most, but not all, shifts σ , the standard
triangular factorization T −σ I = LDLT , L unit bidiagonal, has the property
that small relative changes in the nontrivial entries of L and D cause small
relative changes in each small eigenvalue of LDLT (despite possible element
growth in the factorization). Thus, the algorithm works with LDLT factor-
izations, instead of T [Dhillon 1997; Dhillon and Parlett 2004b, Parlett 2000,
2003, 2005].

—(2B) For a given bidiagonal factorization LDLT that determines its eigenval-
ues to high relative accuracy, bisection can compute an eigenvalue to high
relative accuracy with O(n) work.

—(2C) For symmetric tridiagonal matrices, it is possible to find the column of
(LDLT − λ̂I )−1 with the largest norm in O(n) operations.

—(2D) In order to apply Algorithm 1, eigenvalues must have large relative
gaps. MRRR uses the observation that shifts alter relative gaps. If the rela-
tive gaps within a cluster of eigenvalues are too small, then they can be in-
creased by shifting the origin close to one end of the group. Furthermore, the
procedure can be repeated for clusters within clusters of close eigenvalues.

—(2E) Differential qd algorithms compute the different (shifted) LDLT factor-
izations with a special property: Tiny relative changes to the input (L, D) and
output (L+, D+) with LDLT − σ I = L+D+LT

+ give an exact relation [Dhillon
1997; Dhillon and Parlett 2004b]. This property ensures that roundoff does
not spoil Algorithm 1.

2.1.5 Glossary of Useful Terms. The following terms are used in the rest
of this article.

— (Sub)block: If T has any negligible off-diagonal entries, then it is split into
principal submatrices, called blocks, each of which has off-diagonal entries
that exceed some threshold, either absolute or relative to neighboring diag-
onal entries.

—Representation: A triangular factorization T − σ I = LDLT of a symmetric
tridiagonal matrix T .

—Relatively robust representation (RRR): A representation that determines a
subset � of the eigenvalues to high relative accuracy. This means that small
relative changes in the entries of L and D cause small relative changes in
each λ ∈ � (the sensitivity can be quantified by a condition number [Parlett
and Dhillon 2000]).

—Root representation and representation tree: The MRRR procedure for com-
puting eigenpairs is best represented by a rooted tree. Each node of the graph
is a pair consisting of a representation (L, D) and subset � of the desired
eigenvalues for which it is an RRR. The root node of the representation tree
is the initial representation that is an RRR for all the desired eigenvalues
(note that every positive or negative definite bidiagonal factorization is an
RRR for all eigenvalues).

—Singleton: a (shifted) eigenvalue whose relative separation from its neighbors
exceeds a given threshold.
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We now can give a more detailed description of the essence of the MRRR
algorithm that extends Algorithm 1.

2.2 More on the Ideas Behind the MRRR Algorithm

It is difficult to understand MRRR without appreciating the limitations of stan-
dard inverse iteration. We give here a more detailed account of the issues raised
in Section 2.1.1 and the properties of MRRR summarized in Section 2.1.4.

2.2.1 Issues and Challenges. (1A) First, for any symmetric matrix A, let
λ, μ denote machine representations of two eigenvalues and v, w those of the
corresponding (normalized) eigenvectors. Define the residuals r = (A − λI )v
and s = (A − μI )w, then

vT w = 1

μ − λ
(rT w − vT s). (4)

The two dot products on the righthand side will not vanish, in general. Further-
more, there is no intrinsic reason why there should be cancellation in the nu-
merator. Thus |vT w| = O

(nε‖A‖
|μ−λ|

)
is realistic. Consequently, it has been standard

practice for inverse iteration to employ orthogonalization of v and w explicitly
when the eigenvalues are close. This makes the algorithm expensive for large
clusters, in the extreme case, up to O(nk2) work.

(1B) Now, suppose that, Eq. (3) holds for λ and for μ. Substitute in Eq. (4)
and take absolute values in (1) to find

|vT w| = O
(

nε(|λ| + |μ|)
|μ − λ|

)
. (5)

Hence, (5) guarantees numerically orthogonal eigenvectors, provided that the
separation |μ − λ| is not much smaller than |λ| and |μ|. Thus, our goal is to
achieve Eq. (3). For a general symmetric matrix, we do not know how to do this,
but for tridiagonal matrices it is feasible.

(1C) If the approximation λ̂ is closer to λ than to any other eigenvalue, then
‖(A− λ̂I )−1‖−1 = |λ− λ̂|. Furthermore, this is an attainable lower bound for the
residual r(v̂, λ̂) = (A − λ̂I )v̂, with ‖v̂‖ = 1. In general, it is too expensive to find
an optimal vector that minimizes the residual norm. However, in the 1960’s,

Algorithm 2. Essence of the MRRR algorithm

Given an RRR LDLT for a set of eigenvalues
for each eigenvalue λ̂ with a large relative gap do

Compute the eigenvalue λ̂ to high relative accuracy.

Find the column r of (LDLT − λ̂I )−1 with largest norm.

Perform one step of inverse iteration, (LDLT − λ̂I )vr = er .
end for
for each of the remaining clusters of eigenvalues do

Choose shift σ outside the cluster.
Compute new RRR, L+ D+LT

+ = LDLT − σ I .
Refine the eigenvalues.

end for
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Varah and Wilkinson [Ipsen 1997] showed that for at least one canonical vector,
say er , ‖(A − λ̂I )−1er‖ ≥ ‖(A − λ̂I )−1‖/√n. Let ṽ = (A − λ̂I )−1er and v̄ = ṽ/‖̃v‖.
Then, in exact arithmetic,

‖r(v̄, λ̂)‖ = 1/‖̃v‖ ≤ √
n|λ − λ̂|. (6)

Thus, the canonical vector er , when used as the starting vector for inverse
iteration, yields an iterate with residual that is within a factor of

√
n of the

optimum. Moreover, if λ̂ approximates λ to high relative accuracy, that is, |λ −
λ̂| = O(ε|λ|), then v̄ achieves (3).

2.2.2 Key Results and Principles of MRRR. (2A) Kahan discovered that
the Cholesky factor L̃ of a symmetric positive definite tridiagonal matrix de-
termines all of the eigenvalues of L̃L̃T to high relative accuracy [Demmel and
Kahan 1990]. More surprising still is the fact that most, but not all, indefinite
LDLT representations determine their tiny eigenvalues to high relative accu-
racy, despite element growth. If λ, v is an eigenpair of LDLT , ‖v‖ = 1, λ �= 0 and
ρ denotes the spectral diameter, then λ is determined to high relative accuracy
by L and D, provided that

max

{
vT L|D|LT v

|λ| ,
‖Dv‖∞

ρ

}
≤ K , K = O(1).

This shows that a factorization can still be an RRR for λ, despite possibly large
entries in D and L, as long as these are neutralized by small entries in v [Dhillon
and Parlett 2004a]. Also, when there is no element growth, LDLT is an RRR for
all the eigenvalues, for example, when LDLT is positive (or negative) definite.

(2B) Bisection is based on a function that counts the number of eigenval-
ues of a given matrix of less than a given value. A short proof of the backward
stability of this computation for a symmetric tridiagonal matrix T in float-
ing point arithmetic is given in Demmel [1997], and a more careful analysis
in Demmel et al. [1995]. A comparable analysis with commutative diagrams
and proofs of the mixed stability of the differential stationary qds factoriza-
tion LDLT − σ I = L+D+LT

+ , the differential progressive qds factorization
LDLT − σ I = U−D−U T

− , and twisted factorizations LDLT − σ I = Nr�r N T
r

(see 2E) are given in Dhillon and Parlett [2004b].
(2C) Inexpensive ways to find the column of (T − λ̂I )−1 with largest norm

were discovered in the mid-1990’s independently by Godunov and by Fernando
(see Parlett and Dhillon [1997] and the references therein). Given an RRR, let
λ̂ be a relatively accurate approximation of λ. Define for k = 1, . . . , n the vector

(LDLT − λ̂I )vk = ekγk , vk(k) = 1. (7)

The normalization factors γk ,

γ −1
k = [(LDLT − λ̂I )−1]kk , (8)

can be computed from a double factorization

(LDLT − λ̂I ) = L+D+LT
+ = U−D−U T

− (9)

with O(n) work. Various formulae for the γk with different stability properties
are given in Dhillon [1997] and Dhillon and Parlett [2004b]. Once all γk are
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known, we choose a suitable one, say k = r, and solve the corresponding Eq. (7)
in a careful way. The choice is guided by the idea of obtaining a righthand side
with a small angle to the (true) eigenvector.

Let v denote the eigenvector for the eigenvalue λ closest to the approximation
λ̂, and define δλ = |λ − λ̂|. Then from an eigenvector expansion, it is shown
in Parlett and Dhillon [1997] that

‖(LDLT − λ̂I )vr‖2

‖vr‖2

= |γr |
‖vr‖2

≤ δλ

‖v‖∞
≤ δλ

|v(r)| . (10)

In particular, if r is chosen such that |v(r)| ≥ 1/
√

n, then an upper bound on
Eq. (10) is

√
n δλ. In practice, instead of finding the minimizing r for the quotient

|γr |/‖vr‖2 from (10), we choose

r = arg min
1≤k≤n

|γk|. (11)

In Parlett and Dhillon [1997], it is shown that as δλ → 0, (LDLT −λ̂I )−1 becomes
essentially a rank-one matrix whose kth diagonal element converges to the
square of the kth entry of the true eigenvector divided by δλ. Thus, by Eq. (8)
and for small enough δλ, finding the largest component of the true eigenvector
is equivalent to finding the minimum γr of Eq. (11).

In Parlett and Dhillon [1997], the resulting vr from (7) is called the FP vector,
(FP for Fernando and Parlett [1994]). The Davis-Kahan gap theorem [Davis and
Kahan 1970; Parlett 1998; Parlett and Dhillon 1997] applied to (10) shows that
vr approximates the true eigenvector v with an error angle φ satisfying

| sin φ| ≤ ‖LDLT vr − λ̂vr‖2

‖vr‖2 gap(λ̂)
≤ δλ

‖v‖∞ gap(λ̂)
, (12)

where gap(λ̂) = min{|λ̂ − μ| : λ �= μ, μ ∈ spectrum(LDLT )}. Furthermore, note
that using (7), the Rayleigh quotient correction to λ̂ can be shown to equal
γ /‖vr‖2

2.
(2D) The guiding principle behind the MRRR algorithm is to compute, by dif-

ferential stationary qds transformations, a sequence of RRRs that achieve large
relative gaps by shifting as close as possible to eigenvalue groups identified as
clusters. By this principle of multiple representations, MRRR refines clusters
until it finds singletons with large enough relative gaps, and the computational
path is described by a representation tree. In this tree, the root representation
is given by an LDLT factorization of T (with appropriate shift) that defines all
the desired eigenvalues to high relative accuracy. The RRR of a child (which
corresponds to either a subcluster or singleton within the parent) is computed
from the parent representation by a differential qd transformation. Each leaf of
the representation tree is a singleton from which the corresponding FP vector
is computed. Algorithmically, the tree is built from the root down. The current
node is processed by inspecting its set � of (local) eigenvalues. As soon as a
relative gap exceeding a threshold is encountered, the inspected subset is de-
clared to be a new child node. If the child consists of more than one eigenvalue,
a new RRR is computed and stored; if the child is a singleton, the FP vector
is computed. The inspection then continues for the unexamined eigenvalues.
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Dhillon [1997] observed that the intermediate RRRs (of nonsingletons) can be
stored in the eigenvector matrix. Thus, no extra memory is needed for storing
the RRRs.

(2E) One goal of Dhillon and Parlett [2004a, 2004b] is to show that roundoff
does not spoil the procedure. Specifically, it is shown that (1) The computed
pairs λ̂i, v̂i have small residuals with respect to the root representation, and (2)
the vectors computed from different representations are orthogonal to working
accuracy and satisfy Eq. (2). The mixed relative stability of the differential qds
algorithms is essential. Another key ingredient of the procedure for computing
the FP vector is the use of a twisted factorization to solve Eq. (7). With the
multipliers from (9), let

Nr =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

L+(1) 1

. .

. .

L+(r − 2) 1

L+(r − 1) 1 U−(r)

1 U−(r + 1)

1 .

. .

. U−(n − 1)

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and, with the pivots from (9) and γr from (7), define

�r = diag(D+(1), . . . , D+(r − 1), γr , D−(r + 1), . . . , D−(n)).

Then the twisted factorization at λ̂ (with twist index r) is given by

LDLT − λ̂I = Nr�r N T
r (13)

(note that the double factorizations in Eq. (9) are special cases of (13), the
forward factorization L+D+LT

+ corresponds to r = n, and the backward factor-

ization U−D−U T
− to r = 1). When we compute the FP vector of the singleton λ̂,

we choose r according to Eq. (11).
Hence, the solution of (7) is equivalent to solving

N T
r vr = er , vr (r) = 1. (14)

The advantage of using this equation is that vr can be computed solely with
multiplications; no additions or subtractions are necessary. By Eq. (14), we
obtain

vr (i) = −L+(i)vr (i + 1), i = r − 1, . . . , 1, (15)

vr (i + 1) = −U−(i)vr (i), i = r, . . . , n − 1. (16)

This feature permits error analysis of the computed FP vector in Dhillon and
Parlett [2004b].

For an illustration of how the MRRR algorithm proceeds for a given matrix, in
particular, the construction of the representation tree, we refer to the examples
in Dhillon and Parlett [2004b], and Dhillon et al. [2005], and to Marques et al.
[2005] for the subset case.
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Algorithm 3. Outline of STEGR: Given a real symmetric tridiagonal matrix T , compute
its eigenvalues and optionally eigenvectors

(A1) Data preprocessing and parameter error checking.
(A2) Determine the unreduced blocks, their root representations, and their
eigenvalues.
if eigenpairs are desired then

(A3) For each eigenvalue compute its corresponding eigenvector.
end if
(A4) Postprocessing. Return the computed eigenvalues (and eigenvectors)
ordered from smallest to largest eigenvalue.

3. THE MAIN SUBROUTINE STEGR

STEGR is the main LAPACK driver and the interface for users who wish to
use the MRRR algorithm. The goal of this section is to present an overview of
the code. In Section 3.1, we give a simplified outline of the code, and a more
detailed one is given in Section 3.2. Detailed descriptions of all computational
and auxiliary subroutines called by STEGR are given in later sections.

The new version STEGR will be an important part of the next release of
LAPACK [Anderson et al. 1999]. It is going to replace the preliminary version
that is in the current 3.0 release of LAPACK. In particular, the eigenvalue
driver routines, like SYEVR, will make extensive use of STEGR.

3.1 Principal Algorithmic Structure and Functionalities

For an overview of the algorithmic structure, see Algorithm 3. A more detailed
description is given in Algorithm 4 in Section 3.1. The two major components,
eigenvalue (A2) and eigenvector computation (A3), both require O(n2) work for
the full set of eigenpairs.

For the illustration of the functionalities and code dependencies, see Figure 1.

3.2 Detailed Algorithmic Structure and Functionalities

We now present a detailed description of the algorithmic structure in Algo-
rithm 4. Figure 2 illustrates the functionalities and code dependencies, expand-
ing on Figure 1.

3.3 Governing Parameters and Workspace Requirements

STEGR has one important parameter:

—The precision to which the eigenvalues are computed initially: If eigenvectors
are not desired, then eigenvalues are computed to full accuracy in LARRE. If
eigenvectors have to be computed, the initial approximations will be refined
in LARRV. In this case, the precision required in LARRE can be lower. For
a subset of eigenpairs, LARRE uses bisection to compute the desired eigen-
values to limited precision. However, if the proportion of desired eigenpairs
is high enough or the full spectrum has to be computed, then all eigenvalues
are computed by the more efficient dqds algorithm and unwanted ones are
discarded.

ACM Transactions on Mathematical Software, Vol. 32, No. 4, December 2006.



542 • I. S. Dhillon et al.

Algorithm 4. Details of STEGR: Given a real symmetric tridiagonal matrix T , com-
pute desired eigenvalues and optionally, eigenvectors. A subset of the spectrum can be
specified by either an index set IL : IU or interval [VL, VU]

(A1) Data preprocessing and parameter error checking:
Scale T to the allowable range if necessary.
Check parameters and workspace.
(In particular, if eigenvalues from a range [VL, VU] have to be computed,
compute the number of eigenvalues in that interval.)

(A2) Find the unreduced blocks of T, their root representations, and their
eigenvalues:

if the matrix T defines its eigenvalues to high relative accuracy then
Enable relative splitting criterion that respects relative accuracy.

else
Enable absolute splitting criterion only based on ‖T‖.

end if
For each unreduced block, compute a root representation and its eigenvalues.

if eigenpairs are desired then
(A3) For each eigenvalue compute its corresponding eigenvector and support:
Build the representation tree. Find suitable RRRs so that all eigenvalues
become singletons.
for each eigenvalue with a large relative gap do

Use the simplified Algorithm 1 to compute the eigenvector.
end for

end if
(A4) Postprocessing. Return the computed eigenvalues (and eigenvectors):

Ensure that all eigenvalues are consistent with the original matrix T , shift
them if necessary.
if the matrix T defines its eigenvalues to high relative accuracy then

Refine the computed eigenvalues through bisection on T .
end if
if the matrix T has been scaled then

Undo the scaling of the computed eigenvalues.
end if
if the matrix T was split into sub-blocks then

Arrange the eigenvalues (previously stored by blocks) in increasing
order, likewise the eigenvectors.

end if

3.4 Workspace Requirements

STEGR uses two different kinds of workspace: real and integer. In the rest of
this article, WORK denotes the real and IWORK the integer workspace. The
matrix size is denoted by N .

STEGR partitions the available workspace into two segments: One part is
used to store the persistent data that is available during the entire computation,
and the second part is reused by different subroutines. The persistent data is
computed by LARRE and used (and, if necessary, refined) by LARRV.
Real persistent data includes

—the Gersgorin intervals (size 2N ),

—uncertainty bounds for each computed eigenvalue (size N ),

—the separation of each eigenvalue from its right neighbor (size N ).

ACM Transactions on Mathematical Software, Vol. 32, No. 4, December 2006.



The Design and Implementation of the MRRR Algorithm • 543

Fig. 1. Principal functionalities of STEGR. The subroutine LARRE computes the root represen-

tation and eigenvalues to suitable accuracy, while LARRV computes the representation tree and

eigenvectors.

Fig. 2. Detailed functionalities of STEGR.
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Integer persistent data includes

—the splitting indices at which the matrix T breaks up into blocks (size N ),

—the block number of each eigenvalue (size N ),

—the local indices of the eigenvalues within each block (size N ).

The remaining real and integer workspace is shared and reused by the subrou-
tines LARRR, LARRE, LARRV, and potentially, LARRJ (see Figure 2). Note
that the required workspace is linear in the matrix dimension.

3.5 A Note on Design Alternatives

The current code design follows the LAPACK style of first computing all desired
eigenvalues and afterwards, the corresponding eigenvectors.

There is an alternative way of organizing the computation. After splitting,
the eigenpairs of each matrix sub-block can be computed independently from
those of the other sub-blocks. Thus, it would be possible to compute all eigen-
pairs of a given block first, before moving on to the next.

4. SUBROUTINE LARRE

LARRE is one of the two major computational subroutines used by STEGR. For
each unreduced block, LARRE computes its root representation and the desired
eigenvalues by either bisection or dqds.

4.1 Principal Algorithmic Structure and Functionalities

For the algorithmic structure, see Algorithm 5. The functionalities are illus-
trated in Figure 3.

Algorithm 5. Principal algorithmic structure of LARRE: Given a real symmetric tridi-
agonal matrix T , find its unreduced sub-blocks. For each sub-block, compute its root
representation and the desired eigenvalues. Subsets of the spectrum can be designated
either by indices IL : IU or by an interval [VL, VU]

Record Gersgorin intervals.
Record splitting indices, set negligible off-diagonals to zero.
if only a subset of the spectrum is desired then

if the desired subset is given by its indices IL : IU then
Find a corresponding interval [VL, VU].

else
Find the (global) indices IL : IU corresponding to the given interval [VL, VU].
end if
Compute crude approximations to the desired eigenvalues by bisection.

end if
for each unreduced block of T do

(B1) Decide whether dqds or bisection will be used for the eigenvalue
computation.

(B2) Choose a shift for the root representation.
(B3) Compute the root RRR.
(B4) Perturb the root RRR by a few ulps.
(B5) Compute desired eigenvalues of the RRR by bisection or dqds.

end for

ACM Transactions on Mathematical Software, Vol. 32, No. 4, December 2006.



The Design and Implementation of the MRRR Algorithm • 545

Fig. 3. Principal functionalities of LARRE.

4.2 Detailed Algorithmic Structure and Functionalities

In this section, we expand our description of the central part of Algorithm 5.
Algorithm 6 describes the algorithm once an unreduced block of T has been
found. It shows how the root representation is chosen. It also gives details on
the computation of the (local) eigenvalues, as well as their indices and block
numbers, by either bisection or dqds. Note that the dqds algorithm requires a
definite RRR, whereas bisection does not.

Figure 4 expands on Figure 3, illustrating the functionalities and dependen-
cies on other subroutines.

4.3 Governing Parameters

—Initial precision of bisection: Dqds always computes the eigenvalues to full
accuracy. However, if bisection is used, it can be more efficient not to compute
the eigenvalues to full precision, since they can be improved through Rayleigh
quotient correction in LARRV.

—Maximum allowable element growth for the root factorization: When dqds is
used, the root representation is definite and thus an RRR for all eigenval-
ues. An LDLT factorization for a shift inside the spectrum is an RRR for all
eigenvalues if the element growth is small enough (see Parlett and Dhillon
[2000] for details).
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Fig. 4. Detailed functionalities of LARRE.

—The threshold to switch between bisection and dqds: If a large enough propor-
tion of eigenvalues is desired, the code uses dqds to find all eigenvalues and
discards those that are unwanted.

—The size of the random perturbation applied to the root representation: To
break up very tight clusters, tiny random perturbations are made to the root
representation (see Dhillon et al. [2005] for details).

4.4 Workspace Requirements

LARRE requires 6N real workspace that is shared and reused by the subrou-
tines for bisection (LARRD, LARRB) and the dqds algorithm (LASQ2). The
storage requirements are dictated by dqds for which 6N storage is needed in
total. Integer workspace IWORK requirements are dominated by LARRD.

5. SUBROUTINE LARRV

LARRV is the second major computational subroutine used by STEGR. It com-
putes, from the output generated by LARRE, the desired eigenvectors.
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Algorithm 6. Detailed algorithmic structure of the central part of LARRE: For each
unreduced sub-block, compute an RRR and its eigenvalues

for each unreduced block of T do
Deal with 1 × 1 block and proceed to next block immediately.
Find spectral diameter of the current block.

(B1) Decide whether dqds or bisection will be used for the eigenvalue computation:
if only a subset of the spectrum is desired then

Count the number of desired eigenvalues in the block.
If a big percentage of the spectrum is desired, dqds will be used, otherwise

bisection is invoked.
else

Dqds is used for the full spectrum.
end if

(B2) Choose a shift for the root representation:
if the dqds algorithm is to be used then

Compute the extremal eigenvalues accurately to yield bounds V L and V U on
the desired eigenvalues.

else
Find adequate lower and upper bounds V L and V U on extreme desired eigen-

values as initial shifts.
end if
Compute the Sturm counts at the 0.25 and 0.75 points of the desired interval

[VL, VU].
Choose shift σ for the root RRR at the most crowded end.

(B3) Compute the root RRR:
while no factorization has been accepted as an RRR do

Compute factorization T −σ I = LDLT , accept if element growth is less than the
tolerance.

if the dqds algorithm is to be used then
Accept if the factorization is positive or negative definite.

else
Change shift if factorization is not accepted.

end if
end while

(B4) Perturb the root RRR by a few ulps:
Perturb each element of D and L by a tiny random relative amount.
Store the representation in the corresponding block of T , the matrix D in the

diagonal part and the nontrivial entries of L in the off-diagonal part.

(B5) Compute desired eigenvalues of the RRR by bisection or dqds:
if Dqds is used then

Compute all eigenvalues, discard unwanted ones.
Record uncertainties, gaps, local indices and block numbers.

else
Change previously computed approximate eigenvalues of T by shift σ (of root

RRR).
Refine approximate eigenvalues, uncertainties, and gaps by bisection to a

specified accuracy.
Record local indices and block numbers.

end if
end for

ACM Transactions on Mathematical Software, Vol. 32, No. 4, December 2006.



548 • I. S. Dhillon et al.

Algorithm 7. Principal algorithmic structure of LARRV: Build the representation tree
and refine the eigenvalues. Compute eigenvectors of singletons by inverse iteration with
a twisted factorization

for each unreduced block of T do
if the block does not contain any desired eigenvalues then

skip block.
end if
(C1) Build representation tree from the root down one level at a time as follows:
while there are still eigenvectors of this block to be computed do

(C2) Process nodes of current level of representation tree as follows:
for each node do

(C3) Retrieve the RRR of the node and refine its eigenvalues, if needed.
while the node is not entirely processed do

(C4)Identify the next child.
if a child is not a singleton then

(C5) Compute an RRR for the child and store it.
else

(C6) Refine the eigenvalue and compute the corresponding eigenvector.
end if

end while
end for

end while
end for

5.1 Principal Algorithmic Structure and Functionalities

See Algorithm 7 for the structure, and Figure 5 for an illustration of the func-
tionalities.

5.2 Detailed Algorithmic Structure and Functionalities

In this section, we expand our description of the central part of Algorithm 7.
Algorithm 8 describes the computations for a sub-block. Note that we use the
word “eigenvector” for an accepted FP vector: Algorithmically, we compute an
FP vector which has the numerical properties of an eigenvector when the corre-
sponding eigenvalue is approximated to high relative accuracy see Section (2).

The functionalities and code dependencies of LARRV are illustrated in
Figure 6.

5.3 Governing Parameters

—Precision of bisection when refining the eigenvalues of a child: Bisection is
used to refine the local eigenvalues of a child after they have been translated
by the new incremental shift. Shifting generally leads to a loss of the leading
digits that the eigenvalues have in common. In general, it is not necessary
to compute the eigenvalues to full precision by bisection, since Rayleigh quo-
tient correction is available when computing the vector. However, a minimal
number of leading figures have to be accurate so that relative gaps can be
reliably identified.

—The number of Rayleigh quotient correction steps: Once a singleton is encoun-
tered, its eigenvalue with respect to the current RRR must have maximal
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Fig. 5. Principal functionalities of LARRV.

accuracy (if the the separation is small; accuracy requirements can be relaxed
if the separation is large). Rayleigh quotient correction is more efficient in
the asymptotic region than bisection, but need not be reliable within clusters
of close eigenvalues. Since the asymptotic region is not known a priori, the
algorithm tries to improve the approximation by a number of Rayleigh quo-
tient correction steps. Bisection can guard the Rayleigh quotient correction
against convergence to the neighboring eigenvalue.

—The minimum relative gap between children: The error in the FP vector is
proportional to the reciprocal of the relative gap between eigenvalues. So, we
insist on the relative gap being larger than a threshold. If the threshold is
increased, then more representations are used and the representation tree
will become deeper.

5.4 Workspace Requirements

LARRV partitions the available workspace into persistent storage and storage
that is shared and reused by called subroutines.

Real persistent data includes:

—the local eigenvalues, that is, the eigenvalues with respect to the current
RRR (size N ); and

—the quantities lidi and l2
i di for the current representation (size 2N ), needed

for dqds transformations.
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Algorithm 8. Detailed algorithmic structure of the central part of LARRV: Given
the root representation and its eigenvalues, compute the corresponding eigenvectors

(C1) Build representation tree from the root down one level at a time as follows:
Retrieve root representation.
Initialize queue of unprocessed nodes with root.
while there are still eigenvectors of this block to be computed do

(C2) Process nodes of current level of representation tree:
The unprocessed nodes are stored in a queue.
Nodes of the current level are dequeued, children (except singletons), as detected,

are enqueued.
This corresponds to a breadth-first construction of the representation tree.
for each unprocessed node of the current level do

(C3) Retrieve the RRR of the node and refine its eigenvalues:
Retrieve the RRR of the node (stored in T if root, otherwise in the unused part

of the eigenvector matrix Z ).
Refine the local eigenvalues to enough figures so that the relative gaps can be

assessed accurately enough and singletons can be detected.
while the node is not entirely processed do

(C4) Identify the next child:
Starting with the leftmost unprocessed eigenvalue of the node, proceed

to the right to identify the next child, that is, until a large relative gap is detected.
if a child is not a singleton then

(C5) Compute an RRR for the child and store it:
Store RRR in Z at the index corresponding to the first and second

eigenvalues of the node.
Add the child node to the queue to be processed on the next level of the tree.

else
(C6) Refine the eigenvalue (if needed) and compute the corresponding

eigenvector:
while the FP vector is not accepted do

Compute FP vector from one step of inverse iteration with a twisted
factorization.

Record Rayleigh Quotient correction and residual norm.
if Rayleigh quotient correction or residual norm is small enough then

Signal convergence.
Store refined eigenvalue with appropriate shift.

else
if Rayleigh quotient correction is accepted and maximum allowed

number of steps is not exceeded then
Improve eigenvalue approximation by Rayleigh quotient correction.

else
Refine eigenvalue to full accuracy by bisection

end if
end if

end while
Scale computed vector to unit length and store it.

end if
end while

end for
end while
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Fig. 6. Detailed functionalities of LARRV.

Integer persistent data includes:

—the twist index for each singleton (size N ); and

—the queue for nodes of the current level of the representation tree and parent
level (size 2N ).

The remaining real and integer workspace is shared and reused by LAR1V,
LARRF, and LARRB.

Furthermore, the matrix of the eigenvectors Z is used as intermediate stor-
age for representations.

6. SUBROUTINE LARRF

LARRF is an auxiliary subroutine called by LARRV to compute a new RRR for
a child from the representation of its parent.

6.1 Principal Algorithmic Structure

For the algorithmic structure, see Algorithm 9.
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Algorithm 9. Principal algorithmic structure of LARRF: Compute an RRR of a child
from the RRR of a parent

Given a node with representation LDLT and (local) eigenvalues λi ∈ [l , r]
Set σl = l and σr = r
while No RRR has been found do

Compute factorization at left end: L̂D̂L̂T = LDLT − σl I .
if factorization has little element growth then

Accept factorization as RRR and exit.
end if
Compute factorization at right end: ĽĎĽT = LDLT − σr I .
if factorization has little element growth then

Accept factorization as RRR and exit.
end if
(D1) Inspect the factorizations at each end of the child.
if (D2) the better of the two factorizations passes the refined test for an RRR then

Accept that factorization as RRR and exit.
else

if maximum number of trials not exceeded then
(D3) Save characteristics of better factorization for later inspection.
(D4) Choose new shifts by backing off from the cluster ends by a small

amount.
else

(D5) Inspect all computed factorizations and choose the one with smallest
element growth as RRR.

end if
end if

end while

6.2 Detailed Algorithmic Structure

In this section, we describe in detail the algorithm for finding an RRR of a
child. From the RRR of the parent, the algorithm computes two new factor-
izations, with shifts σl = l and σr = r, using the differential stationary qds
transform. If little element growth occurs in a factorization, it can be accepted
as an RRR. Even with (moderately) large element growth, a factorization can
still be an RRR for the desired subset. A heuristic test is employed to check. If
both factorizations are unsatisfactory, the shifts σl and σr are changed and new
factorizations are computed. For any factorization without a NaN, we save the
shift and the element growth to select the factorization with smallest growth
as backup safeguard (see Algorithm 10).

6.3 Governing Parameters

—The maximum allowable element growth to accept a factorization as RRR
immediately: A factorization with essentially no element growth defines all
its eigenvalues to high relative accuracy. For this reason, such a factorization
can immediately be accepted as an RRR. However, there is the danger of
selecting a factorization prematurely, without looking at others if there is
element growth.

—The amount by which to back off from the cluster ends: As mentioned before,
we have to carefully select the amount by which to back off. The goal of
backing off is to reduce element growth, while preserving large relative gaps.

ACM Transactions on Mathematical Software, Vol. 32, No. 4, December 2006.



The Design and Implementation of the MRRR Algorithm • 553

Algorithm 10. Detailed algorithmic structure of the central part of LARRF. Finding a
suitable factorization as RRR for a child when element growth occurs

(D1) Inspect the factorizations at each end of the child:
if no NaN has occurred then

choose the one with smaller element growth as the better one.
else

Disregard any factorization with a NaN completely.
If there is one factorization without NaN, select it as the better one.
Ignore the following RRR test and go directly to (D2a).

end if

(D2) the factorization passes the refined test for an RRR:
Compute an approximate eigenvector v from product of entries of bidiagonal
factor L at the poorer end of cluster.
RRR test: Compute relative condition number ‖Dv‖∞, D from the better end.
if the RRR test is passed then

Accept that factorization as RRR and exit.
end if

if (D2a) maximum number of trials not exceeded then
(D3) Save characteristics of better factorization for later inspection:
Save the shift and the element growth.

(D4) Choose new shifts by backing off from the cluster ends by a small amount:
Choose δl and δr large enough to decrease the element growth and small enough

to preserve large relative gaps.
σl = σl − δl , σr = σr − δr .
Double δl and δr .

else

(D5) Inspect all computed factorizations and choose the best:
From all factorizations without NaNs, take the one with the smallest

element growth.

end if

If a shift near the end of a cluster coincides with a Ritz value (an eigenvalue of
a principal submatrix), then the factorization breaks down. The code tries a
new shift by backing away from the end. However, by selecting the shift of the
representation farther away from the eigenvalues, the relative gaps inside
the child decrease and thus, the algorithm has to do more work to compute
orthogonal eigenvectors. Backing off too far even might, in an extreme case,
make the algorithm fail to find a relative gap above the threshold. On the
other hand, backing off too little will not reduce the element growth. A natural
choice is to back away by the distance to the next eigenvalue (in the child) or
the average gap inside the cluster. More research is needed on this subject.

—The number of times the algorithm should back away from the ends of a child.

7. SUBROUTINE LAR1V

LAR1V is an auxiliary subroutine called by LARRV to compute an FP vector
of a singleton. This is essentially Algorithm Getvec from Dhillon and Parlett
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Algorithm 11. Principal algorithmic structure of LAR1V: Compute an FP vector for a
relatively isolated eigenvalue approximation from a twisted factorization

Given a parent RRR LDLT and a relatively isolated approximate eigenvalue λ̂.
(E1) Compute forward and backward factorization of LDLT − λ̂I .
if the location of the twist index has not been previously chosen then

(E2) Compute γk , k = 1, . . . , n and find the twist index r = arg min |γk |.
end if
Form the twisted factorization LDLT − λ̂I = Nr�r N T

r using the data from (E1).
(E3) Compute the FP vector by solving N T

r v = er (⇔ Nr�r N T
r v = γrer ), v(r) = 1.

[2004b]. Apart from the FP vector vr , it also returns the twist index r from the
twisted factorization used, the Sturm count (or negcount, the number of pivots
smaller than λ̂), and γr . Here, γr can be used to compute the residual of the FP
vector and Rayleigh quotient correction γ /‖vr‖2

2 to λ̂.
The optional Sturm count can be used to ensure the correct direction (sign)

of the proposed Rayleigh quotient correction: If the proposed correction step
has the correct sign and lies within the uncertainty interval, it is accepted. On
the other hand, if the Sturm count indicates that the proposed correction step
goes in the wrong direction or that the size of the correction step would take the
new iterate outside the known uncertainty interval, the algorithm switches to
bisection to compute the eigenvalue.

7.1 Principal Algorithmic Structure and Functionalities

In order to simplify the presentation, we only describe the main parts of the
computation of the FP vector in Algorithm 11. For the computation of the Sturm
count and a more detailed description, we refer to Section 7.2.

7.2 Detailed Algorithmic Structure and Functionalities

This section gives the details on how to compute an FP vector. Note that the
computation of the twist index r is only done once per eigenvalue and omitted
if multiple Rayleigh corrections are applied to the same eigenvalue approxima-
tion. Furthermore, the computation of the Sturm count of λ̂ can be omitted if
λ̂ is accurate. One detail is omitted in Algorithm 12: We must ensure that the
Sturm count is only computed from factorizations without a NaN.

8. SUBROUTINE LARRA

It is a very common technique in eigensolvers to split a given matrix into unre-
duced blocks and then work in turn on each of the blocks. One major reason is
efficiency: Since all solvers have a complexity that is superlinear with respect
to the matrix size, smaller sub-blocks will improve performance with respect
to storage and operations. There is a second reason for splitting in MRRR: The
theory assumes that all eigenvalues are simple.

MRRR offers two different splitting strategies:

—An “absolute” splitting criterion that sets the off-diagonal value to zero when-
ever it is small compared to ‖T‖.

ACM Transactions on Mathematical Software, Vol. 32, No. 4, December 2006.



The Design and Implementation of the MRRR Algorithm • 555

Algorithm 12. Detailed algorithmic structure of LAR1V: Compute an FP vector for λ̂
from a twisted factorization. Optionally, supply a Sturm count of λ̂

(E1) Compute forward and backward factorization of LDLT − λ̂I :
Compute forward factorization LDLT − λ̂I = L+ D+LT

+ by the differential stationary
qds transform.
Compute the Sturm count of λ̂.
if the twist index r has been previously chosen then

Only compute the factorization (and the Sturm count) down to the index r.
end if
Compute backward factorization LDLT − λ̂I = U− D−U T

− by the differential
progressive qds transform.
if the twist index r has been previously chosen then

Only compute the factorization (and the Sturm count) up to the index r.
end if

if the location of the twist index has not been previously chosen then
(E2) Compute γk , k = 1, . . . , n and find the twist index r = arg min |γk |:
γk = sk + pk , k = 1, . . . , n. (sk arise in the forward, pk in the backward

factorization.)
Choose r as the index of the minimum |γr |.
If dstqds and dqds factorization have been stopped at index r, the sign of γr

completes the Sturm count.
end if
Form the twisted factorization Li Di LT

i − λ̂I = Nr�r N T
r using the data from (E1).

(E3) Compute the FP vector by solving N T
r v = er (⇔ Nr�r N T

r v = γrer ), v(r) = 1:
Find the solution of Nr�r N T

r v = γrer by solving N T
r v = er :

Solve backward using L+ with indices r − 1 : −1 : 1 and forward using U− with
indices r + 1 : n.

—A “relative” splitting criterion that sets the off-diagonal value to zero when-
ever it is small compared to the geometric mean of its neighboring diagonal
elements.

The relative splitting criterion is designed so that neglecting an off-diagonal is
equivalent to tiny relative changes in the neighboring diagonal elements.

9. ROUTINES FOR COMPUTING EIGENVALUES

Bisection plays a central role when computing the eigenvalues to high relative
accuracy. This is based on Sturm counts computed from the differential qds algo-
rithm. Originally proposed by Rutishauser [1954, 1976], [Fernando and Parlett
1994; Parlett 1995] discovered the shifted differential variant that MRRR
uses.

LARRB implements bisection for tridiagonal matrices in factored form LDLT

and has two alternative criteria for stopping the refinement of an eigenvalue.
Consider neighboring eigenvalue approximations λ̂i and λ̂i+1 with uncertainties
±δλi and ±δλi+1 so that the true ith eigenvalue lies in [λ̂i − δλi, λ̂i + δλi] and
the true i + 1-th in [λ̂i+1 − δλi+1, λ̂i+1 + δλi+1]. Denote by λ̂i+1 − δλi+1 − λ̂i − δλi

the right gap of λ̂i. Then eigenvalue λ̂i has converged if either of the following
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is true:

—The width of the uncertainty interval of λ̂i is smaller than a threshold times
its right gap. This means that the uncertainty in the eigenvalue cannot
change the gap by more than a relative amount determined by the threshold.

—The width of the uncertainty interval of λ̂i is smaller than a threshold times
the maximum (in absolute value) of the two interval boundaries. This im-
plies that the eigenvalue is correct to a number of digits determined by the
threshold.

LARRB is used each time a child has been computed from its parent in order to
recover lost figures in precision due to shifting. Furthermore, it is used for the
computation of singletons in the case that Rayleigh quotient correction does not
converge to the desired eigenvalue. It has an input parameter that allows a user
to choose between different Sturm counts: The twist index is an integer between
1 and n; setting it to n corresponds to a differential stationary qds transform,
and setting it to 1 to a differential progressive qds transform, otherwise, it is a
twisted factorization with twist index r.

LARRC does Sturm counts on the matrix T at two fixed points l and r and
returns the number of eigenvalues in [l,r]. It is used by STEGR to compute the
needed workspace when the eigenvalues in an interval [V L, V U ] have to be
computed. Another use is to find the most crowded end of the spectrum when
computing the root representation of a block in LARRE.

LARRD implements bisection for tridiagonal matrices T and has a single
convergence criterion: the relative width of the convergence interval. LARRD
is a variant of the LAPACK code STEBZ that has been adapted for STEGR.
Apart from computing initial approximations of eigenvalues, it can also be used
to compute the index of an eigenvalue in its block when the matrix splits.

LARRJ implements bisection for tridiagonal matrices T and has a single
convergence criterion: the relative width of the convergence interval. Its func-
tionality is similar to LARRD, with the difference that it refines given initial
intervals around the selected eigenvalues. It is used for postprocessing of the
eigenvalues computed in LARRE and LARRV in case the user asks STEGR to
compute eigenvalues to high relative accuracy and the matrix T allows this (see
Section (10)). LARRD is not easily adaptable to the task of refining eigenvalues
from a given initial interval.

LASQ2 is the LAPACK implementation of the dqds algorithm [Parlett and
Marques 2000] that internally computes the eigenvalues of a (positive or neg-
ative) definite LDLT factorization. For this reason, if dqds is used, the root
representation has to be definite.

10. LARRR: TEST IF T DEFINES ITS EIGENVALUES TO HIGH RELATIVE
ACCURACY

STEGR aims to compute the eigenvalues of T to high relative accuracy if the
matrix deserves it. There are a number of sufficient criteria that T can be tested
on (see Barlow and Demmel [1990]). Currently, we test whether T is scaled
diagonally dominant (s.d.d.). For the algorithmic structure, see Algorithm 13.
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Algorithm 13. LARRR: Test if T is s.d.d. and thus defines its eigenvalues to high relative
accuracy

S.D.D. test:
Compute matrix T̂ = D−1/2T D−1/2 with diagonal entries ±1.
if |êi| + |êi−1| < 1 , ∀i then

return TRUE
else

return FALSE
t end if

11. SPECIAL TOPICS

In this article, we have shown how the theory of the MRRR algorithm translates
into software. We have described the design and implementation of STEGR,
which will be part of the next release of LAPACK. We have identified governing
parameters of the algorithm and discussed their influence on accuracy and
performance. There are a number of additional topics regarding current and
future research that we address in this section.

11.1 Test Matrices and Performance Comparison

A comprehensive comparison of all LAPACK eigensolvers on a large set of to-
day’s computer architectures is in preparation [Demmel et al. 2005]. The article
compares inverse iteration, Divide and Conquer [Bunch et al. 1978; Cuppen
1981; Gu and Eisenstat 1995], the QR algorithm, and the MRRR algorithm
when computing all eigenpairs. It covers both accuracy (orthogonality and resid-
ual norm) and performance (timing) aspects. The new subset functionality of
the MRRR algorithm [Marques et al. 2005] is compared to subset computations
with inverse iterations; note that the QR algorithm and Divide and Conquer
do not permit subset computations at reduced cost.

In theory, QR has O(n3) and MRRR has O(n2) complexity. Inverse iteration
has O(n3) complexity in the worst case, depending on the amount of reorthog-
onalization necessary. Divide and Conquer has O(n3) complexity in the worst
case, but can be substantially faster, depending on the amount of deflation.

In practice, the MRRR algorithm is usually faster than all other methods on
matrices from industrial applications. However, there are matrix classes, such
as Wilkinson and glued matrices, that can represent difficulties for the MRRR
algorithm (see Dhillon et al. [2005]). In such cases, the Divide and Conquer
algorithm can be substantially faster.

11.2 The Role of IEEE-754 Arithmetic

As illustrated in the previous sections, bidiagonal factorizations by differential
qds algorithms play central roles in the MRRR algorithm that are summarized
in the following:

(1) The construction of the representation tree. Each child RRR is computed
from its parent by solving L+D+LT

+ = LDLT − σ I (see Algorithm 2).
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(2) The computation of the twisted factorization LDLT − λ̂I = Nr�r N T
r (see

Eq. (13)). It permits us to solve Eq. (7) by (14) using only multiplications.

(3) The computation of the eigenvalues of a given RRR by bisection using Sturm
sequences on LDLT or the dqds algorithm (see Section 9).

In the implementation of the differential qds algorithms, we rely on IEEE-
754 arithmetic [ANSI/IEEE 1985; Overton 2001] to avoid branched tests in
loops [Demmel and Li 1994]. Whenever a pivot (d+ in the stationary, d− in the
progressive case) is zero, subsequent computations lead to an invalid operation
∞/∞, denoted by NaN (“not a number”). In such a case, the computation is
repeated by a slower variant that avoids the NaN. See Marques et al. [2005]
for a detailed exposition.

11.3 Parallelization

The MRRR algorithm naturally allows for a parallel computation with perfect
O(n2/p) memory per processor (p denoting the number of processors used).
This is substantially better than parallel inverse iteration, such as PDSYEVX in
ScaLAPACK (see Antonelli and Vömel [2005] for details).

There are two parallel implementations: ParEig [Bientinesi et al. 2005]
within PLAPACK [van de Geijn 1997], and PDSYEVR [Antonelli and Vömel 2005]
for ScaLAPACK [Choi et al. 1996].

ParEig relies on dynamic memory allocation and MPI [Snir et al. 1996],
while PDSYEVR works with static workspace and uses the BLACS [Dongarra and
Whaley 1995; Dongarra and van de Geijn 1991] and PBLAS [Choi et al. 1995].

11.4 Vectorization

In general, LAPACK [Anderson et al. 1999] computational routines make use
of basic linear algebra subprograms (BLAS) as much as possible. In particular,
matrix-matrix operations, the level-3 BLAS [Dongarra et al. 1990; Blackford
et al. 2002], have proved to be powerful for obtaining close to peak performance
on many modern architectures. They amortize the cost of obtaining data from
main memory by reusing data in the cache or high-level memory (see Dongarra
et al. [1998]). As an example, the Divide and Conquer [Bunch et al. 1978; Cup-
pen 1981; Gu and Eisenstat 1995] algorithm uses the BLAS 3 matrix-matrix
multiplication kernel DGEMM to efficiently compute eigenvectors as a product of
two orthogonal matrices (at higher storage cost).

The MRRR algorithm does not lend itself to the use of BLAS 3 for higher per-
formance. The main computational loop, the bidiagonal factorization through
differential qds, is inherently sequential. However, it is possible to perform sev-
eral of these factorizations at the same time. To explore such possibilities for
vectorization is a subject of current research.
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