
45
Computation of the

Singular Value
Decomposition

Alan Kaylor Cline
The University of Texas at Austin

Inderjit S. Dhillon
The University of Texas at Austin

45.1 Singular Value Decomposition . . . . . . . . . . . . . . . . . . . . . . 45-1
45.2 Algorithms for the Singular Value Decomposition . . . 45-4
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45-12

45.1 Singular Value Decomposition

Definitions:

Given a complex matrix A having m rows and n columns, if σ is a nonnegative scalar, and u and v are
nonzero m- and n-vectors, respectively, such that

Av = σu and A∗u = σv,

then σ is a singular value of A and u and v are corresponding left and right singular vectors, respectively.
(For generality it is assumed that the matrices here are complex, although given these results, the analogs
for real matrices are obvious.)

If, for a given positive singular value, there are exactly t linearly independent corresponding right singular
vectors and t linearly independent corresponding left singular vectors, the singular value has multiplicity
t and the space spanned by the right (left) singular vectors is the corresponding right (left) singular space.

Given a complex matrix A having m rows and n columns, the matrix product U�V∗ is a singular value
decomposition for a given matrix A if� U and V , respectively, have orthonormal columns.� � has nonnegative elements on its principal diagonal and zeros elsewhere.� A = U�V∗.

Let p and q be the number of rows and columns of �. U is m × p, p ≤ m, and V is n × q with q ≤ n.
There are three standard forms of the SVD. All have the i th diagonal value of � denoted σi and ordered

as follows: σ1 ≥ σ2 ≥ · · · ≥ σk , and r is the index such that σr > 0 and either k = r or σr+1 = 0.

1. p = m and q = n. The matrix � is m × n and has the same dimensions as A.
2. p = q = min{m, n}.The matrix � is square.
3. If p = q = r, the matrix � is square. This form is called a reduced SVD and denoted by Û �̂V̂∗.
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FIGURE 45.1 The first form of the singular value decomposition where m < n.

FIGURE 45.2 The second form of the singular value decomposition where m ≥ n.

FIGURE 45.3 The second form of the singular value decomposition where m < n.

FIGURE 45.4 The first form of the singular value decomposition where m ≥ n.
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FIGURE 45.5 The third form of the singular value decomposition where r ≤ n ≤ m.

FIGURE 45.6 The third form of the singular value decomposition where r ≤ m < n.
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Facts:

The results can be found in [GV96, pp. 70–79]. Additionally, see Chapter 5.6 for introductory material and
examples of SVDs, Chapter 17 for additional information on singular value decomposition, Chapter 15
for information on perturbations of singular values and vectors, and Chapter 39.9 for information about
numerical rank.

1. If U�V∗ is a singular value decomposition for a given matrix A then the diagonal elements {σi }
of � are singular values of A. The columns {ui }p

i=1of U and {vi }q
i=1 of V are left and right singular

vectors of A, respectively.
2. If m ≥ n, the first standard form of the SVD can be found as follows:

(i) Let A∗ A = V�V∗ be an eigenvalue decomposition for the Hermitian, positive semidefinite
n × n matrix A∗ A such that � is diagonal (with the diagonal entries in nonincreasing order)
and V is unitary.

(ii) Let the m × n matrix � have zero off-diagonal elements and for i = 1, . . . , n let σi , the i th

diagonal element of �, equal +√λi , the positive square root of the i th diagonal element of �.

(iii) For i = 1, . . . , n, let the m × m matrix U have i th column, ui , equal to 1/σi Avi if σi �= 0. If
σi = 0, let ui be of unit length and orthogonal to all u j for j �= i , then U�V∗ is a singular
decomposition of A.

3. If m < n the matrix A∗ has a singular value decomposition U�V∗ and V�T U ∗ is a singular value
decomposition for A. The diagonal elements of � are the square roots of the eigenvalues of AA∗.
The eigenvalues of A∗ A are those of AA∗ plus n − m zeros. The notation �T rather than �∗ is
used because in this case the two are identical and the transpose is more suggestive. All elements of
� are real so that taking complex conjugates has no effect.

4. The value of r , the number of nonzero singular values, is the rank of A .
5. If A is real, then U and V (in addition to �) can be chosen real in any of the forms of the SVD.
6. The range of A is exactly the subspace of Cm spanned by the r columns of U that correspond to

the positive singular values.
7. In the first form, the null space of A is that subspace of Cn spanned by the n − r columns of V that

correspond to zero singular values.
8. In reducing from the first form to the third (reduced) form, a basis for the null space of A has been

discarded if columns of Vhave been deleted. A basis for the space orthogonal to the range of A(i.e.,
the null space of A∗ ) has been discarded if columns of U have been deleted.

9. In the first standard form of the SVD, U and V are unitary.
10. The second form can be obtained from the first form simply by deleting columns n + 1, . . . , m of

U and the corresponding rows of S, if m > n, or by deleting columns m + 1, . . . , n of V and the
corresponding columns of S, if m < n. If m �= n, then only one of U and V is square and either
UU ∗ = Im or V V∗ = In fails to hold. Both U ∗U = Ip , and V∗V = Ip .

11. The reduced (third) form can be obtained from the second form by taking only the r × r principle
submatrix of �, and only the first r columns of U and V . If A is rank deficient (i.e., r < min{m, n}),
then neither U nor V are square and neither U ∗U nor V∗V is an identity matrix.

12. If p < m, let Ũ be an m×(m− p)matrix of columns that are mutually orthonormal to one another
as well as to the columns of U and define the m × m unitary matrix

U
� = [U Ũ

]
.

If q < n, let Ṽ be an n × (n − q)matrix of columns that are mutually orthonormal to one another
as well as to the columns of Vand define the n × n unitary matrix

V
� = [V Ṽ

]
.
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Let �
�

be the m × n matrix

�
� =
[
� 0
0 0

]
,

then

A = U
�

�
�

V
�∗, AV

� = U
�

�
�∗, A∗ = V

�
�
�T U

�∗, and A∗U
� = V

�
�
�T .

13. Let U�V∗be a singular value decomposition for A, an m × n matrix of rank r , then:

(i) There are exactly r positive elements of � and they are the square roots of the r positive
eigenvalues of A∗ A (and also AA∗) with the corresponding multiplicities.

(ii) The columns of V are eigenvectors of A∗ A; more precisely, v j is a normalized eigenvector of
A∗ A corresponding to the eigenvalue σ 2

j , and u j satisfies σ j u j = Av j .

(iii) Alternatively, the columns of U are eigenvectors of AA∗; more precisely, u j is a normalized
eigenvector of AA∗ corresponding to the eigenvalue σ 2

j , and v j satisfies σ j v j = A∗u j .

14. The singular value decomposition U�V∗ is not unique. If U�V∗ is a singular value decomposition,
so is (−U )�(−V∗). The singular values may be arranged in any order if the columns of singular
vectors in U and V are reordered correspondingly.

15. If the singular values are in nonincreasing order then the only option for the construction of � is
the choice for its dimensions p and q and these must satisfy r ≤ p ≤ m and r ≤ q ≤ n.

16. If A is square and if the singular values are ordered in a nonincreasing fashion, the matrix � is
unique.

17. Corresponding to a simple (i.e., nonrepeated) singular value σ j , the left and right singular vectors,
u j and v j , are unique up to scalar multiples of modulus one. That is, if u j and v j are singular
vectors then for any real value of θ so are eiθ u j and eiθ v j , but no other vectors are singular vectors
corresponding to σ j .

18. Corresponding to a repeated singular value, the associated left singular vectors u j and right sin-
gular vectors v j may be selected in any fashion such that they span the proper subspace. Thus, if
u j1 , . . . , u jr and v j1 , . . . , v jr are the left and right singular vectors corresponding to a singular value
σ j of multiplicity s , then so are u′

j1
, . . . , u′

jr and v′
j1 , . . . , v′

jr if and only if there exists an s × s uni-
tary matrix Q such that [u′

j1
, . . . , u′

jr ] = [u j1 , . . . , u jr ] Q and [v′
j1

, . . . , v′
jr

] = [v j1 , . . . , v jr ] Q.

Examples:

For examples illustrating SVD, see Chapter 5.6.

45.2 Algorithms for the Singular Value Decomposition

Generally algorithms for computing singular values are analogs of algorithms for computing eigenvalues
of symmetric matrices. See Chapter 42 and Chapter 46 for additional information. The idea is always to
find square roots of eigenvalues of AT A without actually computing AT A. As before, we assume the matrix
A whose singular values or singular vectors we seek is m × n. All algorithms assume m ≥ n; if m < n,
the algorithms may be applied to AT . To avoid undue complication, all algorithms will be presented as
if the matrix is real. Nevertheless, each algorithm has an extension for complex matrices. Algorithm 1 is
presented in three parts. It is analogous to the QR algorithm for symmetric matrices. The developments
for it can be found in [GK65], [GK68], [BG69], and [GR70]. Algorithm 1a is a Householder reduction
of a matrix to bidiagonal form. Algorithm 1c is a step to be used iteratively in Algorithm 1b. Algorithm 2
computes the singular values and singular vectors of a bidiagonal matrix to high relative accuracy [DK90],
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[Dem97]. Algorithm 3 gives a “squareroot-free” method to compute the singular values of a bidiagonal
matrix to high relative accuracy—it is the method of choice when only singular values are desired [Rut54],
[Rut90], [FP94], [PM00]. Algorithm 4 computes the singular values of an n × n bidiagonal matrix by the
bisection method, which allows k singular values to be computed in O(kn) time. By specifying the input
tolerance tol appropriately, Algorithm 4 can also compute the singular values to high relative accuracy.
Algorithm 5 computes the SVD of a bidiagonal by the divide and conquer method [GE95]. The most
recent method, based on the method of multiple relatively robust representations (not presented here),
is the fastest and allows computation of k singular values as well as the corresponding singular vectors
of a bidiagonal matrix in O(kn) time [DP04a], [DP04b], [GL03], [WLV05]. All of the above mentioned
methods first reduce the matrix to bidiagonal form. The following algorithms iterate directly on the input
matrix. Algorithms 6 and 7 are analogous to the Jacobi method for symmetric matrices. Algorithm 6—also
known as the “one-sided Jacobi method for SVD”—can be found in [Hes58] and Algorithm 7 can be found
in [Kog55] and [FH60]. Algorithm 7 begins with an orthogonal reduction of the m×n input matrix so that
all the nonzeros lie in the upper n×n portion. (Although this algorithm was named biorthogonalization in
[FH60], it is not the biorthogonalization found in certain iterative methods for solving linear equations.)
Many of the algorithms require a tolerance ε to control termination. It is suggested that ε be set to a small
multiple of the unit round off precision εo .

Algorithm 1a: Householder reduction to bidiagonal form:
Input: m, n, A where A is m × n.
Output: B , U, V so that B is upper bidiagonal, U and V are products of Householder matrices,
and A = U B V T .

1. B ← A. (This step can be omitted if A is to be overwritten with B .)
2. U = Im×n.
3. V = In×n.
4. For k = 1, . . . , n

a. Determine Householder matrix Qk with the property that:� Left multiplication by Qk leaves components 1, . . . , k − 1 unaltered, and

� Qk

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0

bk−1,k

bk,k

bk+1,k

...
bm,k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0

bk−1,k

s
0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, where s = ±

√
m∑

i=k
b2

i,k .

b. B ← Qk B .

c. U ← U Qk .

d. If k ≤ n − 2, determine Householder matrix Pk+1 with the property that:� Right multiplication by Pk+1 leaves components 1, . . . , k unaltered, and� [0 · · · 0 bk,k bk,k+1 bk,k+2 · · · bk,n
]

Pk+1 = [0 · · · 0 bk,k s 0 · · · 0
]

,

where s = ±
√∑n

j=k+1 b2
k, j .

e. B ← B Pk+1.

f. V ← Pk+1V .
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Algorithm 1b: Golub–Reinsch SVD:
Input: m, n, A where A is m × n.
Output: �, U, V so that � is diagonal, U and V have orthonormal columns, U is m × n, V is
n × n, and A = U�V T .

1. Apply Algorithm 1a to obtain B , U, V so that B is upper bidiagonal, U and V are products of
Householder matrices, and A = U B V T .

2. Repeat:

a. If for any i = 1, . . . , n − 1,
∣∣bi,i+1

∣∣ ≤ ε
(∣∣bi,i

∣∣+ ∣∣bi+1,i+1

∣∣) , set bi,i+1 = 0.

b. Determine the smallest p and the largest q so that B can be blocked as

B =

⎡⎢⎣B1,1 0 0
0 B2,2 0
0 0 B3,3

⎤⎥⎦ p
n − p − q

q

where B3,3 is diagonal and B2,2 has no zero superdiagonal entry.

c. If q = n, set � = the diagonal portion of B STOP.

d. If for i = p + 1, . . . , n − q − 1, bi,i = 0, then
Apply Givens rotations so that bi,i+1 = 0 and B2,2 is still
upper bidiagonal. (For details, see [GL96, p. 454].)

else
Apply Algorithm 1c to n, B , U, V, p, q .

Algorithm 1c: Golub–Kahan SVD step:
Input: n, B , Q, P , p, q where B is n × n and upper bidiagonal, Q and P have orthogonal
columns, and A = Q B P T .
Output: B , Q, P so that B is upper bidiagonal, A = Q B P T , Q and P have orthogonal columns,
and the output B has smaller off-diagonal elements than the input B . In storage, B , Q, and P
are overwritten.

1. Let B2,2 be the diagonal block of B with row and column indices p + 1, . . . , n − q .
2. Set C = lower, right 2 × 2 submatrix of B T

2,2 B2,2.
3. Obtain eigenvalues λ1, λ2 of C . Set µ = whichever of λ1, λ2 that is closer to c2,2.
4. k = p + 1, α = b2

k,k − µ, β = bk,kbk,k+1.

5. For k = p + 1, . . . , n − q − 1

a. Determine c = cos(θ) and s = sin(θ) with the property that:

[α β]

[
c s

−s c

]
=
[√

α2 + β2 0
]
.

b. B ← B Rk,k+1(c , s ) where Rk,k+1(c , s ) is the Givens rotation matrix that acts on columns k
and k + 1 during right multiplication.

c. P ← P Rk,k+1(c , s ).

d. α = bk,k , β = bk+1,k .

e. Determine c = cos(θ) and s = sin(θ) with the property that:[
c −s
s c

] [
α

β

]
=
[√

α2 + β2

0

]
.

f. B ← Rk,k+1(c , −s )B , where Rk,k+1(c , −s ) is the Givens rotation matrix that acts on rows k
and k + 1 during left multiplication.

g. Q ← Q Rk,k+1(c , s ).

h. if k ≤ n − q − 1α = bk,k+1, β = bk,k+2.
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Algorithm 2a: High Relative Accuracy Bidiagonal SVD:
Input: n, B where B is an n × n upper bidiagonal matrix.
Output: � is an n × n diagonal matrix, U and V are orthogonal n × n matrices, and B =
U�V T .

1. Compute σ to be a reliable underestimate of σmin(B) (for details, see [DK90]).
2. Compute σ = maxi (bi,i , bi,i+1).
3. Repeat:

a. For all i = 1, . . . , n − 1, set bi,i+1 = 0 if a relative convergence criterion is met (see [DK90]
for details).

b. Determine the smallest p and largest q so that B can be blocked as

B =

⎡⎢⎣B1,1 0 0
0 B2,2 0
0 0 B3,3

⎤⎥⎦ p
n − p − q

q

where B3,3 is diagonal and B2,2 has no zero superdiagonal entry.

c. If q = n, set � = the diagonal portion of B . STOP.

d. If for i = p + 1, . . . , n − q − 1, bi,i = 0, then
Apply Givens rotations so that bi,i+1 = 0 and B2,2 is still
upper bidiagonal. (For details, see [GV96, p. 454].)

else
Apply Algorithm 2b with n, B , U, V, p, q , σ , σ as inputs.

Algorithm 2b: Demmel–Kahan SVD step:
Input: n, B , Q, P , p, q , σ , σ where B is n × n and upper bidiagonal, Q and P have orthogonal
columns such that A = Q B P T , σ ≈ ||B || and σ is an underestimate of σmin(B).
Output: B , Q, P so that B is upper bidiagonal, A = Q B P T , Q and P have orthogonal columns,
and the output B has smaller off-diagonal elements than the input B . In storage, B , Q, and P
are overwritten.

1. Let B2,2 be the diagonal block of B with row and column indices p + 1, . . . , n − q .
2. If tol∗σ ≤ ε0σ , then

a. c ′ = c = 1.

b. For k = p + 1, n − q − 1� α = cbk,k ; β = bk,k+1.� Determine c and s with the property that:

[α β]

[
c s

−s c

]
= [r 0] , where r =

√
α2 + β2.

� If k �= p + 1, bk−1,k = s ′r .� P ← P Rk,k+1(c , s ), where Rk,k+1(c , s ) is the Givens rotation matrix that acts on columns
k and k + 1 during right multiplication.� α = c ′r, β = s bk+1,k+1.

(continued)
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Algorithm 2b: Demmel–Kahan SVD step: (Continued)

� Determine c ′ and s ′ with the property that:[
c ′ −s ′

s ′ c ′

] [
α

β

]
=
[√

α2 + β2

0

]
.

� Q ← Q Rk,k+1(c , −s ), where Rk,k+1(c , −s ) is the Givens rotation matrix that acts on rows
k and k + 1 during left multiplication.� bk,k =√α2 + β2.

c. bn−q−1,n−q = (bn−q ,n−q c)s ′; bn−q ,n−q = (bn−q ,n−q c)c ′.
Else

d. Apply Algorithm 1c to n, B , Q, P , p, q .

Algorithm 3a: High Relative Accuracy Bidiagonal Singular Values:
Input: n, B where B is an n × n upper bidiagonal matrix.
Output: � is an n × n diagonal matrix containing the singular values of B .

1. Square the diagonal and off-diagonal elements of B to form the arrays s and e, respectively, i.e.,
for i = 1, . . . , n − 1, si = b2

i,i , ei = b2
i,i+1, end for; sn = b2

n,n.
2. Repeat:

a. For all i = 1, . . . , n − 1, set ei = 0 if a relative convergence criterion is met (see [PM00] for
details).

b. Determine the smallest p and largest q so that B can be blocked as

B =

⎡⎢⎣B1,1 0 0
0 B2,2 0
0 0 B3,3

⎤⎥⎦ p
n − p − q

q

where B3,3 is diagonal and B2,2 has no zero superdiagonal entry.

c. If q = n, set � =√diag(s). STOP.

d. If for i = p + 1, . . . , n − q − 1, si = 0 then
Apply Givens rotations so that ei = 0 and B2,2 is still
upper bidiagonal. (For details, see [GV96, p. 454].)

else
Apply Algorithm 3b with inputs n, s, e.

Algorithm 3b: Differential quotient-difference (dqds) step:
Input: n, s, e where s and e are the squares of the diagonal and superdiagonal entries, respectively
of an n × n upper bidiagonal matrix.
Output: s and e are overwritten on output.

1. Choose µ by using a suitable shift strategy. The shift µ should be smaller than σmin(B)2. See
[FP94,PM00] for details.

2. d = s1 − µ.
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Algorithm 3b: Differential quotient-difference (dqds) step: (Continued)

1. For k = 1, . . . , n − 1

a. sk = d + ek .

b. t = sk+1/sk .

c. ek = ekt.

d. d = dt − µ.

e. If d < 0, go to step 1.

2. sn = d.

Algorithm 4a: Bidiagonal Singular Values by Bisection:
Input: n, B , α, β, tol where n × n is an bidiagonal matrix, [α, β) is the input interval and tol is
the tolerance for the desired accuracy of the singular values.
Output: w is the output array containing the singular values of B that lie in [α, β).

1. nα = Negcount(n, B , α).
2. nβ = Negcount(n, B , β).
3. If nα = nβ , there are no singular values in [α, β). STOP.
4. Put [α, nα , β, nβ] onto Worklist.
5. While Worklist is not empty do

a. Remove [low, nlow, up, nup] from Worklist.

b. mid = (low + up)/2.

c. If (up − low < tol), then� For i = nlow + 1, nup, w(i − na ) = mid;

Else� nmid = Negcount(n, B , mid).� If nmid > nlow then
Put [low, nlow, mid, nmid] onto Worklist.� If nup > nmid then
Put [mid, nmid, up, nup] onto Worklist.

Algorithm 4b: Negcount (n, B , µ)
Input: The n × n bidiagonal matrix B and a number µ

Output: Negcount, i.e., the number of singular values smaller than µ is returned.

1. t = −µ.

2. For k = 1, . . . , n − 1
d = b2

k,k + t.
If (d < 0) then Negcount = Negcount + 1
t = t ∗ (b2

k,k+1/d) − µ.

End for
3. d = b2

n,n + t.
4. If (d < 0), then Negcount = Negcount + 1.
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Algorithm 5: DC SVD(n, B , �, U, V): Divide and Conquer Bidiagonal SVD
Input: n, B where B is an (n + 1) × n lower bidiagonal matrix.
Output: � is an n × n diagonal matrix, U is an (n + 1) × (n + 1) orthogonal matrix, V is an
orthogonal n × n matrix, so that B = U�V T .

1. If n < n0, then apply Algorithm 1b with inputs n + 1, n, B to get outputs �, U, V .
Else

Let B =
(

B1 αk ek 0

0 βk e1 B2

)
, where k = n/2.

a. Call DC SVD(k − 1, B1, �1, U1, W1).

b. Call DC SVD(n − k, B2, �2, U2, W2).

c. Partition Ui = (Qi qi ) , for i = 1, 2, where qi is a column vector.

d. Extract l1 = QT
1 ek , λ1 = qT

1 ek , l2 = QT
2 e1, λ2 = qT

2 e1.

e. Partition B as

B =
(

c0q1 Q1 0 −s0q1

s0q2 0 Q2 c0q2

)⎛⎜⎜⎜⎜⎝
r0 0 0

αkl1 �1 0

βkl2 0 �2

0 0 0

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎝

0 W1 0

1 0 0

0 0 W2

⎞⎟⎟⎠
T

= (Q q)

(
M

0

)
WT

where r0 =√(αkλ1)2 + (βkλ2)2, c0 = αkλ1/r0, s0 = βkλ2/r0.

f. Compute the singular values of M by solving the secular equation

f (w) = 1 +
n∑

k=1

z2
k

d2
k − w 2

= 0,

and denote the computed singular values by ŵ1, ŵ2, . . . , ŵn.

g. For i = 1, . . . , n, compute

ẑi =
√√√√(ŵ 2

n − d2
i )

i−1∏
k=1

(ŵ 2
k − d2

i )

(d2
k − d2

i )

n−1∏
k=1

(ŵ 2
k − d2

i )

(d2
k+1 − d2

i )
.

h. For i = 1, . . . , n, compute the singular vectors

ui =
(

ẑ1

d2
1 − ŵ 2

i

, · · · ,
ẑn

d2
n − ŵ 2

i

)/√√√√ n∑
k=1

ẑ2
k

(d2
k − ŵ 2

i )2

vi =
(

−1,
d2 ẑ2

d2
2 − ŵ 2

i

, · · · ,
dnẑn

d2
n − ŵ 2

i

)/√√√√1 +
n∑

k=2

(dk ẑk)2

(d2
k − ŵ 2

i )2

and let U = [u1, . . . , un], V = [v1, . . . , vn].

i. Return � =
(

diag(ŵ1, ŵ2, . . . , ŵn)
0

)
, U ← (QU q) , V ← WV .
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Algorithm 6: Biorthogonalization SVD:
Input: m, n, A where A is m × n.
Output: �, U, V so that � is diagonal, U and V have orthonormal columns, U is m × n, V is
n × n, and A = U�V T .

1. U ← A. (This step can be omitted if A is to be overwritten with U .)
2. V = In×n.

3. Set N2 =
(

n∑
i=1

n∑
j=1

u2
i, j

)
, s = 0, and first = true.

4. Repeat until s 1/2 ≤ ε2 N2 and first = false.

a. Set s = 0 and first = false.

b. For i = 1, . . . , n − 1.

i. For j = i + 1, . . . , n

� s ← s +
(

m∑
k=1

uk,i uk, j

)2

.

� Determine d1, d2, c = cos(θ), and s = sin(ϕ) such that:

[
c −s
s c

]⎡⎢⎢⎢⎢⎢⎣
m∑

k=1

u2
k,i

m∑
k=1

uk,i uk,i

m∑
k=1

uk,i uk,i

m∑
k=1

u2
k, j

⎤⎥⎥⎥⎥⎥⎦
[

c s
−s c

]
=
[

d1 0
0 d2

]
.

� U ← U Ri, j (c , s ) where Ri, j (c , s ) is the Givens rotation matrix that acts on columns i
and j during right multiplication.� V ← V Ri, j (c , s )

5. For i = 1, . . . , n

a. σi =
√

m∑
k=1

u2
k,i .

b. U ← U�−1.

Algorithm 7: Jacobi Rotation SVD:
Input: m, n, A where A is m × n.
Output: �, U, V so that � is diagonal, U and V have orthonormal columns, U is m × n, V is
n × n, and A = U�V T .

1. B ← A. (This step can be omitted if A is to be overwritten with B .)
2. U = Im×n.
3. V = In×n.
4. If m > n, compute the QR factorization of B using Householder matrices so that B ← Q A,

where B is upper triangular, and let U ← U Q. (See A6 for details.)

5. Set N2 =
n∑

i=1

n∑
j=1

b2
i, j , s = 0, and first = true.

6. Repeat until s ≤ ε2 N2 and first = false.

a. Set s = 0 and first = false.

b. For i = 1, . . . , n − 1

(continued)
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Algorithm 7: Jacobi Rotation SVD: (Continued)

i. For j = i + 1, . . . , n :� s = s + b2
i, j + b2

j,i .� Determine d1, d2, c = cos(θ) and s = sin(ϕ) with the property that d1 and d2 are
positive and [

c −s
s c

] [
bi,i bi, j

b j,i b j, j

] [
ĉ ŝ

−ŝ ĉ

]
=
[

d1 0
0 d2

]
.

� B ← Ri, j (c , s )B Ri, j (ĉ , −ŝ ) where Ri, j (c , s ) is the Givens rotation matrix that acts
on rows i and j during left multiplication and Ri, j (ĉ , −ŝ ) is the Givens rotation
matrix that acts on columns i and j during right multiplication.� U ← U Ri, j (c , s ).� V ← V Ri, j (ĉ , ŝ ).

7. Set � to the diagonal portion of B .
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