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Abstract

Several learning applications require solving high-dimensional regression problems
where the relevant features belong to a small number of (overlapping) groups. For
very large datasets and under standard sparsity constraints, hard thresholding
methods have proven to be extremely efficient, but such methods require NP hard
projections when dealing with overlapping groups. In this paper, we show that
such NP-hard projections can not only be avoided by appealing to submodular
optimization, but such methods come with strong theoretical guarantees even
in the presence of poorly conditioned data (i.e. say when two features have
correlation ≥ 0.99), which existing analyses cannot handle. These methods exhibit
an interesting computation-accuracy trade-off and can be extended to significantly
harder problems such as sparse overlapping groups. Experiments on both real and
synthetic data validate our claims and demonstrate that the proposed methods are
orders of magnitude faster than other greedy and convex relaxation techniques for
learning with group-structured sparsity.

1 Introduction

High dimensional problems where the regressor belongs to a small number of groups play a critical
role in many machine learning and signal processing applications, such as computational biology and
multitask learning. In most of these cases, the groups overlap, i.e., the same feature can belong to
multiple groups. For example, gene pathways overlap in computational biology applications, and
parent-child pairs of wavelet transform coefficients overlap in signal processing applications.

The existing state-of-the-art methods for solving such group sparsity structured regression problems
can be categorized into two broad classes: a) convex relaxation based methods , b) iterative hard
thresholding (IHT) or greedy methods. In practice, IHT methods tend to be significantly more
scalable than the (group-)lasso style methods that solve a convex program. But, these methods
require a certain projection operator which in general is NP-hard to compute and often certain simple
heuristics are used with relatively weak theoretical guarantees. Moreover, existing guarantees for
both classes of methods require relatively restrictive assumptions on the data, like Restricted Isometry
Property or variants thereof [2, 7, 16], that are unlikely to hold in most common applications. In fact,
even under such settings, the group sparsity based convex programs offer at most polylogarithmic
gains over standard sparsity based methods [16].

Concretely, let us consider the following linear model:

y = Xw∗ + β, (1)

where β ∼ N(0, λ2I), X ∈ Rn×p, each row of X is sampled i.i.d. s.t. xi ∼ N(0,Σ), 1 ≤ i ≤ n,
and w∗ is a k∗-group sparse vector i.e. w∗ can be expressed in terms of only k∗ groups, Gj ⊆ [p].

The existing analyses for both convex as well as hard thresholding based methods require κ =
σ1/σp ≤ c, where c is an absolute constant (like say 3) and σi is the i-th largest eigenvalue of Σ.
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This is a significantly restrictive assumption as it requires all the features to be nearly independent of
each other. For example, if features 1 and 2 have correlation more than say .99 then the restriction on
κ required by the existing results do not hold.

Moreover, in this setting (i.e., when κ = O(1)), the number of samples required to exactly recover
w∗ (with λ = 0) is given by: n = Ω(s+ k∗ logM) [16], where s is the maximum support size of a
union of k∗ groups and M is the number of groups. In contrast, if one were to directly use sparse
regression techniques (by ignoring group sparsity altogether) then the number of samples is given by
n = Ω(s log p). Hence, even in the restricted setting of κ = O(1), group-sparse regression improves
upon the standard sparse regression only by logarithmic factors.

Greedy, Iterative Hard Thresholding (IHT) methods have been considered for group sparse regression
problems, but they involve NP-hard projections onto the constraint set [3]. While this can be
circumvented using approximate operations, the guarantees they provide are along the same lines as
the ones that exist for convex methods.

In this paper, we show that IHT schemes with approximate projections for the group sparsity
problem yield much stronger guarantees. Specifically, our result holds for arbitrarily large κ, and
arbitrary group structures. In particular, using IHT with greedy projections, we show that n =
Ω
(
(s log 1

ε + κ2k∗ logM) log 1
ε

)
samples suffice to recover ε-approximatation to w∗ when λ = 0.

On the other hand, IHT for standard sparse regression [10] requires n = Ω(κ2s log p). Moreover,

for general noise variance λ2, our method recovers ŵ s.t. ‖ŵ −w∗‖ ≤ 2ε + λ · κ
√

s+κ2k∗ logM
n .

On the other hand, the existing state-of-the-art results for IHT for group sparsity [4] guarantees
‖ŵ−w∗‖ ≤ λ ·

√
s+ k∗ logM for κ ≤ 3, i.e., ŵ is not a consistent estimator ofw∗ even for small

condition number κ.

Our analysis is based on an extension of the sparse regression result by [10] that requires exact
projections. However, a critical challenge in the case of overlapping groups is the projection onto
the set of group-sparse vectors is NP-hard in general. To alleviate this issue, we use the connection
between submodularity and overlapping group projections and a greedy selection based projection is
at least good enough. The main contribution of this work is to carefully use the greedy projection
based procedure along with hard thresholding iterates to guarantee the convergence to the global
optima as long as enough i.i.d. data points are generated from model (1).

Moreover, the simplicity of our hard thresholding operator allows us to easily extend it to more
complicated sparsity structures. In particular, we show that the methods we propose can be generalized
to the sparse overlapping group setting, and to hierarchies of (overlapping) groups.

We also provide extensive experiments on both real and synthetic datasets that show that our methods
are not only faster than several other approaches, but are also accurate despite performing approximate
projections. Indeed, even for poorly-conditioned data, IHT methods are an order of magnitude faster
than other greedy and convex methods. We also observe a similar phenomenon when dealing with
sparse overlapping groups.

1.1 Related Work

Several papers, notably [5] and references therein, have studied convergence properties of IHT
methods for sparse signal recovery under standard RIP conditions. [10] generalized the method to
settings where RIP does not hold, and also to the low rank matrix recovery setting. [21] used a similar
analysis to obtain results for nonlinear models. However, these techniques apply only to cases where
exact projections can be performed onto the constraint set. Forward greedy selection schemes for
sparse [9] and group sparse [18] constrained programs have been considered previously, where a
single group is added at each iteration. The authors in [2] propose a variant of CoSaMP to solve
problems that are of interest to us, and again, these methods require exact projections.

Several works have studied approximate projections in the context of IHT [17, 6, 12]. However, these
results require that the data satisfies RIP-style conditions which typically do not hold in real-world
regression problems. Moreover, these analyses do not guarantee a consistent estimate of the optimal
regressor when the measurements have zero-mean random noise. In contrast, we provide results
under a more general RSC/RSS condition, which is weaker [20], and provide crisp rates for the error
bounds when the noise in measurements is random.
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2 Group Iterative Hard Thresholding for Overlapping Groups

In this section, we formally set up the group sparsity constrained optimization problem, and then
briefly present the IHT algorithm for the same. Suppose we are given a set of M groups that can
arbitrarily overlap G = {G1, . . . , GM}, where Gi ⊆ [p]. Also, let ∪Mi=1Gi = {1, 2, . . . , p}. We
let ‖w‖ denote the Euclidean norm of w, and supp(w) denotes the support of w. For any vector
w ∈ Rp, [8] defined the overlapping group norm as

‖w‖G := inf

M∑
i=1

‖aGi‖ s.t.
M∑
i=1

aGi = w, supp(aGi) ⊆ Gi (2)

We also introduce the notion of “group-support” of a vector and its group-`0 pseudo-norm:

G-supp(w) := {i s.t. ‖aGi‖ > 0}, ‖w‖G0 := inf

M∑
i=1

1{‖aGi‖ > 0}, (3)

where aGi satisfies the constraints of (2). 1{·} is the indicator function, taking the value 1 if the
condition is satisfied, and 0 otherwise. For a set of groups G, supp(G) = {Gi, i ∈ G}. Similarly,
G-supp(S) = G-supp(wS).

Suppose we are given a function f : Rp → R and M groups G = {G1, . . . , GM}. The goal is to
solve the following group sparsity structured problem (GS-Opt):

GS-Opt: min
w

f(w) s.t. ‖w‖G0 ≤ k (4)

f can be thought of as a loss function over the training data, for instance, logistic or least squares loss.
In the high dimensional setting, problems of the form (4) are somewhat ill posed and are NP-hard
in general. Hence, additional assumptions on the loss function (f ) are warranted to guarantee a
reasonable solution. Here, we focus on problems where f satisfies the restricted strong convexity and
smoothness conditions:

Definition 2.1 (RSC/RSS). The function f : Rp → R satisfies the restricted strong convexity (RSC)
and restricted strong smoothness (RSS) of order k, if the following holds:

αkI � H(w) � LkI,

where H(w) is the Hessian of f at any w ∈ Rp s.t. ‖w‖G0 ≤ k.

Note that the goal of our algorithms/analysis would be to solve the problem for arbitrary αk > 0 and
Lk <∞. In contrast, adapting existing IHT results to this setting lead to results that allow Lk/αkless
than a constant (like say 3).

We are especially interested in the linear model described in (1), and in recovering w? consistently
(i.e. recover w? exactly as n → ∞). To this end, we look to solve the following (non convex)
constrained least squares problem

GS-LS: ŵ = arg min
w

f(w) :=
1

2n
‖y −Xw‖2 s.t. ‖w‖G0 ≤ k (5)

with k ≥ k∗ being a positive, user defined integer 1. In this paper, we propose to solve (5) using an
Iterative Hard Thresholding (IHT) scheme. IHT methods iteratively take a gradient descent step, and
then project the resulting vector (g) on to the (non-convex) constraint set of group sparse vectos, i.e.,

w∗ = PGk (g) = arg min
w
‖w − g‖2 s.t ‖w‖G0 ≤ k (6)

Computing the gradient is easy and hence the complexity of the overall algorithm heavily depends on
the complexity of performing the aforementioned projection. Algorithm 1 details the IHT procedure
for the group sparsity problem (4). Throughout the paper we consider the same high-level procedure,
but consider different projection operators P̂Gk (g) for different settings of the problem.

1typically chosen via cross-validation
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Algorithm 1 IHT for Group-sparsity

1: Input : data y,X , parameter k, iterations
T , step size η

2: Initialize: t = 0, w0 ∈ Rp a k-group
sparse vector

3: for t = 1, 2, . . . , T do
4: gt = wt − η∇f(wt)

5: wt = P̂Gk (gt) where P̂Gk (gt) performs
(approximate) projections

6: end for
7: Output : wT

Algorithm 2 Greedy Projection

Require: g ∈ Rp, parameter k̃, groups G
1: û = 0 , v = g, Ĝ = {0}
2: for t = 1, 2, . . . k̃ do
3: Find G? = arg maxG∈G\Ĝ ‖vG‖
4: Ĝ = Ĝ

⋃
G?

5: v = v − vG?
6: u = u+ vG?
7: end for
8: Output û := P̂Gk (g), Ĝ = supp(u)

2.1 Submodular Optimization for General G

Suppose we are given a vector g ∈ Rp, which needs to be projected onto the constraint set ‖u‖G0 ≤ k
(see (6)). Solving (6) is NP-hard when G contains arbitrary overlapping groups. To overcome
this, PGk (·) can be replaced by an approximate operator P̂Gk (·) (step 5 of Algorithm 1). Indeed,
the procedure for performing projections reduces to a submodular optimization problem [3], for
which the standard greedy procedure can be used (Algorithm 2). For completeness, we detail this in
Appendix A, where we also prove the following:

Lemma 2.2. Given an arbitrary vector g ∈ Rp, suppose we obtain û, Ĝ as the output of Algorithm
2 with input g and target group sparsity k̃. Let u∗ = PGk (g) be as defined in (6). Then

‖û− g‖2 ≤ e− k̃k ‖(g)supp(u∗)‖
2 + ‖u∗ − g‖2

where e is the base of the natural logarithm.

Note that the term with the exponent in Lemma 2.2 approaches 0 as k̃ increases. Increasing k̃ should
imply more samples for recovery of w∗. Hence, this lemma hints at the possibility of trading off
sample complexity for better accuracy, despite the projections being approximate. See Section 3 for
more details. Algorithm 2 can be applied to any G, and is extremely efficient.

2.2 Incorporating Full Corrections

IHT methods can be improved by the incorporation of “corrections” after each projection step. This
merely entails adding the following step in Algorithm 1 after step 5:

wt = arg min
w̃

f(w̃) s.t. supp(w̃) = supp(P̂Gk (gt))

When f(·) is the least squares loss as we consider, this step can be solved efficiently using Cholesky
decompositions via the backslash operator in MATLAB. We will refer to this procedure as IHT-
FC. Fully corrective methods in greedy algorithms typically yield significant improvements, both
theoretically and in practice [10].

3 Theoretical Performance Bounds

We now provide theoretical guarantees for Algorithm 1 when applied to the overlapping group
sparsity problem (4). We then specialize the results for the linear regression model (5).
Theorem 3.1. Let w∗ = arg minw,‖wG‖0≤k∗ f(w) and let f satisfy RSC/RSS with constants αk′ ,

Lk′ , respectively (see Definition 2.1). Set k = 32
(
Lk′
αk′

)2

·k∗ log
(
Lk′
αk′
· ‖w

∗‖2
ε

)
and let k′ ≤ 2k+k∗.

Suppose we run Algorithm 1, with η = 1/Lk′ and projections computed according to Algorithm 2.
Then, the following holds after t+ 1 iterations:

‖wt+1 −w∗‖2 ≤
(

1− αk′

10 · Lk′

)
· ‖wt −w∗‖2 + γ +

αk′

Lk′
ε,
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where γ = 2
Lk′

maxS, s.t., |G-supp(S)|≤k ‖(∇f(w∗))S‖2. Specifically, the output of the T =

O
(
Lk′
αk′
· ‖w

∗‖2
ε

)
-th iteration of Algorithm 1 satisfies:

‖wT −w∗‖2 ≤ 2ε+
10 · Lk′
αk′

· γ.

The proof uses the fact that Algorithm 2 performs approximately good projections. The result follows
from combining this with results from convex analysis (RSC/RSS) and a careful setting of parameters.
We prove this result in Appendix B.

Remarks

Theorem 3.1 shows that Algorithm 1 recoversw∗ up toO
(
Lk′
αk′
· γ
)

error. If ‖ arg minw f(w)‖G0 ≤ k,
then, γ = 0. In general our result obtains an additive error which is weaker than what one can obtain
for a convex optimization problem. However, for typical statistical problems, we show that γ is small
and gives us nearly optimal statistical generalization error (for example, see Theorem 3.2).

Theorem 3.1 displays an interesting interplay between the desired accuracy ε, and the penalty we thus
pay as a result of performing approximate projections γ. Specifically, as ε is made small, k becomes
large, and thus so does γ. Conversely, we can let ε be large so that the projections are coarse, but
incur a smaller penalty via the γ term. Also, since the projections are not too accurate in this case, we
can get away with fewer iterations. Thus, there is a tradeoff between estimation error ε and model
selection error γ. Also, note that the inverse dependence of k on ε is only logarithmic in nature.

We stress that our results do not hold for arbitrary approximate projection operators. Our proof
critically uses the greedy scheme (Algorithm 2), via Lemma 2.2. Also, as discussed in Section 4, the
proof easily extends to other structured sparsity sets that allow such greedy selection steps.

We obtain similar result as [10] for the standard sparsity case, i.e., when the groups are singletons.
However, our proof is significantly simpler and allows for a significantly easier setting of η.

3.1 Linear Regression Guarantees

We next proceed to the standard linear regression model considered in (5). To the best of our
knowledge, this is the first consistency result for overlapping group sparsity problems, especially
when the data can be arbitrarily conditioned. Recall that σmax (σmin) are the maximum (minimum)
singular value of Σ, and κ := σmax/σmin is the condition number of Σ.
Theorem 3.2. Let the observations y follow the model in (1). Suppose w∗ is k∗-group sparse and
let f(w) := 1

2n‖Xw − y‖
2
2. Let the number of samples satisfy:

n ≥ Ω
(

(s+ κ2 · k∗ · logM) · log
(κ
ε

))
,

where s = maxw,‖w‖G0≤k
| supp(w)|. Then, applying Algorithm 1 with k = 8κ2k∗ · log

(
κ
ε

)
,

η = 1/(4σmax), guarantees the following after T = Ω
(
κ log κ·‖w∗‖2

ε

)
iterations (w.p. ≥ 1−1/n8):

‖wT −w∗‖ ≤ λ · κ
√
s+ κ2k∗ logM

n
+ 2ε

Remarks

Note that one can ignore the group sparsity constraint, and instead look to recover the (at most) s-
sparse vector w∗ using IHT methods for `0 optimization [10]. However, the corresponding sample
complexity is n ≥ κ2s log(p). Hence, for an ill conditioned Σ, using group sparsity based methods
provide a significantly stronger result, especially when the groups overlap significantly.

Note that the number of samples required increases logarithmically with the accuracy ε. Theorem
3.2 thus displays an interesting phenomenon: by obtaining more samples, one can provide a smaller
recovery error while incurring a larger approximation error (since we choose more groups).

Our proof critically requires that when restricted to group sparse vectors, the least squares objective
function f(w) = 1

2n‖y −Xw‖
2
2 is strongly convex as well as strongly smooth:
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Lemma 3.3. LetX ∈ Rn×p be such that each xi ∼ N (0,Σ). Let w ∈ Rp be k-group sparse over
groups G = {G1, . . . GM}, i.e., ‖w‖G0 ≤ k and s = maxw,‖w‖G0≤k

| supp(w)|. Let the number of
samples n ≥ Ω(C (k logM + s)). Then, the following holds with probability ≥ 1− 1/n10:(

1− 4√
C

)
σmin‖w‖22 ≤

1

n
‖Xw‖22 ≤

(
1 +

4√
C

)
σmax‖w‖22,

We prove Lemma 3.3 in Appendix C. Theorem 3.2 then follows by combining Lemma 3.3 with
Theorem 3.1. Note that in the least squares case, these are the Restricted Eigenvalue conditions on
the matrixX , which as explained in [20] are much weaker than traditional RIP assumptions on the
data. In particular, RIP requires almost 0 correlation between any two features, while our assumption
allows for arbitrary high correlations albeit at the cost of a larger number of samples.

3.2 IHT with Exact Projections PGk (·)

We now consider the setting where PGk (·) can be computed exactly and efficiently for any k. Examples
include the dynamic programming based method by [3] for certain group structures, or Algorithm 2
when the groups do not overlap. Since the exact projection operator can be arbitrary, our proof of
Theorem 3.1 does not apply directly in this case. However, we show that by exploiting the structure
of hard thresholding, we can still obtain a similar result:
Theorem 3.4. Let w∗ = arg minw,‖wG‖0≤k∗ f(w). Let f satisfy RSC/RSS with constants α2k+k∗ ,

L2k+k∗ , respectively (see Definition 2.1). Then, the following holds for the T = O
(
Lk′
αk′
· ‖w

∗‖2
ε

)
-th

iterate of Algorithm 1 (with η = 1/L2k+k∗ ) with P̂Gk (·) = PGk (·) being the exact projection:

‖wT −w∗‖2 ≤ ε+
10 · Lk′
αk′

· γ.

where k′ = 2k + k∗, k = O((Lk′αk′
)2 · k∗), γ = 2

Lk′
maxS, s.t., |G-supp(S)|≤k ‖(∇f(w∗))S‖2.

See Appendix D for a detailed proof. Note that unlike greedy projection method (see Theorem 3.1), k
is independent of ε. Also, in the linear model, the above result also leads to consistent estimate ofw∗.

4 Extension to Sparse Overlapping Groups (SoG)

The SoG model generalizes the overlapping group sparse model, allowing the selected groups
themselves to be sparse. Given positive integers k1, k2 and a set of groups G, IHT for SoG would
perform projections onto the following set:

Csog0 :=

{
w =

M∑
i=1

aGi : ‖w‖G0 ≤ k1, ‖aG1
‖0 ≤ k2

}
(7)

As in the case of overlapping group lasso, projection onto (7) is NP-hard in general. Motivated by
our greedy approach in Section 2, we propose a similar method for SoG (see Algorithm 3). The
algorithm essentially greedily selects the groups that have large top-k2 elements by magnitude.

Below, we show that the IHT (Algorithm 1) combined with the greedy projection (Algorithm 3)
indeed converges to the optimal solution. Moreover, our experiments (Section 5) reveal that this
method, when combined with full corrections, yields highly accurate results significantly faster than
the state-of-the-art.

We suppose that there exists a set of supports Sk∗ such that supp(w∗) ∈ Sk∗ . Then, we obtain the
following result, proved in Appendix E:
Theorem 4.1. Let w∗ = arg minw,supp(w)∈Sk∗ f(w), where Sk∗ ⊆ Sk ⊆ {0, 1}p is a fixed set
parameterized by k∗. Let f satisfy RSC/RSS with constants αk, Lk, respectively. Furthermore, assume
that there exists an approximately good projection operator for the set defined in (7) (for example,
Algorithm 3). Then, the following holds for the T = O

(
Lk′
αk′
· ‖w

∗‖2
ε

)
-th iterate of Algorithm 1 :

‖wT −w∗‖2 ≤ 2ε+
10 · L2k+k∗

α2k+k∗
· γ,
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Algorithm 3 Greedy Projections for SoG

Require: g ∈ Rp, parameters k1, k2, groups G
1: û = 0 , v = g, Ĝ = {0}, Ŝ = {0}
2: for t=1,2,. . .k1 do
3: Find G? = arg maxG∈G\Ĝ ‖vG‖
4: Ĝ = Ĝ

⋃
G?

5: Let S correspond to the indices of the top k2 entries of vG? by magnitude
6: Define v̄ ∈ Rp, v̄S = (vG?)S v̄i = 0 i /∈ S
7: Ŝ = Ŝ

⋃
S

8: v = v − v̄
9: u = u+ v̄

10: end for
11: Output û, Ĝ, Ŝ

where k = O((
L2k+k∗

α2k+k∗
)2 · k∗ · βα2k+k∗

L2k+k∗
ε

), γ = 2
L2k+k∗

maxS, S∈Sk ‖(∇f(w∗))S‖2.

Remarks

Similar to Theorem 3.1, we see that there is a tradeoff between obtaining accurate projections ε and
model mismatch γ. Specifically in this case, one can obtain small ε by increasing k1, k2 in Algorithm
3. However, this will mean we select large number of groups, and subsequently γ increases.

A result similar to Theorem 3.2 can be obtained for the case when f is least squares loss function.
Specifically, the sample complexity evaluates to n ≥ κ2

(
k∗1 log(M) + κ2k∗1k

∗
2 log(maxi |Gi|)

)
. We

obtain results for least squares in Appendix F.

An interesting extension to the SoG case is that of a hierarchy of overlapping, sparsely activated
groups. When the groups at each level do not overlap, this reduces to the case considered in [11].
However, our theory shows that when a corresponding approximate projection operator is defined for
the hierarchical overlapping case (extending Algorithm 3), IHT methods can be used to obtain the
solution in an efficient manner.

5 Experiments and Results

Time (seconds)
0 50 100 150 200 250 300

lo
g
(o

b
je

c
ti
v
e
)

3

3.5

4

4.5

5

5.5

6
IHT
IHT+FC
CoGEnT
FW
GOMP

Time (seconds)
0 50 100 150 200 250 300

lo
g
(o

b
je

c
ti
v
e
)

3

4

5

6

7

8
IHT
IHT+FC
CoGEnT
FW
GOMP

condition number

m
e
a
s
u
r
e
m

e
n
ts

50 100 150 200 250 300

2000

1800

1600

1400

1200

condition number

50 100 150 200 250 300

m
e

a
s
u

r
e

m
e

n
ts

2000

1800

1600

1200

1200

Figure 1: (From left to right) Objective value as a function of time for various methods, when data is
well conditioned and poorly conditioned. The latter two figures show the phase transition plots for
poorly conditioned data, for IHT and GOMP respectively.

In this section, we empirically compare and contrast our proposed group IHT methods against the
existing approaches to solve the overlapping group sparsity problem. At a high level, we observe
that our proposed variants of IHT indeed outperforms the existing state-of-the-art methods for group-
sparse regression in terms of time complexity. Encouragingly, IHT also performs competitively with
the existing methods in terms of accuracy. In fact, our results on the breast cancer dataset shows a
10% relative improvement in accuracy over existing methods.

Greedy methods for group sparsity have been shown to outperform proximal point schemes, and
hence we restrict our comparison to greedy procedures. We compared four methods: our algorithm
with (IHT-FC) and without (IHT) the fully corrective step, the Frank Wolfe (FW) method [19] ,
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CoGEnT, [15] and the Group OMP (GOMP) [18]. All relevant hyper-parameters were chosen via
a grid search, and experiments were run on a macbook laptop with a 2.5 GHz processor and 16gb
memory. Additional experimental results are presented in Appendix G
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Method Error % time (sec)
FW 29.41 6.4538
IHT 27.94 0.0400

GOMP 25.01 0.2891
CoGEnT 23.53 0.1414
IHT-FC 21.65 0.1601

Figure 2: (Left) SoG: error vs time comparison for various methods, (Center) SoG: reconstruction of
the true signal (top) from IHT-FC (middle) and CoGEnT (bottom). (Right:) Tumor Classification:
misclassification rate of various methods.

Synthetic Data, well conditioned: We first compared various greedy schemes for solving the
overlapping group sparsity problem on synthetic data. We generated M = 1000 groups of contiguous
indices of size 25; the last 5 entries of one group overlap with the first 5 of the next. We randomly
set 50 of these to be active, populated by uniform [−1, 1] entries. This yields w? ∈ Rp, p ∼ 22000.
X ∈ Rn×p where n = 5000 and Xij

i.i.d∼ N(0, 1). Each measurement is corrupted with Additive
White Gaussian Noise (AWGN) with standard deviation λ = 0.1. IHT mehods achieve orders
of magnitude speedup compared to the competing schemes, and achieve almost the same (final)
objective function value despite approximate projections (Figure 1 (Left)).

Synthetic Data, poorly conditioned: Next, we consider the exact same setup, but with each row of
X given by: xi ∼ N(0,Σ) where κ = σmax(Σ)/σmin(Σ) = 10. Figure 1 (Center-left) shows again
the advantages of using IHT methods; IHT-FC is about 10 times faster than the next best CoGEnT.

We next generate phase transition plots for recovery by our method (IHT) as well as the state-
of-the-art GOMP method. We generate vectors in the same vein as the above experiment, with
M = 500, B = 15, k = 25, p ∼ 5000. We vary the the condition number of the data covariance
(Σ) as well as the number of measurements (n). Figure 1 (Center-right and Right) shows the
phase transition plot as the measurements and the condition number are varied for IHT, and GOMP
respectively. The results are averaged over 10 independent runs. It can be seen that even for condition
numbers as high as 200, n ∼ 1500 measurements suffices for IHT to exactly recovery w∗, whereas
GOMP with the same setting is not able to recover w∗ even once.

Tumor Classification, Breast Cancer Dataset We next compare the aforementioned methods on
a gene selection problem for breast cancer tumor classification. We use the data used in [8] 2. We ran
a 5-fold cross validation scheme to choose parameters, where we varied η ∈ {2−5, 2−4, . . . , 23} k ∈
{2, 5, 10, 15, 20, 50, 100} τ ∈ {23, 24, . . . , 213}. Figure 2 (Right) shows that the vanilla hard
thresholding method is competitive despite performing approximate projections, and the method with
full corrections obtains the best performance among the methods considered. We randomly chose
15% of the data to test on.
Sparse Overlapping Group Lasso: Finally, we study the sparse overlapping group (SoG) problem
that was introduced and analyzed in [14] (Figure 2). We perform projections as detailed in Algorithm
3. We generated synthetic vectors with 100 groups of size 50 and randomly selected 5 groups to be
active, and among the active group only set 30 coefficients to be non zero. The groups themselves
were overlapping, with the last 10 entries of one group shared with the first 10 of the next, yielding
p ∼ 4000. We chose the best parameters from a grid, and we set k = 2k∗ for the IHT methods.

6 Conclusions and Discussion
We proposed a greedy-IHT method that can applied to regression problems over set of group sparse
vectors. Our proposed solution is efficient, scalable, and provide fast convergence guarantees under

2download at http : //cbio.ensmp.fr/ ljacob/
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general RSC/RSS style conditions, unlike existing methods. We extended our analysis to handle even
more challenging structures like sparse overlapping groups. Our experiments show that IHT methods
achieve fast, accurate results even with greedy and approximate projections.
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A Using submodularity to perform projections

While solving (6) is NP-hard in general, the authors in [3] showed that it can be approximately solved
using methods from submodular function optimization, which we quickly recap here. First, (6) can
be cast in the following equivalent way:

Ĝ = arg max
|G̃|≤k

{∑
i∈I
g2
i : I = ∪G∈G̃G

}
(8)

Once we have Ĝ, û can be recovered by simply setting ûI = gI and 0 everywhere else, where
I = ∪G∈ĜG. Next, we have the following result

Lemma A.1. Given a set S ∈ [p], the function z(S) =
∑
i∈S x

2
i . is submodular.

Proof. First, recall the definition of a submodular function:

Definition A.2. Let Q be a finite set, and let z(·) be a real valued function defined on ΩQ, the power
set of Q. The function z(·) is said to be submodular if

z(S) + z(T ) ≥ z(S ∪ T ) + z(S ∩ T ) ∀S, T ⊂ ΩQ

Let S and T be two sets of groups, s.t., S ⊆ T . Let, SS = supp(∪j∈SGj) and TT =
supp(∪j∈TGj). Then, SS ⊆ TT . Hence,

z(S ∪ i)− z(S) =
∑

`∈SS∪supp(Gi)

x2
` −

∑
`∈SS

x2
`

=
∑

`∈supp(Gi)\SS

x2
`

ζ1
≥

∑
`∈supp(Gi)\TT

x` = z(T ∪ i)− z(T ),

where ζ1 follows from SS ⊆ TT . This completes the proof.

This result shows that (8) can be cast as a problem of the form

max
S⊂Q

z(S), s.t. |S| ≤ k. (9)

Algorithm 2, which details the pseudocode for performing approximate projections, exactly corre-
sponds to the greedy algorithm for submodular optimization [1], and this gives us a means to assess
the quality of our projections.

A.1 Proof of Lemma 2.2

Proof. First, from the approximation property of the greedy algorithm [13],

‖û‖2 ≥
(

1− e− k
′
k

)
‖u∗‖2 (10)

Also, ‖g − û‖2 = ‖g‖2 − ‖û‖2 because (û)supp(û) = (g)supp(û) and 0 otherwise.

Using the above two equations, we have:

‖g − û‖2 ≤ ‖g‖2 − ‖u∗‖2 + e−
k′
k ‖u∗‖2,

= ‖g − u∗‖2 + e−
k′
k ‖u∗‖2,

= ‖g − u∗‖2 + e−
k′
k ‖(g)supp(u∗)‖

2, (11)

where both equalities above follow from the fact that due to optimality, (u∗)supp(u∗) = (g)supp(u∗).
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B Proof of Theorem 3.1

Proof. Recall that gt = wt − η∇f(wt), wt+1 = P̂Gk (gt).

Let supp(wt+1) = St+1, supp(w∗) = S∗, I = St+1 ∪ S∗, and M = S∗\St+1. Also, note that
|G-supp(I)| ≤ k + k∗.

Moreover, (wt+1)St+1 = (gt)St+1 (See Algorithm 2). Hence, ‖(wt+1 − gt)St+1∪S∗‖22 = ‖(gt)M‖22.

Now, using Lemma B.2 with z = (gt)I ,we have:

‖(wt+1 − gt)I‖22 = ‖(gt)M‖22
ζ1
≤ k∗

k − k̃
· ‖(gt)St+1\S∗‖

2
2 +

k∗ε

k − k̃
,

ζ2
≤ k∗

k − k̃
· ‖(w∗ − gt)I‖22 +

k∗ε

k − k̃
, (12)

where ζ1 follows from M ⊂ S∗ and hence |G-supp(M)| ≤ |G-supp(S∗)| = k∗. ζ2 follows since
w∗St+1\S∗ = 0.

Now, using the fact that ‖(wt+1−w∗)I‖2 = ‖wt+1−w∗‖2 along with triangle inequality, we have:

‖wt+1 −w∗‖2

≤

(
1 +

√
k∗

k − k̃

)
· ‖(w∗ − gt)I‖2 +

√
k∗ε

k − k̃
, (13)

ζ1
≤

(
1 +

√
k∗

k − k̃

)
· ‖(w∗ −wt − η(∇f(w∗)−∇f(wt)))I‖2 + 2η‖(∇f(w∗))St+1

‖2 +

√
k∗ε

k − k̃
,

ζ2
≤

(
1 +

√
k∗

k − k̃

)
· ‖(I − ηH(I∪St)(I∪St)(α))(wt −w∗)I∪St‖2 + 2η‖(∇f(w∗))St+1‖2 +

√
k∗ε

k − k̃
,

ζ3
≤

(
1 +

√
k∗

k − k̃

)
·
(

1− α2k+k∗

L2k+k∗

)
‖wt −w∗‖2 +

2

L2k+k∗
‖(∇f(w∗))St+1

‖2 +

√
k∗ε

k − k̃
,

(14)

where α = cwt + (1 − c)w∗ for c > 0 and H(α) is the Hessian of f evaluated at α. ζ1 follows
from triangle inequality, ζ2 follows from the Mean-Value theorem and ζ3 follows from the RSC/RSS
condition and by setting η = 1/L2k+k∗ .

The theorem now follows by setting k = 2

((
L2k+k∗

α2k+k∗

)2

+ 1

)
· log(‖w∗‖2/ε) and ε appropriately.

Lemma B.1. Let w = P̂Gk (g) and let S = supp(w). Then, for every I s.t. S ⊆ I , the following
holds:

wI = P̂Gk (gI).

Proof. Let Q = {i1, i2, . . . , ik} be the k-groups selected when the greedy procedure (Algorithm 2)
is applied to g. Then,

‖wGij \(∪1≤`≤j−1Gi` )
‖22 ≥ ‖wGi\(∪1≤`≤j−1Gi` )

‖22, ∀1 ≤ j ≤ k, ∀i /∈ Q.

Moreover, the greedy selection procedure is deterministic. Hence, even if groups Gi are restricted
to lie in a subset of G, the output of the procedure remains exactly the same.

Lemma B.2. Let z ∈ Rp be any vector. Let ŵ = P̂Gk (z) and let w∗ ∈ Rp be s.t. |G-supp(w∗)| ≤
k∗. Let S = supp(ŵ), S∗ = supp(w∗), I = S ∪ S∗, and M = S∗\S. Then, the following holds:

‖zM‖22
k∗

− ε

k − k̃
≤
‖zS\S∗‖22
k − k̃

,

where k̃ = O(k∗ log(‖w∗‖2/ε)).
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Proof. Recall that the k groups are added greedily to form S = supp(ŵ). Let Q = {i1, i2, . . . , ik}
be the k-groups selected when the greedy procedure (Algorithm 2) is applied to z. Then,

‖zGij \(∪1≤`≤j−1Gi` )
‖22 ≥ ‖zGi\(∪1≤`≤j−1Gi` )

‖22, ∀1 ≤ j ≤ k, ∀i /∈ Q.

Now, as ∪1≤`≤j−1Gi` ⊆ S, ∀1 ≤ j ≤ k, we have:

‖zGij \(∪1≤`≤j−1Gi` )
‖22 ≥ ‖zGi\S‖

2
2, ∀1 ≤ j ≤ k, ∀i /∈ Q.

Let G-supp(w∗) = {`1, . . . , `k∗}. Then, adding the above inequalities for each `j s.t. `j /∈ Q, we
get:

‖zGij \(∪1≤`≤j−1Gi` )
‖22 ≥

‖zS∗\S‖22
k∗

, (15)

where the above inequality also uses the fact that
∑
`j∈G-supp(w∗),`j /∈Q ‖zG`j \S‖

2
2 ≥ ‖zS∗\S‖22.

Adding (15) ∀ (k̃ + 1) ≤ j ≤ k, we get:

‖zS‖22 − ‖zB‖22 ≥
k − k̃
k∗

· ‖zS∗\S‖22, (16)

where B = ∪1≤j≤k̃Gij .

Moreover using Lemma 2.2 and the fact that |G-supp(zS∗)| ≤ k∗, we get: ‖zB‖22 ≥ ‖zS∗‖22 − ε.
Hence,

‖zM‖22
k∗

≤ ‖zS‖
2
2 − ‖zB‖22
k − k̃

≤ ‖zS‖
2
2 − ‖zS∗‖22 + ε

k − k̃
≤
‖zS\S∗‖22 + ε

k − k̃
. (17)

Lemma now follows by a simple manipulation of the above given inequality.

C Proof of Lemma 3.3

Proof. Note that,

‖Xw‖22 =
∑
i

(xTi w)2 =
∑
i

(zTi Σ1/2w)2 = ‖ZΣ1/2w‖22,

where Z ∈ Rn×p s.t. each row zi ∼ N(0, I) is a standard multivariate Gaussian. Now, using
Theorem 1 of [4], and using the fact that Σ1/2w lies in a union of

(
M
k

)
subspaces each of at most s

dimensions, we have
(
w.p. ≥ 1− 1/(Mk · 2s)

)
:(

1− 4√
C

)
‖Σ1/2w‖22 ≤

1

n
‖ZΣ1/2w‖22 ≤

(
1 +

4√
C

)
‖Σ1/2w‖22.

The result follows by using the definition of σmin and σmax.

D Proof of Theorem 3.4

Proof. Recall that gt = wt − η∇f(wt), wt+1 = PGk (gt). Similar to the proof of Theorem 3.1
(Appendix B), we define St+1 = supp(wt+1), St = supp(wt), S∗ = supp(w∗), I = St+1 ∪ S∗,
J = I ∪ St, and M = S∗\St+1. Also, note that |G-supp(I)| ≤ k + k∗, |G-supp(J)| ≤ 2k + k∗.

Now, using Lemma D.1 with z = (gt)I , we have: ‖(wt+1 − gt)I‖22 ≤ k∗

k · ‖(w
∗ − gt)I‖22. This

follows from noting that M = k + k∗ here. Now, the remaining proof follows proof of Theorem 3.1
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closely. That is, using the above inequality with triangle inequality, we have:

‖wt+1 −w∗‖2

≤

(
1 +

√
k∗

k

)
· ‖(w∗ − gt)I‖2

ζ1
≤

(
1 +

√
k∗

k

)
· ‖(w∗ −wt − η(∇f(w∗)−∇f(wt)))I‖2 + 2η‖(∇f(w∗))St+1‖2,

ζ2
≤

(
1 +

√
k∗

k

)
· ‖(I − ηHJ,J(α))(wt −w∗)J‖2 + 2η‖(∇f(w∗))St+1‖2,

ζ3
≤

(
1 +

√
k∗

k

)
·
(

1− α2k+k∗

L2k+k∗

)
‖wt −w∗‖2 +

2

L2k+k∗
‖(∇f(w∗))St+1

‖2, (18)

where α = cwt + (1− c)w∗ for a c > 0 and H(α) is the Hessian of f evaluated at α. ζ1 follows
from triangle inequality, ζ2 follows from the Mean-Value theorem and ζ3 follows from the RSC/RSS
condition and by setting η = 1/L2k+k∗ .

The theorem now follows by setting k = 2 ·
(
L2k+k∗

α2k+k∗

)2

.

Lemma D.1. Let z ∈ Rp be such that it is spanned by M groups and let ŵ = PGk (z),w∗ = PGk∗(z)
where k ≥ k∗ and G = {G1, . . . , GM}. Then, the following holds:

‖ŵ − z‖22 ≤
(
M − k
M − k∗

)
‖w∗ − z‖22.

Proof. Let S = supp(ŵ) and S∗ = supp(w∗). Since ŵ is a projection of z, ŵS = zS and 0
otherwise. Similarly, w∗S∗ = zS∗ . So, to prove the lemma we need to show that:

‖zS‖
2
2 ≤

(
M − k
M − k∗

)
‖zS∗‖

2
2. (19)

We first construct a group-support set A: we first initialize A = {B}, where B = supp(w∗). Next,
we iteratively add k−k∗ groups greedily to formA. That is,A = A∪Ai whereAi = supp(PG1 (zĀ)).

Let w̃ ∈ Rp be such that w̃A = zA and w̃A = 0, where A denotes the complement of A. Also,
recall that ‖zS‖G0 = ‖zsupp(w̃)‖G0 ≤ |A| = k. Then, using the optimality of ŵ, we have:

‖zS‖
2
2 ≤ ‖zA‖

2
2. (20)

Now,

‖zB‖22
M − k∗

−
‖zA‖22
M − k

=
1

M − k∗
‖zB\A‖

2
2 −

k − k∗

(M − k∗)(M − k)
‖zA‖

2
2. (21)

By construction,B\A = ∪k−k
∗

i=1 Ai. Moreover,A is spanned by at mostM−k groups. Since,Ai’s are

constructed greedily, we have: ‖zAi‖22 ≥
‖zA‖

2
2

M−k . Adding the above equation for all 1 ≤ i ≤ k − k∗,
we get:

‖zB\A‖
2
2 =

k−k∗∑
i=1

‖zAi‖22 ≥
k − k∗

M − k
‖zA‖

2
2. (22)

Using (20), (21), and (22), we get: ‖zB‖
2
2

M−k∗ −
‖zS‖

2
2

M−k ≥ 0. That is, (19) holds. Hence proved.
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E Proof of Theorem 4.1

First, we provide a general result that extracts out the key property of the approximate projection
operator that is required by our proof. We then show that Algorithm 3 satisfies that property.

In particular, we assume that there is a set of supports Sk∗ such that supp(w∗) ∈ Sk∗ . Also, let
Sk ⊆ {0, 1}p be s.t. Sk∗ ⊆ Sk. Moreover, for any given z ∈ Rp, there exists an efficient procedure
to find S ∈ Sk s.t. the following holds for all S∗ ∈ Sk∗ :

‖zS\S∗‖
2
2 ≤

k∗

k
· βε‖zS∗\S‖

2
2 + ε, (23)

where ε > 0 and βε is a function of ε.

We now show that (23) holds for the SoG case, specifically Algorithm 3. For simplicity, we provide
the result for non-overlapping case; for overlapping groups a similar result can be obtained by
combining the following lemma, with Lemma B.2.
Lemma E.1. Let G = {G1, . . . , GM} be M non-overlapping groups. Let G-supp(w∗) =
{i∗1, . . . , i∗k∗}. Let G be the groups selected using Algorithm 3 applied to z ∈ Rp and let
Si be the selected set of co-ordinates from group Gi where i ∈ G. Let S = ∪iSi, and let
S∗ = ∪i(S∗)i = supp(w∗). Also, let G∗ be the set of groups that contains S∗. Then, the fol-
lowing holds:

‖zS\S∗‖22 ≤ max

(
k∗1
k1
,
k∗2
k2

)
· ‖zS∗\S‖22.

Proof. Consider groupGi s.t. i ∈ G∩G∗. Now, in a group we just select elements Si by the standard
hard thresholding. Hence, using Lemma 1 from [10], we have:

‖z(S∗)i\S‖
2
2 ≥

k2

k∗2
‖zS\(S∗)i‖

2
2,∀i ∈ G ∩G∗. (24)

Due to greedy selection, for each Gi, Gj s.t. i ∈ G\G∗ and j ∈ G∗\G, we have:∑
i∈G\G∗

‖zSi‖22 ≥
|G\G∗|
|G∗\G|

∑
j∈G∗\G

‖zSj‖22.

That is, ∑
i∈G\G∗

‖zSi‖22 ≥
k1

k∗1

∑
j∈G∗\G

‖zSj‖22. (25)

The lemma now follows by adding (24) and (25), and rearranging the terms.

Now, we prove Theorem 4.1

Proof. Theorem follows directly from proof of Theorem 3.1, but with (12) replaced by the following
equation:

‖(wt+1 − gt)I‖22 = ‖(gt)M‖22
ζ1
≤ k∗

k
· βε‖(gt)St+1\S∗‖

2
2 + ε

ζ2
≤ k∗

k
· βε · ‖(w∗ − gt)I‖22 + ε,

(26)
where ζ1 follows from the assumption given in the theorem statement. ζ2 follows fromw∗St+1\S∗ = 0.

F Results for the Least Squares Sparse Overlapping Group Lasso

Lemma E.1 along with Theorem 4.1 shows that for SoG case, we need to project onto more than
(than k∗1) groups and more than (than k∗2) number of elements in each group. In particular, we select
ki ≈ (

L2k+k∗

α2k+k∗
)2k∗i for both i = 1, 2.

Combining the above lemma with Theorem 4.1 and a similar lemma to Lemma 3.3 also provides us
with sample complexity bound for estimating w∗ from (y,X) s.t. y = Xw∗ + β. Specifically, the
sample complexity evaluates to n ≥ κ2

(
k∗1 log(M) + κ2k∗1k

∗
2 log(maxi |Gi|)

)
.
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Signal IHT GOMP CoGEnT
Blocks .00029 .0011 .00066

HeaviSine .0026 .0029 .0021
Piece-Polynomial .0016 .0017 .0022

Piece-Regular .0025 .0039 .0015
Table 1: MSE on standard test signals using IHT with full corrections

G Additional Experimental Evaluations

Noisy Compressed Sensing: Here, we apply our proposed methods in a compressed sensing
framework to recover sparse wavelet coefficients of signals. We used the standard “test” signals
(Table 1) of length 2048, and obtained 512 Gaussian measurements. We set k = 100 for IHT and
GOMP. IHT is competitive (in terms of accuracy) with the state of the art in convex methods, while
being significantly faster. Figure 3 shows the recovered blocks signal using IHT. All parameters were
picked clairvoyantly via a grid search.
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Figure 3: Wavelet Transform recovery of 1-D test signals. (Left) The ‘blocks’ signal and recovery
using IHT + Greedy projections. (Right) Objective function vs iterations on the ‘blocks’ signal.

16


	Introduction
	Related Work

	Group Iterative Hard Thresholding for Overlapping Groups
	Submodular Optimization for General G 
	Incorporating Full Corrections

	Theoretical Performance Bounds
	Linear Regression Guarantees
	IHT with Exact Projections PkG()

	Extension to Sparse Overlapping Groups (SoG)
	Experiments and Results
	Conclusions and Discussion
	Using submodularity to perform projections 
	Proof of Lemma 2.2

	Proof of Theorem 3.1
	Proof of Lemma 3.3
	Proof of Theorem 3.4
	Proof of Theorem 4.1
	Results for the Least Squares Sparse Overlapping Group Lasso
	Additional Experimental Evaluations 

