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Abstract

We present a new algorithm for nonnegative least-squares (NNLS). Our algorithm extends the uncon-
strained quadratic optimization algorithm of Barzilai and Borwein (BB) (J. Barzilai and J. M. Borwein;
Two-Point Step Size Gradient Methods. IMA J. Numerical Analysis; 1988.) to handle nonnegativity
constraints. Our extension differs in several basic aspects from other constrained BB variants. The most
notable difference is our modified computation of the BB stepsize that takes into account the nonnegativ-
ity constraints. We further refine the stepsize computation by introducing a stepsize scaling strategy that,
in combination with orthogonal projections onto the nonnegative quadrant, yields an efficient NNLS algo-
rithm. We compare our algorithm with both established convex solvers and a specialized NNLS method:
on several synthetic and real-world datasets we observe highly competitive empirical performance.

Keywords: Least squares, nonnegativity constraints, large-scale, non-monotonic descent, Barzilai-Borwein
stepsize, gradient projection method, NNLS.

1 Introduction

The central object of study in this paper is the nonnegative least-squares (NNLS) problem:

minimmize f(x) = 3|Az — b|?, st. x>0, (1)
where A € R™*" is a design matrix and b € R™ a vector of observations. NNLS is a fundamental problem
that arises naturally in applications where, in addition to satisfying a least-squares model, the variables
must satisfy nonnegativity constraints. These constraints usually stem from physical grounds, e.g., when the
variables z; (1 < i < n) encode quantities such as frequency counts (data mining [20]), chemical concentrations
(chemometrics [10]), and image intensities or photon counts (astronomy [19, 25]; medical imaging [29]).
Despite its apparent simplicity, NNLS can be challenging to solve, especially when dealing with large-
scale problems. For such problems often first-order methods are preferred [2, 3], which is also our motivation
for developing a scalable first-order method for NNLS. Our method augments the unconstrained quadratic
optimization algorithm of Barzilai and Borwein (BB) [1] to efficiently handle nonnegativity constraints. But
before describing the associated technical details we first review some pertinent background material.

Background and Motivation We begin by recalling gradient projection (GP), perhaps the simplest
of constrained methods that one could invoke for solving NNLS. Given a domain €2 of feasible solutions,
GP iterates as ! = [2¥ — v*V f(xF)]q for k > 1, where []o denotes (orthogonal) projection onto 2,
while 4% > 0 is a stepsize [30]. GP seems attractive for NNLS because it is simple both conceptually and
implementation wise: the projection [z]q is trivial, and the stepsize v* can be computed using a standard
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linesearch procedure [3]. Unfortunately, GP has some drawbacks that it inherits from its unconstrained
counterpart steepest descent; e.g., zig-zagging or jamming that can make convergence very slow [3, 27].

The slow convergence of steepest descent has been addressed by several techniques. Amongst these,
beyond the (perhaps best-known) idea of conjugate gradients, the development of Barzilai and Borwein
(BB) [1] especially stands out: not only is it computationally efficient [7, 14] but is also convergent despite
exhibiting non-monotonic descent. Barzilai and Borwein proposed for the unconstrained steepest-descent
iteration £¥T! = ¥ —*V f(x¥), the following two stepsizes (where Ax* = ¥ —z*~1 and Af¥ = Vf(xF) -
Vf(xk1) = AT AAZF):

p AR P =AY [V f(=" )] (2a)
(Axk AFFY  (Axk AT AAxF)  (Vf(zh1), ATAV f(xF—1))’
o ATRASY (8t ATANGY) _ (Vf(a ), AT AV (@) o

[AFF]? AT AAZH2 - [ATAVf(zk 1|2

Convergence of steepest-descent run with either of (2a) and (2b) was first proved for a two variable quadratic
problem [1]; later convergence for the general unconstrained convex quadratic case was established [28].

The BB stepsizes (2) were found to accelerate steepest descent considerably [1, 14, 28], which makes one
think whether they similarly benefit GP. Unfortunately, despite the strong resemblance of GP to steepest-
descent, naively plugging in the stepsizes (2) into GP does not work. Dai and Fletcher [14] presented
a counter-example showing that GP fails to converge when run with BB steps (we reproduce a similar
counter-example in Appendix A, Figure 6). Thus it seems that to ensure convergence for constrained setups,
some form of linesearch is almost inevitable when invoking the BB formulae (or variants thereof). Indeed,
this observation is reaffirmed given the numerous methods in the literature that invoke linesearch when using
BB steps [5-8, 13-15, 17].

Our approach. In light of the above discussion, we explore the possibility of using BB steps in a convergent
GP setup without resorting to line search. Consider therefore, the following two typical alternatives to
linesearch: (a) a constant stepsize (y* < 2/L, where L is the Lipschitz constant of V f(x)); or (b) stepsizes
7* given by sequence {3*} of diminishing scalars (DS) that satisfy!, e.g.,

(i) lim g¥ =0, and (i) lim Zk B = . (3)

k—oo k—oo i=1
Alternative (a) cannot be used as the BB steps vary from iteration to iteration. However, Alternative (b)
can be combined with BB steps, whereby we may establish convergence under mild conditions (see §2.4 for
details). Besides convergence, there are two other reasons that motivate us to invoke diminishing scalars.
First they align well with BB steps, since akin to BB methods, descent based on DS is also usually non-
monotonic. Second, and more importantly, the use of DS is as yet uninvestigated in the context of BB
methods.

The use of DS, however, has its share of difficulties. Although theoretically elegant, DS are not always
practical as the diminishing sequence must be carefully selected—for an excellent example on how a wrong
choice of the diminishing sequence can be disastrous see [26, pg. 1578]. So to reduce dependence on DS, we
propose to not invoke the sequence (3) out-of-the-box, but rather use it in a relaxed fashion (see §2.2).

The next difficulty is that even our relaxed use of DS is not sufficient to ensure a highly competitive
algorithm. The reason is that even though the DS strategy helps ensure convergence, the actual underlying
difficulty posed by BB steps remains unaddressed. In other words, although the clash between projection
and the BB steps (see Figure 1) is suppressed by diminishing scalars, it is hardly eliminated. To counter
this clash we introduce a crucial modification to the BB steps themselves. Our modification leads to rapid
(empirical) convergence. The details on our blending of DS with our modifications to the BB steps are
described in Section 2 below, wherein we derive our algorithm following a series of illustrative experiments
that also serve to ratify our design choices.

1Other choices are also possible, e.g., limy_, oo Zle B = 0o, and limy_, o Zle(ﬁi)Q < oo.



2 Algorithm

We begin our discussion by demonstrating how diminishing scalars combined with BB steps fare in compari-
son with some known BB approaches. Admittedly, actual performance of all methods can vary significantly in
the face of difficulties such as ill-conditioning, so to avoid getting lost in numerical concerns and to illustrate
an initial insight into how the different approaches distinguish themselves, we begin our experimentation
with a well-conditioned, large, sparse matrix. We remark that the NNLS problem in this section has been
carefully chosen to illustrate the major character and deficiency of each method; obviously this does imply
any claims about differences with regard to the performance of the methods across all NNLS instances. For
example, if the NNLS solution happens to be the solution to an unconstrained least squares problem, all the
methods mentioned in this section converge (including unmodified—unconstrained BB), despite some being
non-convergent otherwise.

We experiment with a sparse matrix A of size 12288 x 4096 with 16.57% nonzeros. This matrix has
full-rank, and its smallest singular value o, (A) = 0.0102; the largest one opax(A) = 0.5779. We simulate
a ‘true’ nonnegative solution x* to have 26.12% (1070) nonzeros, and to satisfy Axz* = b exactly. Given A
and b we solve the associated NNLS problem (1) using the following three algorithms:

1. Ordinary Algorithm (OA) — Gradient projection with an alternating use of BB steps (2);
2. OA + LineSearch (OA+LS) — OA with occasional linesearch that ensures monotonic descent;

3. OA + Diminishing Scalar (OA+DS) — OA, but with stepsize 3*7*, where a diminishing scalar 3"
satisfies (3).

All three algorithms were implemented in MATLAB. For OA+LS we invoked Armijo along projection
arc linesearch [3] every fifth iteration by using a reference iteration—this idea is similar to that in [14]; the
reference iteration helps ensure overall convergence. For OA+DS we experimented with several diminishing
sequences and have reported the best results. We ran all three algorithms with a convergence tolerance? of
IV filloo < 1078, where V f, is the projected-gradient: (hereafter 9; f () is used as a shorthand for (V f(x));)

min{0, 0, f(x)}, if x; =0,

8,‘f(33), if x; > 0. (4)

Vi (x)i = {

Notice that ||V fi(2*)]cc = 0 must hold at optimality.
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Figure 1: Objective function value (left), norm of projected gradient |V 1 (2*)||oc (middle), and true error ||z* —2* ||
(right) versus running time (in seconds) for OA, OA+LS, and OA+DS.

Figure 1 reports the result of experiment with the three algorithms mentioned above. It plots the objective
function value, the norm of the projected-gradient, and the norm of error (i.e., distance to the true solution),
against the running time in seconds. As also observed by Dai and Fletcher [14], OA oscillates. From the

2This tolerance is already very tight for first-order methods. We will later see that for experiments with real-world data
such high tolerances are often not achieved.



figure we see that both OA+LS and OA+DS converge, though, linesearch is seemingly more helpful as OA+LS
converges faster than OA+DS. Although OA+LS approaches the convergence tolerance the quickest, one
notable behavior of OA+DS is that it rapidly catches up and eventually satisfies the convergence tolerance,
even with a rate similar to OA+LS near the solution. The figure suggests that despite being slower than
OA+LS, algorithm OA+DS is still a viable candidate. But clearly it is not competitive enough, especially
considering that it requires user intervention to tune the diminishing sequence. A new approach is thus
called for to improve OA+DS, and the sequel uncovers one.

2.1 Subspace BB Steps

To avoid the dominance of diminishing scalars while ensuring convergence, we need to address the deeper
underlying problem: the oscillatory behavior exhibited by the unconstrained BB method when mixed with
projections. When do oscillations (see Figure 6) happen? Recall that the unconstrained BB generates a
sequence converging to the unconstrained optimum, so it is the projection step that derails such a sequence
by pulling it towards the nonnegative orthant. In ordinary gradient projection, the projection step is a
simple device for enforcing feasibility and it does not “break” the algorithm as the stepsize is always chosen
to ensure descent. Quite logically, we may also conclude that some restriction to the BB step is needed,
especially when the projection actually affects the current iterate.

We identified (the evident fact) that non-monotonicity of the BB step is the source of difficulties, but we
also know that at the same time it is the key ingredient for rapid convergence. Thus, to alleviate oscillation
without curtailing the non-monotonicity of the BB steps, we once again recall that the unconstrained BB
is guaranteed to converge. Now, suppose that oscillations start appearing. If we knew which variables were
active, i.e., zero, at the solution, we could reduce the optimization to an unconstrained problem over the
inactive variables alone. Then we could compute the solution to this reduced problem by restricting the
computation of BB steps to the inactive variables only. Note that we can obtain the constrained optimum
by simply incorporating the active variables into this unconstrained solution.

This is a key observation behind active set methods, and it proves key in the development of our method
too. Specifically, we partition the variables into active and working sets, carrying out the optimization over
the working set alone. In addition, since the gradient is readily available, we exploit it to refine the active
set and obtain the binding set; both are formalized below.

Definition 2.1 (Active & binding sets). Given x, the active set A(x) and the binding set B(x) are defined as

Ax) = {Z | T; = 0},, (5)
B(x) = {i | z; =0, 9;f(x) > 0}. (6)

The role of the binding set is simple: variables bound at the current iteration are guaranteed to be
active at the next. Specifically, let us denote an orthogonal projection onto nonnegative orthant by [-]4; if
i € B(z*) and we iterate ¥t = [zF — y*V f(x?)]; (for 4* > 0), then since 27 = [zF — 4%, f(x*)]; =0,
the membership i € A(z**!) holds. Therefore, if we know that i € B(z*), we may discard ¥ from the
update. Now, to employ this idea in conjunction with the BB step, we first compute B(x*) and then confine
the computation of the stepsize to the subspace defined by j ¢ B(z*). Formally, we propose to replace the

basic BB steps (2) by the subspace-BB steps:

k __ va~k71||2 (7 )
@ = <vfk71,ATAvf~k71>’ a
or  of = <vfk71’ATAvfkil>. (7b)

|AT AV =12

where V1 is defined as V;f* ' = 9;Vf(zF1) for i ¢ B(x*), V;f*1 = 0 otherwise. Notice that
Vil = Vf, (zF1) only if B(z*) = B(zkF~1).



Using the subspace-BB steps (7) we now modify OA+DS to obtain the iteration
2 [ — Bt P f ()]s, (8)

which defines another algorithm, which we call SA+DS (for Subspace Algorithm + DS). To illustrate how
SA+DS performs in comparison to OA+DS, with an identical choice of the diminishing scalar sequence, we
repeat the experiment of Figure 1, running it this time with SA+DS. Figure 2 compares the objective function,
projected-gradient norm, and the error norm achieved by OA+DS to those attained by SA+DS. Since both
algorithms are run with the same sequence of diminishing scalars, the vast difference in performance seen
in the plots, may be attributed to the subspace-BB steps. Also note that in contrast to all other methods
shown so far (Figs. 1, 2), SA+DS manages to satisfy the convergence criterion ||V f4 ||oo < 1078 fairly rapidly.

== OA+DS|
——SA+DS

== OA+DS|
—SA+DS|

Objective function value
3
Norm of projected gradient

o

-10)

5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40
Running time (seconds) Running time (seconds) Running time (seconds)

Figure 2: Objective function value (left), projected gradient norm (middle), and true error ||&* — =*| (right) versus
running time (in seconds) for OA+DS and SA+DS.

2.2 Diminishing optimistically

Having seen the benefit of subspace-BB steps in SA+DS, we now take a closer look at the role of diminishing
scalars in SA+DS. As already mentioned, gradient projection methods are in general highly sensitive to the
choice of the diminishing sequence, which must be chosen carefully to obtain good empirical performance.
Even though Figure 2 shows SA+DS to exhibit good performance, without proper tuning such performance
is usually not easy to attain. Figure 3 illustrates this difficulty by showing results of running SA+DS with
various choices for the diminishing sequence: one observes that the subspace-BB steps do not help much if
the “wrong” diminishing sequence is used.

However, one does notice that the subspace-BB steps help in a robust manner, that is, they consistently
improve (convergence speed of SA+DS) as the effect of diminishing sequence weakens. To investigate this
behavior further, we run SA+DS with 3% = 1, i.e., without scaling the subspace-BB steps. While considering
the impact of subspace-BB steps without diminishing scalars, one might wonder if linesearch combined with
subspace-BB is superior. So we also test a method that combines subspace-BB steps with linesearch (SA+LS).
We compare SA+DS run with 3¥ = 1 against SA+LS and the best-performing SA+DS (from Figure 3): the
results are pleasantly surprising and are shown in Figure 4.

Curiously, Figure 4 suggests that the subspace-BB alone can produce converging iterates and even the
lazy linesearch may affect it adversely! In view of Figures 3 and 4, we conclude that either scaling the
stepsize via B* or invoking linesearch can adversely affect the convergence speed of SA+DS, whereas even
near constant {ﬁk } seems to retain SA+DS’s convergence. This behavior is opposite to that exhibited by
the non-subspace method OA+DS, for which the diminishing scalars not only control the convergence speed
but also dominate the convergence itself. This contrast (Fig. 4) is a crucial distinguishing feature of SA+DS
that also plays a key role toward accelerating SA+DS empirically. Therefore, to retain empirical benefits of
subspace steps while still guaranteeing convergence, we propose to relax the application of the diminishing
scalar by using an “optimistic” diminishment strategy.
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Figure 3: Empirical convergence of the SA+DS with respect to different choices of the diminishing sequence. The
choices used were % = ¢/k°. In this experiment, ¢ = 5, and § = 0.4 eventually led to the fastest convergence. As
expected, if % decays too rapidly, the convergence gets impaired and the algorithm eventually stalls due to limited
machine precision. The exact values of the diminishing parameters are not as important as the message that SA+DS’s

convergence is very sensitive to the diminishing sequence employed.
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Figure 4: Objective function value (left), projected gradient norm (middle) and true error ||&* — 2*|| (right) versus
running time for SA+DS with 3% = 1 compared with the best performing instance of SA+DS selected from Figure 2.

Our strategy is as follows. We scale the subspace-BB step (7) with some constant scalar 5 for a fixed
number, say M, of iterations. Then, we check whether a descent condition is satisfied. If yes, then the
method continues for M more iterations with the same 3; if no, then we diminish the scaling factor .
The diminishment is “optimistic” because even when the method fails to satisfy the descent condition
that triggers diminishment, we merely shrink § once and continue using it for the next M iterations. We
remark that superficially this strategy might seem similar to a occasional linesearch, but it is fundamentally
different: unlike linesearch it does not enforce monotonicity after failing to descend for a prescribed number
of iterations. We formalize this below.

Suppose that the method is at iteration ¢, and then iterates with a constant 3¢ for the next M iterations,
so that from the current iterate ¢, we compute

ettt = (b — 50 PV f (b)), (9)
fork=c,c+1,---,c+M—1, where o is computed via (7). Now, for 2™ we check the descent condition
fa) = f(@t) > o (V f(a€), z° — M), (10)

for some o € (0,1). If 7™ passes the test (10), then we reuse 3¢ and set 3tM = 3¢; otherwise we diminish
(¢ and set

B . e, (11)
for some n € (0,1). After adjusting 8T the method repeats the update (9) for another M iterations.
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Figure 5: Objective function value (left), projected gradient norm (middle) and true error ||* — z*|| (right) versus
running time for all the algorithms. In these plots we have shown SBB using a dashed line to distinguish it from
other methods. This figure is essentially a summary of the information shown in Figures 1, 2, 3, and 4.

2.3 SBB: Subspace-BB with optiministic diminishment

With the subspace-BB steps and the optimistic diminishment strategy we now have all the ingredients
necessary to present our final NNLS algorithm: Subspace BB (SBB). The termination criterion used by our
algorithm is approximate satisfaction of the KKT optimality conditions, which for NNLS reduce to checking
whether the norm of the projected gradient

_grgiixk) ’&f(:l:k)‘ <, for given threshold e > 0. (12)

Note that condition (12) is equivalent to (4), which is the condition used for checking convergence by all the
variants developed in this paper. Algorithm 1 presents pseudo-code of SBB.

Algorithm: SBB
Given ¥ and x';
for i =1,--- until the stopping criteria (12) met do
20 — 1 and &' — x%;
for j=1,---,M do /* Subspace BB */
Compute o’ using (7a) and (7b) alternatively;
A
if M satisfies (10) then
| @+l — M and g —
else /* Diminish Optimistically */
| B — B, where n € (0,1);

Algorithm 1: The Subspace BB algorithm (SBB).

Figure 5 summarizes the best performing methods from Figures 1 to 4, while highlighting that SBB outper-
forms all other variants.

2.4 Convergence Analysis

In this section we analyze some theoretical properties of SBB. First, we establish convergence under the
assumption that f is strictly convex (or equivalently that AT A has full-rank). Later, with an additional
mild assumption, we show that the proof easily extends to the case where AT A is rank-deficient. Finally,
we briefly discuss properties such as convergence rate and the identification of active variables.

We remind the reader that when proving convergence of iterative optimization routines, one often assumes
Lipschitz continuity of the objective function. The objective function for NNLS is only locally Lipschitz



continuous, i.e., there exists a constant L, such that
F(@) = f(y)| < Lz —yll, Yo,y €Q,  or equivalently, |Vf(z)|| <L, Va €,

where (2 is an appropriate compact set.

Even though the domain of NNLS (x > 0) does not define such a compact set, we can essentially view the
domain to be compact. To see why, let % and x* denote the unconstrained least-squares solution and the
NNLS solution, respectively. Let &P = [x"] be the projection of x* onto the nonnegative orthant. Then,
the following inequalities are immediate

JAz —b| < [lAz*—b] < [Az’—b|.
Using these inequalities we can derive a simple upper bound U on ||x*|| as follows:

|Az*| ~|lb < [Ae"—b] < [Az”-b],
hence o (A)-l2*| < A’ < [Ae”—b] + o],

] |Az? — b + ||b]
< = 1
e < RS v (13)

where omin(A) > 0 denotes the smallest singular value of A. Thus, the domain of NNLS can be effectively
restricted to 2 = {x : 0 < & < U}, and we may safely consider the NNLS objective to be Lipschitz
continuous. Finally, to ensure that the iterates remain in , we can modify the projection [x], so that no
element x' grows larger than U. We will assume this upper bound implicitly in the discussion below (also
in Algorithm 1), and avoid mentioning it for simplicity of presentation.?

For clarity in our proofs, we introduce some additional notation. Let M be the fixed number of subspace-
BB iterations, so that we check the descent condition (10) only once every M iterations. We index these
M-th iterates with Z = {1, M +1, 2M + 1, 3M + 1, ---}, and then consider the sequence {x"}, r € T
generated by SBB. Let * denote the optimal solution to the problem. We prove that {"} — x* as r — cc.

Suppose that the diminishment step (11) is triggered only a finite number of times. Then, there exists a
sufficiently large K such that

fah) = f@™) = o(Vf(a"),a" —a™T),

for all r € Z, » > K. In this case, we may view the sequence {x"} as if it were generated by an ordinary gra-
dient projection scheme, whereby convergence of {x"} follows from [3]. Therefore, to prove the convergence
of the entire algorithm, it is sufficient to discuss the case where (11) is invoked infinitely often.

Given an infinite sequence {x"}, there is a corresponding sequence {3"} which by construction is dimin-
ishing. Recall that the diminishing sequence with unbounded sum condition (3) ensures convergence [3]. We
show that multiplying {8"} with the subspace-BB steps preserves the condition (3), and hence inherits the
convergence guarantees.

Proposition 2.2. In Algorithm 1, the stepsize 8" - o satisfies
(i) Tlggoﬁ " =0, and (i) Tlgrolozizlﬁ’-a = 0.
Proof. From the definition of the subspace-BB (7), simple algebra shows that that

[V =12  {yLy) (VfE=1, AT AV fE-1) (y2, y)

and =

(Vi1 ATAV/1)  (y1, AT Ayy)’ |AT AV fE—1|2 (Y2, AT Ay,)’

3Note that in practice we need not compute U at all, and without compromising the theoretical guarantees we can replace
it by the maximum value permitted by the machine, provided that the solution z* is representable without overflow.
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where y; = V1 and y, = (ATA) Vf+=1. Since AT A is a positive definite matrix, for all y # 0, its

Rayleigh quotient satisfies
(y, AT Ay)
(y,y)

where Apax(ATA) and Apin(AT A) denote the largest and the smallest eigenvalues of AT A, respectively.
Now, we can see that at any given iteration r, the subspace-BB step o satisfies,

S N P G (14)
M (ATA) = 4= XL (ATA)

0< )\min(ATA) S S )\max(ATA),

Since lim,_+ 8" = 0 by construction, we can show that Condition (i) of (3) also holds for 5"a", since

1

. T < BRT T 0.
Similarly, we also obtain Condition (ii) of (3), since
L 1 L
. j : it > T 2 i ]
Th—I>1010 =1 ﬁ @ = )\max(ATA) 'r‘li)ngo P 6 e -

Using this proposition we now state the main convergence theorem. The proof is essentially that of
gradient descent with diminishing stepsizes; we adapt it by showing some additional properties of {x"}.

Theorem 2.3 (Convergence). Let the objective function f(x) = 3| Az — b||? be strictly convez, {x"} be a

sequence generated by Algorithm 1, and x* = argming, f(x). Then {f(x")} — f(x*) and " — x*.

Proof. Consider the update (9) of Algorithm 1, we can rewrite it as

et =g 4§ d (15)
where the descent direction d” satisfies
0, if i € B(x"),
4’ = { —min {ﬁxa 8if(;ﬂ)} , ifaT >0, 9;f(xz") >0, (16)
-0 f(x"), otherwise.

With (16), and since there exists at least one 0; f(x") > 0 unless " = z*, we can conclude that there
exists a constant ¢; > 0 such that

—(Vf@"),d") > Y mi > a|Vi)|* > o, (17)
i¢B(z)

"

where m; = min {ﬁ, oif (mr)} Similarly, it can also be shown that there exists ¢ > 0 such that

"] < 2| V(") (18)
Using Proposition 2.2 with inequalities (17) and (18), the proof is immediate from Proposition 1.2.4 in [3]. O

To extend the above proof for rank-deficient AT A, notice that ultimately our convergence proof rests
on that of ordinary gradient projection with linesearch or diminishing scalars. Neither of these two requires
f to be strictly convex. The only difficulty that arises is in (13) and (14), where we compute the values
1/0min(A) or 1/Anin(AT A). Tt can be shown that for the convex quadratic program

minimize %wTHa: —cle,



if one assumes c to be in the range of H, then the BB step (2) is bounded above by 1/At. (H), where A}

denotes the smallest positive eigenvalue of H [15]. For our problem, we can equate this assumption on ¢ to
the assumption that ATb lies in the range of AT A. Consequently, we can modify (13) and (14) to

. |[Az? — bl + |[b]] 1
= []7 d T < —
l="1 < ot (A) an @ = At (AT A)

min

where er'lin and /\j][']in denote the smallest positive singular- and eigenvalues respectively.
Finally, to close our analysis we point out that since SBB may be viewed as a gradient projection method,

it inherits properties such as the convergence rate [3] and identification of the active variables [11].

3 Related Work

Before moving on to numerical results, it is fitting to briefly review related work. Over the years, a variety
of methods have been applied to solve NNLS. Several of these approaches are summarized in [9, Chapter 5].
The main approaches can be roughly divided into three categories.

The first category includes methods that were developed for solving linear inequality constrained least
squares problems by transforming them into corresponding least distance problems [9, 31]. However, such
transformations prove to be too costly for NNLS and do not yield much advantage, unless significant addi-
tional engineering efforts are made.

The second and more successful category of methods includes active-set methods [16] that do not involve
transforming (1) into a corresponding minimum distance problem. Active set methods typically deal with
one constraint per iteration, and the overall optimization problem is approximated by solving a series of
equality-constrained problems; the equality constraints form the current active set that is then incrementally
updated to construct the final active set. The famous NNLS algorithm of Lawson & Hanson [21] is an active
set method, and has been the de facto method for solving (1) for many years. In fact, MATLAB continues to
ship 1sqnonneg, an implementation of the original Lawson-Hanson NNLS algorithm [21]. Bro and Jong [10]
modified the latter algorithm and developed a method called Fast-NNLS (FNNLS) that is often faster than
the Lawson-Hanson algorithm. The rationale behind FNNLS is simple as it accepts AT A and ATb instead
of A and b, thus taking advantage of the reduced dimensionality of AT A when m > n for A € R™*",
However, constructing AT A is expensive, which makes the method prohibitive for large-scale problems, i.e.,
when both m and n are large.

The third category of methods includes algorithms based on more general iterative approaches which
produce a sequence of intermediate solutions that converge to the solution of (1). For example, the gradient
projection method [30] and some variants have been applied to NNLS [4, 24]. The main advantage of
this class of algorithms is that by using information from the projected gradient step to obtain a good
approximation of the final active set, one can handle multiple active constraints per iteration. However, the
projected gradient approach frequently suffers from slow convergence (zig-zagging), a difficulty potentially
alleviated by more sophisticated methods such as LBFGS-B [12] or TRON [22].

The method proposed in this paper belongs to the third category. Observe that since NNLS problem is one
of the simplest constrained optimization problems, any modern constrained optimization technique can be
applied to solve it. However, generic off-the-shelf approaches frequently fail to exploit the inherent advantages
arising from the simplicity of the problem, resulting in unnecessary computational and implementation
overheads. In the following section, we illustrate the computational performance of our method by comparing
it with established optimization software, thereby providing empirical support to our claim.

We point out that there exist other BB-based methods that could also be applied to NNLS. However,
in contrast to our optimistic diminishment approach, for guaranteeing convergence these approaches either
employ linesearch procedures [5-8, 13, 17] or introduce an explicit active-variable identification step to utilize

4To run our method for rank-deficient AT A in practice, we do not need to compute Urtlin(A) nor )\LD(ATA), as it is sufficient

to place an arbitrary large upper bound ay and a small positive lower-bound ay, on the subspace-BB computation (7). The
diminishing {8"} safeguards from the stepsizes becoming too large or too small, thereby eventually ensuring convergence.
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the unconstrained version of stepsizes (2) [15]. SPG [6] belongs to the group of methods employing a non-
monotonic linesearch, and it is one of the methods against which we compare not only because it provides
a publicly available implementation, but also because it is highly competitive.

Recently, Hager and Zhang [18] developed an active set algorithm (ASA) that has two phases, namely,
a nonmonotone gradient projection step and an unconstrained optimization step. It utilizes the BB step in
the gradient projection step and restricts its computation in a way similar to that developed in this paper.
In our notation, their modified BB steps can be written as

Azt |? and (Azk, V" —Vf+k71>'
(Azk, VfF -V IVfF = V2

ASA is reported to be competitive to LBFGS-B in a certain domain of their evaluation metric (See Figure 6.4
of [18], for 7 < 1, i.e., more stringent convergence criteria). Hence we do not report numerical results against
ASA and compare against LBFGS-B.

4 Numerical Results

In this section, we compare the performance of our SBB method with the following methods: FNNLS [10],
LBFGS-B [12], SPG [6]. We ran all experiments on a Linux machine, with an Intel Xeon 2.0GHz CPU and
16GB memory. We used MATLAB to interface algorithms and its multi-threading option was turned off to
prevent skewing of results due to multiple cores. We note that the underlying implementations of LBFGS-B
and SPG are in FORTRAN, while FNNLS and SBB have purely MATLAB implementations.

We begin with experimentation on synthetic data. In our first two sets of experiments, we simulate
NNLS problems and assess the computational efficiency of various methods in a “clean” setup: for each
dataset, we generate a nonnegative matrix A and compute an unconstrained observation vector b; with a
pre-determined sparse nonnegative solution x*, i.e., we first compute b; « Ax*. Although it is possible to
form a NNLS problem with these A and b;, we further refine the generated b; to avoid non-degeneracy at
the solution. Specifically, given A, b; and x*, we identify A(x*), then generate an augmenting vector y such
that y; > 0 for ¢ € A(a*). Finally, a constrained observation vector b is produced by solving the system of
equation ATb = ATb, —y. Notice that * is still a solution for the newly generated NNLS problem with A
and b, and it is “clean” as it satisfies the KKT complementarity conditions strictly.

As per the above description we generated NNLS problems of varying size (P1) and sparsity (P2)—the
associated matrices are summarized in Table 1.

P-1 P1-1 P1-2 P1-3 P1-4 P1-5 P1-6
Rows 600 1,200 2,400 4,800 9,600 19, 200
Columns 400 800 1,600 3,200 6,400 12, 800
#active 300 594 1,181 2,369 4,738 9,464
IVfr(x*) oo | 7.84e-12 | 5.82e-11 | 2.93e-10 | 2.19e-09 | 1.11e-08 | 6.70e-08
P-2 P2-1 P2-2 P2-3 P24 P25 P26
#nnz 1,225,734 | 2,445,519 | 3,659,062 | 4,866,734 | 6,068,117 | 7,263,457
#active 7,122 7,115 7101 7122 7095 7137
V() |oo | 2.89e-12 | 1.21e-11 | 2.38e-11 | 1.19e-10 | 1.59e-10 | 1.74e-10

Table 1: The size of dense and uniformly random nonnegative matrices A in data set P1 (above), and #nnz, i.e.,
number of nonzeros of the matrices (of size 25600 x 9600) in data set P2 (below). #active and ||V f4(2*)||cc denote
the number of active variables in each ™ and the infinity norm of the projected gradient at ™ respectively.

After synthetic experiments, we also experiment on six datasets drawn from real world applications.
We obtained the first two datasets, namely, ‘ash958’ and ‘well1850’ from the MatrixMarket'— they arise
from problems solving least squares, and we impose nonnegativity constraints on the solution to form NNLS

Thttp://math.nist.gov/MatrixMarket
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problems. We obtained the remaining four datasets, ‘real-sim’, 'mnist’, 'news20’, and ‘webspam’ from the
collection of LIBSVM datasets?. On these four datasets one can interpret the use of NNLS as a regression
method for predicting class labels.

Matrix H ash958 [ well1850 [ real-sim [ mnist [ news20 [ webspam

Rows 958 1,850 72,309 60, 000 19,996 350,000
Columns 292 712 20,958 780 1,355,191 254

#nnz 1,916 8,755 3,709,083 | 8,994,156 | 9,097,916 | 29,796,333

Table 2: The size and sparsity of real-world datasets. #nnz denotes the number of non-zero entries in the data
matrix.

For each dataset, all methods were started at the same initial point ° = 0.

Method P1-1 P1-2 P1-3 P1-4 P1-5 P1-6
Time(sec.) 0.20 0.31 4.69 40.41 15,526 -
FNNLS f(x) 3.21e+06 | 2.87e+07 | 3.12e+08 | 6.27e+09 | 8.72e+10 -
#active 300 594 1,181 2,369 4,738 -
Time(sec.) 0.41 5.15 39.18 207.24 1,516.4 8,830.9
f(x) 3.21e4+06 | 2.87e+07 | 3.12e+08 | 6.27e4+09 | 8.72e4+10 | 1.07e+12
LBFGS-B #f 502 968 1,481 2,261 3,913 6,638
#Vf 502 968 1,481 2,261 3,913 6,638
F#active 300 264 39 1,545 1,930 3,039
IVrllso || 1.53e-05 | 1.07e-02 | 2.66e-02 | 2.72e-01 5.04 22.29
Time(sec.) 1.78 28.21 283.83 1,045.4 3,936.5 11,896
f(x) 3.21e+06 | 2.87e+07 | 3.12e4+08 | 6.27e4-09 | 8.72e4+10 | 1.07e+12
spC ny 3,605 4,712 10,000 10,000 10,000 10,000
#Vf 2,303 2,892 6,130 5,984 5615 5390
#active 298 594 42 150 2084 8
IVislloo || 9.92e-07 | 6.61e-07 1.02 2.66 16.19 1.04
Time(sec.) 0.16 3.36 18.10 75.69 290.73 1,073.2
f(x) 3.21e4+06 | 2.87e+07 | 3.12e4+08 | 6.27e+09 | 8.72e4+10 | 1.07e+12
SBR #f 2 2 2 3 4 4
#Vf 285 285 238 372 443 452
#active 300 594 1,181 2,368 4,737 9,464
IV f+lloo 6.89e-07 5.68e-07 | 8.34e-07 7.64e-07 | 9.60e-07 | 3.23e-07

Table 3: NNLS experiments on dataset P1. We used ||V fi|lco < 107¢ and #f < 10* as the stopping criteria. In the
above experiments, LBFGS-B terminates with its own condition on “linesearch” before it achieves the given ||V fi ||
value. From P1-3 to P1-6, we could not obtain comparable ||V fi||cc values from SPG within 10° seconds, thereby
we forced it to terminate after a fixed number of iterations.

Table 3 shows the running times for FNNLS, LBFGS-B, SPG, and SBB for the matrices in problem set
P1. For small to mid-sized problems, e.g., P1-1 through P1-5, we observe that FNNLS is very competitive
with other methods, though its performance starts to deteriorate rapidly with increasing matrix sizes, and
it eventually fails to scale on P1-6. LBFGS-B, SPG and SBB generally scale better.

In Table 4 we show running time comparisons on dataset P2. As shown in the table, SBB generally
outperforms other methods, and the difference becomes starker with increasing number of nonzeros (i.e.,
decreasing sparsity) in the matrix. Also note that the performance of FNNLS is substantially degraded in
comparison to dense problems (dataset P1). We attribute this to its computation of AT A. In other words,
FNNLS inputs AT A, and though this effectively reduces problem size when A € R™*™ and m > n, it is
more likely to be dense even when A is highly sparse; so it may actually increase the amount of computation
required to solve an equivalent problem.

2http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets
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Method P2-1 P2-2 P23 P2-4 P2-5 P2-6
Time(sec.) || 1866.7 2745.6 2063.1 2911.9 2845.1 2799.8
FNNLS f(=) 1.93¢4+09 | 7.06e+09 | 8.87e+09 | 1.16e+11 | 1.57e+11 | 2.11e+11
#active 7,122 7,115 7,101 7,122 7,095 7,137
Time(sec.) 2.01 4.78 13.05 16.13 19.81 26.18
f(x) 1.93e+09 | 7.06e+09 | 8.87e+09 | 1.16e+11 | 1.57e+11 | 2.11e+11
#f 100 138 276 258 211 238
LBFGS-B #Vf 100 138 276 258 211 238
#active 6,850 361 4,368 9 2,452 2,482
1V £+ llso 3.3¢-03 | 3.04e-02 | 3.25¢-02 | 1.72e-01 | 2.28¢-01 | 2.18¢-01
Time(sec.) 3.19 45.70 71.73 592.64 590.10 523.18
f(=) 1.93¢4+09 | 7.06e+09 | 8.87e+09 | 1.16e+11 | 1.57e+11 | 2.11le+11
PG #f 142 1165 1259 10,000 10,000 10,000
#Vf 141 1,087 1,021 5,858 1,262 1,337
#active 6,975 6,612 7,070 7,121 3,476 5,303
IVfillo || 5.81e-06 | 9.91e-06 | 6.02e-06 | 7.31e-05 | 5.02e-04 | 4.42e-04
Time(sec.) 2.02 5.01 7.07 14.36 18.01 22.88
f(=) 1.93e4+09 | 7.06e+09 | 8.87e+09 | 1.16e+11 | 1.57e+11 | 2.11e+11
SBB #f 0 1 0 1 1 1
#Vf 76 102 98 151 153 163
#active 7,122 7,114 7,096 7,121 7,092 7,136
IVfilloo || 3.31e-06 | 4.24e-06 | 9.63¢-06 | 6.62e-06 | 8.40e-06 | 5.66e-06

Table 4: NNLS experiments on dataset P2. We used ||V f4|lc < 1077
LBFGS-B and SPG, the troubles that appeared on dataset P1 persisted.

and #f < 10* as the stopping criteria. For

Method ash958 well1850 real-sim mnist news20 webspam
ENNLS Time(sec.) 0.0365 0.134 3.00e+04 15.3 - -
f(x) 5.70e-30 | 3.80e-30 || 1.10e+03 | 1.58e+03 - -
Time(sec.) 2.14 9.45 44.7 1.11e4-03 559 343
f(x) 3.18e-17 8.87e-15 1.10e+03 | 1.58e+03 39.09 1.44e+04
LBFGS-B #f 32 184 538 8,562 935 763
#Vf 32 184 538 8,562 935 763
IV f+]loo 9.26e-09 8.82¢-09 4.88e-02 1.55e-01 0.69¢+00 4.62e-02
Time(sec.) 0.087 0.115 45.4 3.20e+04 1.04e+4-04 1.34e+4-03
f(x) 4.01e-17 1.18e-14 1.10e+03 | 1.58e+03 | 2.04e+01 | 1.44e+04
SPG #f 38 283 797 196,386 118,036 2,641
#Vf 38 248 582 116,004 2,693 1,869
IV F+]loo 8.43e-09 9.58¢-09 4.90e-02 | 4.99¢-02 4.52¢-02 4.16e-02
Time(sec.) 0.010 0.0844 29.0 2.03e+03 104 209
f(x) 2.28e-17 2.38e-15 1.10e+03 | 1.58e+03 | 3.21e+01 | 1.44e+04
SBB #f 0 1 2 124 3 2
#Vf 37 153 238 12,453 327 291
IV f+]loo 6.71e-09 6.53e-09 5.00e-02 | 5.00e-02 4.09e-02 4.54e-02

Table 5: NNLS experiments on real-world datasets. For LBFGS-B, SPG, and SBB, we used ||V f4 ||« as the stopping
criterion. We remark that FNNLS does not provide a comparable stopping criterion hence we test it under its default
setting. For the datasets ash958 and well1850, we set |V fi|lcoc < 107% since we have the true solutions where V fy
vanishes. For the remaining four large-scale problems, we relax the condition to ||V fi]lec < 5 x 1072 to obtain
solutions of medium accuracy. We mainly report the elapsed running time and the objective function value from
each method. For LBFGS-B, SPG, and SBB we additionally report the number of objective function computations
(#f), the number of gradient evaluations (#V f), and the approximate optimality condition (||V ft||s) at the final
iteration. FNNLS does not scale for ‘news20’ and ‘webspam’ in this experiment due to its high memory consumption,
while LBFGS-B terminates with its own linesearch condition on ‘mnist’ and ‘news20’.

Our last set of results (Table 5) is on real-world datasets. FNNLS as before works well for small matrices,
but rapidly becomes impractical for larger ones. It seems that the problem of using AT A appears even
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more prominently for real-world problems where highly sparse matrices A with m < n are not uncommon.
For example, in comparison to other methods, FNNLS is highly penalized for ‘real-sim’ of 72,309 x 20, 958,
but has significant advantage for ‘mnist’ of 60,000 x 780, though eventually failing to scale for ‘news20’
and ‘webspam’ where m < n. From the table we observe once again that LBFGS-B, SPG and SBB are the
competitors for the large and very-large problems, i.e., news20 and webspam. We see that SBB delivers
competitive performance on real-world examples, along with accurate (and often better) solutions compared
to its competitors in terms of ||V f1||lcc-

5 Conclusion and Discussion

In this paper we have presented a new non-monotonic algorithm for solving the nonnegative least squares
(NNLS) problem. Our algorithm is based on the unconstrained Barzilai-Borwein method [1], whose simplic-
ity it manages to retain. Moreover, despite retaining simplicity, we also showed that our method converges
without a potentially expensive dependence on linesearch. We reported numerical results of our method
applied to synthetic and real-world datasets, showing that our MATLAB implementation ® performs compet-
itively across all the range of problems both in terms of running time and accuracy—often outperforming
other established algorithms such as LBFGS-B and SPG, especially for very large-scale problems.
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A Ordinary Algorithm (OA) Counterexample

We illustrate in Figure 6 that plugging in (2) naively into GP does not work. Our illustration is inspired by
the instructive counterexample of Dai and Fletcher [14].

2 T
(@ Level set
|| o oA

- % -SBB

Figure 6: Comparison between OA and SBB. The figure shows a 2D counterexample where OA fails to converge.

. 0.8147 0.1270 2.3172
Given A =1 4 9058 0.9134 ] and b = [ 1.8040
At iteration k, each method first computes an intermediate point (:l:’C ); this point is then projected onto Ri to obtain
a feasible iterate z*. Both methods generate the same iterate sequence x°, z*, 22, (:L'3), a3 for the first 3 iterations.
OA starts behaving differently at the 4" iteration where it converges to the optimal solution x*. OA, in contrast,

generates (z*), which upon subsequent projection brings it back to the initial point 2, leading OA to cycle indefinitely
without converging.

} , we start both OA and SBB at the same initial point 2° = [0 0]7.

Iterate a0 a! 2 (23)
Fixed st | () T 0 0

OA [0,0] [1.7934,0.6893] | [1.8971,0.5405] | [2.9779, —0.9683]
SBB [0,0] [1.7934,0.6893] | [1.8971,0.5405] | [2.9779, —0.9683]
Tterate x> (xT) a?

Fixed set {2} {2}

OA [2.9779,0] | [~1.9013, —4.5088] [0,0] = a0

SBB [2.9779,0] | [2.3729,0] = =*

Table 6: Coordinates of the iterates in Figure 6.

B The various BB based algorithms

Original BB steps

ey )
‘= <Vf(wk_1)>ATAVf(ajk—1)>’ and fyk =

(Vf(x" ), ATAVf(z)*")
AT AV f(zh—1)]?

16



Subspace BB steps

S\ i
(VE1, AT AV 1)

and

<ka717ATAvf~k71>
T jaraviop @0)

where Vf¥~1 is defined as V;f*~1 = 8,V f(z*~1) for i ¢ B(x*), Vif*1 =0

B.1 Pseudocode for the variants

Algorithm: OA

Given 20 and z';

fori=1,--- until stopping criteria (12) met do
Compute 7* using (19);
2 [2 — iV f(2)].

Algorithm 2: Basic Algorithm (OA).

Algorithm: OA+DS

Given ¥ and x';

for i =1,--- until stopping criteria (12) met do
Compute ~* using (19)
ot ot - ()
B+l — nBt where n € (0,1);

Algorithm: OA+LS
Given 20 and z';
for i = 1,--- until stopping criteria (12) met do
20 — 2! and 2! — x¥;
for j=1,---,M do
Compute 4/ using (19)

ey e (o
repeat /* linesearch */
Compute 't — [#M — 7V f(2M)];
Update T;
until '™t and 2M satisfy (10);

Algorithm 3: OA + diminishing scalar (OA+DS).

Algorithm 4: OA + linesearch (OA+LS).

Variants of the Ordinary Algorithm: OA.

Algorithm: SA

Given ¥ and x';

for i =1,--- until stopping criteria (12) met do
Compute o' using (20);

e

Algorithm 5: Subspace-BB only (SA+DS; g% = 1).

Algorithm: SA+DS

Given 20 and z';

for i =1, until stopping criteria (12) met do
Compute o' using (20)
2t [ — G o'V (@)
Bt np’, where n € (0,1);

Algorithm: SA+LS

Given ¥ and x';
for i =1,--- until stopping criteria (12) met do
20 — 1 and 2! — x%;
for j=1,--- ,M do
Compute o’ using (20)
| A e o,
repeat /* linesearch */
Compute 't — [#M — 7V f(2M)],;
Update T;
until 2! and &M satisfy (10);

Algorithm 6: SA + diminishing scalar (SA+DS).

Algorithm 7: SA + linesearch (SA+LS).

Subspace-BB step based algorithms.
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