
Sparse Random Features Algorithm as
Coordinate Descent in Hilbert Space

Ian E.H. Yen 1 Ting-Wei Lin 2 Shou-De Lin 2 Pradeep Ravikumar 1 Inderjit S. Dhillon 1

Department of Computer Science
1: University of Texas at Austin, 2: National Taiwan University

1: {ianyen,pradeepr,inderjit}@cs.utexas.edu,
2: {b97083,sdlin}@csie.ntu.edu.tw

Abstract

In this paper, we propose a Sparse Random Features algorithm, which learns a
sparse non-linear predictor by minimizing an ℓ1-regularized objective function
over the Hilbert Space induced from a kernel function. By interpreting the al-
gorithm as Randomized Coordinate Descent in an infinite-dimensional space, we
show the proposed approach converges to a solution within ϵ-precision of that us-
ing an exact kernel method, by drawing O(1/ϵ) random features, in contrast to the
O(1/ϵ2) convergence achieved by current Monte-Carlo analyses of Random Fea-
tures. In our experiments, the Sparse Random Feature algorithm obtains a sparse
solution that requires less memory and prediction time, while maintaining compa-
rable performance on regression and classification tasks. Moreover, as an approx-
imate solver for the infinite-dimensional ℓ1-regularized problem, the randomized
approach also enjoys better convergence guarantees than a Boosting approach in
the setting where the greedy Boosting step cannot be performed exactly.

1 Introduction

Kernel methods have become standard for building non-linear models from simple feature represen-
tations, and have proven successful in problems ranging across classification, regression, structured
prediction and feature extraction [16, 20]. A caveat however is that they are not scalable as the
number of training samples increases. In particular, the size of the models produced by kernel meth-
ods scale linearly with the number of training samples, even for sparse kernel methods like support
vector machines [17]. This makes the corresponding training and prediction computationally pro-
hibitive for large-scale problems.

A line of research has thus been devoted to kernel approximation methods that aim to preserve pre-
dictive performance, while maintaining computational tractability. Among these, Random Features
has attracted considerable recent interest due to its simplicity and efficiency [2, 3, 4, 5, 10, 6]. Since
first proposed in [2], and extended by several works [3, 4, 5, 10], the Random Features approach is a
sampling based approximation to the kernel function, where by drawing D features from the distri-
bution induced from the kernel function, one can guarantee uniform convergence of approximation
error to the order of O(1/

√
D). On the flip side, such a rate of convergence suggests that in order

to achieve high precision, one might need a large number of random features, which might lead to
model sizes even larger than that of the vanilla kernel method.

One approach to remedy this problem would be to employ feature selection techniques to prevent
the model size from growing linearly with D. A simple way to do so would be by adding ℓ1-
regularization to the objective function, so that one can simultaneously increase the number of ran-
dom features D, while selecting a compact subset of them with non-zero weight. However, the re-
sulting algorithm cannot be justified by existing analyses of Random Features, since the Representer
theorem does not hold for the ℓ1-regularized problem [15, 16]. In other words, since the prediction

1

cannot be expressed as a linear combination of kernel evaluations, a small error in approximating
the kernel function cannot correspondingly guarantee a small prediction error.

In this paper, we propose a new interpretation of Random Features that justifies its usage with
ℓ1-regularization — yielding the Sparse Random Features algorithm. In particular, we show that
the Sparse Random Feature algorithm can be seen as Randomized Coordinate Descent (RCD) in
the Hilbert Space induced from the kernel, and by taking D steps of coordinate descent, one can
achieve a solution comparable to exact kernel methods within O(1/D) precision in terms of the
objective function. Note that the surprising facet of this analysis is that in the finite-dimensional
case, the iteration complexity of RCD increases with number of dimensions [18], which would
trivially yield a bound going to infinity for our infinite-dimensional problem. In our experiments,
the Sparse Random Features algorithm obtains a sparse solution that requires less memory and
prediction time, while maintaining comparable performance on regression and classification tasks
with various kernels. Note that our technique is complementary to that proposed in [10], which aims
to reduce the cost of evaluating and storing basis functions, while our goal is to reduce the number
of basis functions in a model.

Another interesting aspect of our algorithm is that our infinite-dimensional ℓ1-regularized objective
is also considered in the literature of Boosting [7, 8], which can be interpreted as greedy coordinate
descent in the infinite-dimensional space. As an approximate solver for the ℓ1-regularized problem,
we compare our randomized approach to the boosting approach in theory and also in experiments.
As we show, for basis functions that do not allow exact greedy search, a randomized approach enjoys
better guarantees.

2 Problem Setup

We are interested in estimating a prediction function f : X→Y from training data set D =
{(xn, yn)}Nn=1, (xn, yn) ∈ X × Y by solving an optimization problem over some Reproducing
Kernel Hilbert Space (RKHS)H:

f∗ = argmin
f∈H

λ

2
∥f∥2H +

1

N

N∑
n=1

L(f(xn), yn), (1)

where L(z, y) is a convex loss function with Lipschitz-continuous derivative satisfying |L′(z1, y)−
L′(z2, y)| ≤ β|z1 − z2|, which includes several standard loss functions such as the square-loss
L(z, y) = 1

2 (z − y)2, square-hinge loss L(z, y) = max(1 − zy, 0)2 and logistic loss L(z, y) =
log(1 + exp(−yz)).

2.1 Kernel and Feature Map

There are two ways in practice to specify the space H. One is via specifying a positive-definite
kernel k(x,y) that encodes similarity between instances, and where H can be expressed as the
completion of the space spanned by {k(x, ·)}x∈X , that is,

H =

{
f(·) =

K∑
i=1

αik(xi, ·) | αi ∈ R,xi ∈ X

}
.

The other way is to find an explicit feature map {ϕ̄h(x)}h∈H , where each h ∈ H defines a basis
function ϕ̄h(x) : X → R. The RKHSH can then be defined as

H =

{
f(·) =

∫
h∈H

w(h)ϕ̄h(·)dh = ⟨w, ϕ̄(·)⟩H | ∥f∥2H <∞
}
, (2)

where w(h) is a weight distribution over the basis {ϕh(x)}h∈H. By Mercer’s theorem [1], every
positive-definite kernel k(x,y) has a decomposition s.t.

k(x,y) =

∫
h∈H

p(h)ϕh(x)ϕh(y)dh = ⟨ϕ̄(x), ϕ̄(y)⟩H, (3)

where p(h) ≥ 0 and ϕ̄h(.) =
√

p(h)ϕh(.), denoted as ϕ̄ =
√
p ◦ ϕ. However, the decomposition

is not unique. One can derive multiple decompositions from the same kernel k(x,y) based on

2

different sets of basis functions {ϕh(x)}h∈H . For example, in [2], the Laplacian kernel k(x,y) =
exp(−γ∥x − y∥1) can be decomposed through both the Fourier basis and the Random Binning
basis, while in [7], the Laplacian kernel can be obtained from the integrating of an infinite number
of decision trees.

On the other hand, multiple kernels can be derived from the same set of basis functions via different
distribution p(h). For example, in [2, 3], a general decomposition method using Fourier basis func-
tions

{
ϕω(x) = cos(ωTx)

}
ω∈Rd was proposed to find feature map for any shift-invariant kernel of

the form k(x − y), where the feature maps (3) of different kernels k(∆) differ only in the distri-
bution p(ω) obtained from the Fourier transform of k(∆). Similarly, [5] proposed decomposition
based on polynomial basis for any dot-product kernel of the form k(⟨x,y⟩).

2.2 Random Features as Monte-Carlo Approximation

The standard kernel method, often referred to as the “kernel trick,” solves problem (1) through
the Representer Theorem [15, 16], which states that the optimal decision function f∗ ∈ H lies in
the span of training samples HD =

{
f(·) =

∑N
n=1 αnk(xn, ·) | αn ∈ R, (xn, yn) ∈ D

}
, which

reduces the infinite-dimensional problem (1) to a finite-dimensional problem with N variables
{αn}Nn=1. However, it is known that even for loss functions with dual-sparsity (e.g. hinge-loss),
the number of non-zero αn increases linearly with data size [17].

Random Features has been proposed as a kernel approximation method [2, 3, 10, 5], where a Monte-
Carlo approximation

k(xi,xj) = Ep(h)[ϕh(xi)ϕh(xj)] ≈
1

D

D∑
k=1

ϕhk
(xi)ϕhk

(xj) = z(xi)
Tz(xj) (4)

is used to approximate (3), so that the solution to (1) can be obtained by

wRF = argmin
w∈RD

λ

2
∥w∥2 + 1

N

N∑
n=1

L(wTz(xn), yn). (5)

The corresponding approximation error

∣∣wT
RFz(x)− f∗(x)

∣∣ = ∣∣∣∣∣
N∑

n=1

αRF
n z(xn)

Tz(x)−
N∑

n=1

α∗
nk(xn,x)

∣∣∣∣∣ , (6)

as proved in [2,Appendix B], can be bounded by ϵ given D = Ω(1/ϵ2) number of random fea-
tures, which is a direct consequence of the uniform convergence of the sampling approximation (4).
Unfortunately, the rate of convergence suggests that to achieve small approximation error ϵ, one
needs significant amount of random features, and since the model size of (5) grows linearly with
D, such an algorithm might not obtain a sparser model than kernel method. On the other hand, the
ℓ1-regularized Random-Feature algorithm we are proposing aims to minimize loss with a selected
subset of random feature that neither grows linearly with D nor with N . However, (6) does not hold
for ℓ1-regularization, and thus one cannot transfer guarantee from kernel approximation (4) to the
learned decision function.

3 Sparse Random Feature as Coordinate Descent

In this section, we present the Sparse Random Features algorithm and analyze its convergence by
interpreting it as a fully-corrective randomized coordinate descent in a Hilbert space. Given a feature
map of orthogonal basic functions {ϕ̄h(x) =

√
p(h)ϕh(x)}h∈H , the optimization program (1) can

be written as the infinite-dimensional optimization problem

min
w∈H

λ

2
∥w∥22 +

1

N

N∑
n=1

L(⟨w, ϕ̄(xn)⟩H, yn). (7)

3

Instead of directly minimizing (7), the Sparse Random Features algorithm optimizes the related
ℓ1-regularized problem defined as

min
w̄∈H

F (w̄) = λ∥w̄∥1 +
1

N

N∑
n=1

L(⟨w̄,ϕ(xn)⟩H, yn), (8)

where ϕ̄(x) =
√
p ◦ ϕ(x) is replaced by ϕ(x) and ∥w̄∥1 is defined as the ℓ1-norm in function

space ∥w̄∥1 =
∫
h∈H
|w̄(h)|dh. The whole procedure is depicted in Algorithm 1. At each iteration,

we draw R coordinates h1, h2, ..., hR from distribution p(h), add them into a working set At, and
minimize (8) w.r.t. the working set At as

min
w̄(h),h∈At

λ
∑
h∈At

|w̄(h)|+ 1

N

N∑
n=1

L(
∑
h∈At

w̄(h)ϕh(xn), yn). (9)

At the end of each iteration, the algorithm removes features with zero weight to maintain a compact
working set.

Algorithm 1 Sparse Random-Feature Algorithm

Initialize w̄0 = 0, working set A(0) = {}, and t = 0.
repeat

1. Sample h1, h2, ..., hR i.i.d. from distribution p(h).
2. Add h1, h2, ..., hR to the set A(t).
3. Obtain w̄t+1 by solving (9).
4. A(t+1) = A(t) \

{
h | w̄t+1(h) = 0

}
.

5. t← t+ 1.
until t = T

3.1 Convergence Analysis

In this section, we analyze the convergence behavior of Algorithm 1. The analysis comprises of two
parts. First, we estimate the number of iterations Algorithm 1 takes to produce a solution wt that
is at most ϵ away from some arbitrary reference solution wref on the ℓ1-regularized program (8).
Then, by taking wref as the optimal solution w∗ of (7), we obtain an approximation guarantee for
wt with respect to w∗. The proofs for most lemmas and corollaries will be in the appendix.
Lemma 1. Suppose loss function L(z, y) has β-Lipschitz-continuous derivative and |ϕh(x)| ≤
B,∀h ∈ H,∀x ∈ X . The loss term Loss(w̄;ϕ) = 1

N

∑N
n=1 L(⟨w̄,ϕ(xn)⟩, yn) in (8) has

Loss(w̄ + ηδh;ϕ)− Loss(w̄;ϕ) ≤ ghη +
γ

2
η2,

where δh = δ(∥x − h∥) is a Dirac function centered at h, and gh = ∇w̄Loss(w̄;ϕ)(h) is the
Frechet derivative of the loss term evaluated at h, and γ = βB2.

The above lemma states smoothness of the loss term, which is essential to guarantee descent amount
obtained by taking a coordinate descent step. In particular, we aim to express the expected progress
made by Algorithm 1 as the proximal-gradient magnitude of F̄ (w) = F (

√
p ◦w) defined as

F̄ (w) = λ∥√p ◦w∥1 +
1

N

N∑
n=1

L(⟨w, ϕ̄(xn)⟩, yn). (10)

. Let g = ∇w̄Loss(w̄,ϕ), ḡ = ∇wLoss(w, ϕ̄) be the gradients of loss terms in (8), (10) respec-
tively, and let ρ ∈ ∂ (λ∥w̄∥1). We have following relations between (8) and (10):

ρ̄ :=
√
p ◦ ρ ∈ ∂ (λ∥√p ◦w∥1), ḡ =

√
p ◦ g, (11)

by simple applications of the chain rule. We then analyze the progress made by each iteration of
Algorithm 1. Recalling that we used R to denote the number of samples drawn in step 1 of our
algorithm, we will first assume R = 1, and then show that same result holds also for R > 1.

4

Theorem 1 (Descent Amount). The expected descent of the iterates of Algorithm 1 satisfies

E[F (w̄t+1)]− F (w̄t) ≤ −γ∥η̄t∥2

2
, (12)

where η̄ is the proximal gradient of (10), that is,

η̄ = argmin
η

λ∥√p ◦ (wt + η)∥1 − λ∥√p ◦wt∥1 + ⟨ḡ,η⟩+
γ

2
∥η∥2 (13)

and ḡ = ∇wLoss(wt, ϕ̄) is the derivative of loss term w.r.t. w.

Proof. Let gh = ∇w̄Loss(w̄t,ϕ)(h). By Corollary 1, we have

F (w̄t + ηδh)− F (w̄t) ≤ λ|w̄t(h) + η| − λ|w̄t(h)|+ ghη +
γ

2
η2. (14)

Minimizing RHS w.r.t. η, the minimizer ηh should satisfy

gh + ρh + γηh = 0 (15)

for some sub-gradient ρh ∈ ∂ (λ|w̄t(h) + ηh|). Then by definition of sub-gradient and (15) we have

λ|w̄t(h) + η| − λ|w̄t(h)|+ ghη +
γ

2
η2 ≤ ρhηh + ghηh +

γ

2
η2h (16)

= −γη2h +
γ

2
η2h = −γ

2
η2h. (17)

Note the equality in (16) holds if w̄t(h) = 0 or the optimal ηh = 0, which is true for Algorithm
1. Since w̄t+1 minimizes (9) over a block At containing h, we have F (w̄t+1) ≤ F (w̄t + ηhδh).
Combining (14) and (16), taking expectation over h on both sides, and then we have

E[F (w̄t+1)]− F (w̄t) ≤ −γ

2
E[η2h] = ∥

√
p ◦ η∥2 = ∥η̄∥2

Then it remains to verify that η̄ =
√
p ◦ η is the proximal gradient (13) of F̄ (wt), which is true

since η̄ satisfies the optimality condition of (13)

ḡ + ρ̄+ γη̄ =
√
p ◦ (g + ρ+ γη) = 0,

where first equality is from (11) and the second is from (15).

Theorem 2 (Convergence Rate). Given any reference solution wref , the sequence {wt}∞t=1 satisfies

E[F̄ (wt)] ≤ F̄ (wref) +
2γ∥wref∥2

k
, (18)

where k = max{t− c, 0} and c = 2(F̄ (0)−F̄ (wref))
γ∥wref∥2 is a constant.

Proof. First, the equality actually holds in inequality (16), since for h /∈ A(t−1), we have wt(h) = 0,
which implies λ|wt(h) + η| − λ|wt(h)| = ρη, ρ ∈ ∂(λ|wt(h) + η|), and for h ∈ At−1 we have
η̄h = 0, which gives 0 to both LHS and RHS. Therefore, we have

− γ

2
∥η̄∥2 = min

η
λ∥√p ◦ (wt + η)∥1 − λ∥√p ◦wt∥1 + ḡTη +

γ

2
∥η∥2. (19)

Note the minimization in (19) is separable for different coordinates. For h ∈ A(t−1), the weight
wt(h) is already optimal in the beginning of iteration t, so we have ρ̄h + ḡh = 0 for some ρ̄h ∈
∂(|

√
p(h)w(h)|). Therefore, ηh = 0, h ∈ A(t−1) is optimal both to (|

√
p(h)(w(h) + ηh)|+ ḡhηh)

and to γ
2 η

2
h. Set ηh = 0 for the latter, we have

−γ

2
∥η̄∥2 = min

η

{
λ∥√p ◦ (wt + η)∥1 − λ∥√p ◦wt∥1 + ⟨ḡ,η⟩+

γ

2

∫
h/∈A(t−1)

η2hdh

}
≤ min

η

{
F̄ (wt + η)− F̄ (wt) +

γ

2

∫
h/∈A(t−1)

η2hdh

}

5

from convexity of F̄ (w). Consider solution of the form η = α(wref −wt), we have

−γ

2
∥η̄∥2 ≤ min

α∈[0,1]

{
F̄
(
wt + α(wref −wt)

)
− F̄ (wt) +

γα2

2

∫
h/∈A(t−1)

(wref (h)− wt(h))2dh

}
≤ min

α∈[0,1]

{
F̄ (wt) + α

(
F̄ (wref)− F̄ (wt)

)
− F̄ (wt) +

γα2

2

∫
h/∈A(t−1)

wref (h)2dh

}
≤ min

α∈[0,1]

{
−α

(
F̄ (wt)− F̄ (wref)

)
+

γα2

2
∥wref∥2

}
,

where the second inequality results from wt(h) = 0, h /∈ A(t−1). Minimizing last expression w.r.t.
α, we have α∗ = min

(
F̄ (wt)−F̄ (wref)

γ∥wref∥2 , 1
)

and

−γ

2
∥η̄∥2 ≤

{
−
(
F̄ (wt)− F̄ (wref)

)2
/(2γ∥wref∥2) , if F̄ (wt)− F̄ (wref) < γ∥wref∥2

−γ
2 ∥w

ref∥2 , o.w.
.

(20)

Note, since the function value {F̄ (wt)}∞t=1 is non-increasing, only iterations in the beginning fall in
second case of (20), and the number of such iterations is at most c = ⌈ 2(F̄ (0)−F̄ (wref))

γ∥wref∥2 ⌉. For t > c,
we have

E[F̄ (wt+1)]− F̄ (wt) ≤ −γ∥η̄t∥22
2

≤ − (F̄ (wt)− F̄ (wref))2

2γ∥wref∥2
. (21)

The recursion then leads to the result.

Note the above bound does not yield useful result if ∥wref∥2 → ∞. Fortunately, the optimal
solution of our target problem (7) has finite ∥w∗∥2 as long as in (7) λ > 0, so it always give a useful
bound when plugged into (18), as following corollary shows.

Corollary 1 (Approximation Guarantee). The output of Algorithm 1 satisfies

E
[
λ∥w̄(D)∥1 + Loss(w̄(D);ϕ)

]
≤

{
λ∥w∗∥2 + Loss(w∗; ϕ̄)

}
+

2γ∥w∗∥22
D′ (22)

with D′ = max{D − c, 0}, where w∗ is the optimal solution of problem (7), c is a constant defined
in Theorem 2.

Then the following two corollaries extend the guarantee (22) to any R ≥ 1, and a bound holds with
high probability. The latter is a direct result of [18,Theorem 1] applied to the recursion (21).
Corollary 2. The bound (22) holds for any R ≥ 1 in Algorithm 1, where if there are T iterations
then D = TR.
Corollary 3. For D ≥ 2γ∥w∗∥2

ϵ (1 + log 1
ρ) + 2− 4

c + c , the output of Algorithm 1 has

λ∥w̄(D)∥1 + Loss(w̄(D);ϕ) ≤
{
λ∥w∗∥2 + Loss(w∗; ϕ̄)

}
+ ϵ (23)

with probability 1− ρ, where c is as defined in Theorem 2 and w∗ is the optimal solution of (7).

3.2 Relation to the Kernel Method

Our result (23) states that, for D large enough, the Sparse Random Features algorithm achieves either
a comparable loss to that of the vanilla kernel method, or a model complexity (measured in ℓ1-norm)
less than that of kernel method (measured in ℓ2-norm). Furthermore, since w∗ is not the optimal
solution of the ℓ1-regularized program (8), it is possible for the LHS of (23) to be much smaller than
the RHS. On the other hand, since any w∗ of finite ℓ2-norm can be the reference solution wref , the λ
used in solving the ℓ1-regularized problem (8) can be different from the λ used in the kernel method.
The tightest bound is achieved by minimizing the RHS of (23), which is equivalent to minimizing
(7) with some unknown λ̃(λ) due to the difference of ∥w∥1 and ∥w∥22. In practice, we can follow
a regularization path to find small enough λ that yields comparable predictive performance while
maintains model as compact as possible. Note, when using different sampling distribution p(h) from
the decomposition (3), our analysis provides different bounds (23) for the Randomized Coordinate
Descent in Hilbert Space. This is in contrast to the analysis in the finite-dimensional case, where
RCD with different sampling distribution converges to the same solution [18].

6

3.3 Relation to the Boosting Method

Boosting is a well-known approach to minimize infinite-dimensional problems with ℓ1-
regularization [8, 9], and which in this setting, performs greedy coordinate descent on (8). For
each iteration t, the algorithm finds the coordinate h(t) yielding steepest descent in the loss term

h(t) = argmin
h∈H

1

N

N∑
n=1

L′
nϕh(xn) (24)

to add into a working set At and minimize (8) w.r.t. At. When the greedy step (24) can be solved
exactly, Boosting has fast convergence to the optimal solution of (8) [13, 14]. On the contrary,
randomized coordinate descent can only converge to a sub-optimal solution in finite time when there
are infinite number of dimensions. However, in practice, only a very limited class of basis functions
allow the greedy step in (24) to be performed exactly. For most basis functions (weak learners)
such as perceptrons and decision trees, the greedy step (24) can only be solved approximately. In
such cases, Boosting might have no convergence guarantee, while the randomized approach is still
guaranteed to find a comparable solution to that of the kernel method. In our experiments, we found
that the randomized coordinate descent performs considerably better than approximate Boosting
with the perceptron basis functions (weak learners), where as adopted in the Boosting literature
[19, 8], a convex surrogate loss is used to solve (24) approximately.

4 Experiments

In this section, we compare Sparse Random Features (Sparse-RF) to the existing Random Fea-
tures algorithm (RF) and the kernel method (Kernel) on regression and classification problems with
kernels set to Gaussian RBF, Laplacian RBF [2], and Perceptron kernel [7] 1. For Gaussian and
Laplacian RBF kernel, we use Fourier basis function with corresponding distribution p(h) derived
in [2]; for Perceptron kernel, we use perceptron basis function with distribution p(h) being uniform
over unit-sphere as shown in [7]. For regression, we solve kernel ridge regression (1) and RF regres-
sion (6) in closed-form as in [10] using Eigen, a standard C++ library of numerical linear algebra.
For Sparse-RF, we solve the LASSO sub-problem (9) by standard RCD algorithm. In classification,
we use LIBSVM2as solver of kernel method, and use Newton-CG method and Coordinate Descent
method in LIBLINEAR [12] to solve the RF approximation (6) and Sparse-RF sub-problem (9) re-
spectively. We set λN = Nλ = 1 for the kernel and RF methods, and for Sparse-RF, we choose
λN ∈ {1, 10, 100, 1000} that gives RMSE (accuracy) closest to the RF method to compare spar-
sity and efficiency. The results are in Tables 1 and 2, where the cost of kernel method grows at
least quadratically in the number of training samples. For YearPred, we use D = 5000 to maintain
tractability of the RF method. Note for Covtype dataset, the ℓ2-norm ∥w∗∥2 from kernel machine is
significantly larger than that of others, so according to (22), a larger number of random features D
are required to obtain similar performance, as shown in Figure 1.

In Figure 1, we compare Sparse-RF (randomized coordinate descent) to Boosting (greedy coordinate
descent) and the bound (23) obtained from SVM with Perceptron kernel and basis function (weak
learner). The figure shows that Sparse-RF always converges to a solution comparable to that of
the kernel method, while Boosting with approximate greedy steps (using convex surrogate loss)
converges to a higher objective value, due to bias from the approximation.

Acknowledgement

S.-D.Lin acknowledges the support of Telecommunication Lab., Chunghwa Telecom Co., Ltd via TL-103-
8201, AOARD via No. FA2386-13-1-4045, Ministry of Science and Technology, National Taiwan University
and Intel Co. via MOST102-2911-I-002-001, NTU103R7501, 102-2923-E-002-007-MY2, 102-2221-E-002-
170, 103-2221-E-002-104-MY2. P.R. acknowledges the support of ARO via W911NF-12-1-0390 and NSF via
IIS-1149803, IIS-1320894, IIS-1447574, and DMS-1264033. This research was also supported by NSF grants
CCF-1320746 and CCF-1117055.

2Data set for classification can be downloaded from LIBSVM data set web page, and data set for regression can be found at UCI Machine
Learning Repository and Ali Rahimi’s page for the paper [2].

2We follow the FAQ page of LIBSVM to replace hinge-loss by square-hinge-loss for comparison.

7

Table 1: Results for Kernel Ridge Regression. Fields from top to bottom are model size (# of support
vectors or # of random features or # of non-zero weights respectively), testing RMSE, training time,
testing prediction time, and memory usage during training.

Gaussian RBF Laplacian RBF Perceptron Kernel
Data set Kernel RF Sparse-RF Kernel RF Sparse-RF Kernel RF Sparse-RF
CPU SV=6554 D=10000 NZ=57 SV=6554 D=10000 NZ=289 SV=6554 D=10000 NZ=251
Ntr =6554 RMSE=0.038 0.037 0.032 0.034 . 0.035 0.027 0.026 0.038 0.027
Nt =819 Ttr=154 s 875 s 22 s 157 s 803 s 43 s 151 s 776 s 27 s
d =21 Tt=2.59 s 6 s 0.04 s 3.13 s 6.99 s 0.18 s 2.48 s 6.37 s 0.13 s

Mem=1.36 G 4.71 G 0.069 G 1.35 G 4.71 G 0.095 G 1.36 G 4.71 G 0.090 G
Census SV=18186 D=10000 NZ=1174 SV=18186 D=10000 NZ=5269 SV=18186 D=10000 NZ=976
Ntr =18186 RMSE=0.029 0.032 0.030 0.146 0.168 0.179 0.010 0.016 0.016
Nt =2273 Ttr=2719 s 1615 s 229 s 3268 s 1633 s 225 s 2674 s 1587 s 185 s
d =119 Tt=74 s 80 s 8.6 s 68 s 88 s 38s 67.45 s 76 s 6.7 s

Mem=10 G 8.2 G 0.55 G 10 G 8.2 G 1.7 G 10 G 8.2 G 0.49 G
YearPred SV=# D=5000 NZ=1865 SV=# D=5000 NZ=3739 SV=# D=5000 NZ=896
Ntr =463715 RMSE=# 0.103 0.104 # 0.286 0.273 # 0.105 0.105
Nt =51630 Ttr=# 7697 s 1618 s # 9417 s 1453 s # 8636 s 680 s
d =90 Tt=# 697 s 97 s # 715 s 209 s # 688 s 51 s

Mem=# 76.7G 45.6G # 76.6 G 54.3 G # 76.7 G 38.1 G

Table 2: Results for Kernel Support Vector Machine. Fields from top to bottom are model size (#
of support vectors or # of random features or # of non-zero weights respectively), testing accuracy,
training time, testing prediction time, and memory usage during training.

Gaussian RBF Laplacian RBF Perceptron Kernel
Data set Kernel RF Sparse-RF Kernel RF Sparse-RF Kernel RF Sparse-RF
Cod-RNA SV=14762 D=10000 NZ=180 SV=13769 D=10000 NZ=1195 SV=15201 D=10000 NZ=1148
Ntr =59535 Acc=0.966 0.964 0.964 0.971 . 0.969 0.970 0.967 0.964 0.963
Nt =10000 Ttr=95 s 214 s 180 s 89 s 290 s 137 s 57.34 s 197 s 131 s
d =8 Tt=15 s 56 s 0.61 s 15 s 46 s 6.41 s 7.01 s 71.9 s 3.81 s

Mem=3.8 G 9.5 G 0.66 G 3.6 G 9.6 G 1.8 G 3.6 G 9.6 G 1.4 G
IJCNN SV=16888 D=10000 NZ=1392 SV=16761 D=10000 NZ=2508 SV=26563 D=10000 NZ=1530
Ntr =127591 Acc=0.991 0.989 0.989 0.995 0.992 0.992 0.991 0.987 0.988
Nt =14100 Ttr=636 s 601 s 292 s 988 s 379 s 566 s 634 s 381 s 490 s
d =22 Tt=34 s 88 s 11 s 34 s 86 s 25 s 16 s 77 s 11 s

Mem=12 G 20 G 7.5 G 12 G 20 G 9.9 G 11 G 20 G 7.8 G
Covtype SV=335606 D=10000 NZ=3421 SV=224373 D=10000 NZ=3141 SV=358174 D=10000 NZ=1401
Ntr =464810 Acc=0.849 0.829 0.836 0.954 0.888 0.869 0.905 0.835 0.836
Nt =116202 Ttr=74891 s 9909 s 6273 s 64172 s 10170 s 2788 s 79010 s 6969 s 1706 s
d =54 Tt=3012 s 735 s 132 s 2004 s 635 s 175 s 1774 s 664 s 70 s

Mem=78.5 G 74.7 G 28.1 G 80.8 G 74.6 G 56.5 G 80.5 G 74.7 G 44.4 G

0 500 1000 1500 2000 2500
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time

ob
je

ct
iv

e

Cod−RNA−Objective

Boosting
Sparse−RF
Kernel

0 0.5 1 1.5 2 2.5

x 10
4

0

0.05

0.1

0.15

0.2

0.25

time

ob
je

ct
iv

e

IJCNN−Objective

Boosting
Sparse−RF
Kernel

0 5000 10000 15000

0.35

0.4

0.45

0.5

0.55

0.6

0.65

time

ob
je

ct
iv

e

Covtype−Objective

Boosting
Sparse−RF
Kernel

0 500 1000 1500 2000 2500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

time

er
ro

r

Cod−RNA−Error

Boosting
Sparse−RF
Kernel

0 0.5 1 1.5 2 2.5

x 10
4

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

time

er
ro

r

IJCNN−Error

Boosting
Sparse−RF
Kernel

0 5000 10000 15000
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

time

er
ro

r

Covtype−Error

Boosting
Sparse−RF
Kernel

Figure 1: The ℓ1-regularized objective (8) (top) and error rate (bottom) achieved by Sparse Random
Feature (randomized coordinate descent) and Boosting (greedy coordinate descent) using perceptron
basis function (weak learner). The dashed line shows the ℓ2-norm plus loss achieved by kernel
method (RHS of (22)) and the corresponding error rate using perceptron kernel [7].

8

References

[1] Mercer, J. Functions of positive and negative type and their connection with the theory of inte-
gral equations. Royal Society London, A 209:415 446, 1909.

[2] Rahimi, A. and Recht, B. Random features for large-scale kernel machines. NIPS 20, 2007.
[3] Rahimi, A. and Recht, B. Weighted sums of random kitchen sinks: Replacing minimization with

randomization in learning. NIPS 21, 2008.
[4] Vedaldi, A., Zisserman, A.: Efficient additive kernels via explicit feature maps. In CVPR. (2010)
[5] P. Kar and H. Karnick. Random feature maps for dot product kernels. In Proceedings of AIS-

TATS’12, pages 583 591, 2012.
[6] T. Yang, Y.-F. Li, M. Mahdavi, R. Jin, and Z.-H. Zhou. Nystrom method vs. random Fourier

features: A theoretical and empirical comparison. In Adv. NIPS, 2012.
[7] Husan-Tien Lin, Ling Li, Support Vector Machinery for Infinite Ensemble Learnings. JMLR

2008.
[8] Saharon Rosset, Ji Zhu, and Trevor Hastie. Boosting as a Regularized Path to a Maximum

Margin Classifier. JMLR, 2004.
[9] Saharon Rosset, Grzegorz Swirszcz, Nathan Srebro, and Ji Zhu. ℓ1-regularization in infinite

dimensional feature spaces. In Learning Theory: 20th Annual Conference on Learning Theory,
2007.

[10] Q. Le, T. Sarlos, and A. J. Smola. Fastfood - approximating kernel expansions in loglinear
time. In The 30th International Conference on Machine Learning, 2013.

[11] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines. ACM Transac-
tions on Intelligent Systems and Technology, 2011.

[12] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR: A library for
large linear classification. Journal of Machine Learning Research, 9:1871 1874, 2008.

[13] Gunnar Ratsch, Sebastian Mika, and Manfred K. Warmuth. On the convergence of leveraging.
In NIPS, 2001.

[14] Matus Telgarsky. The Fast Convergence of Boosting. In NIPS, 2011.
[15] Kimeldorf, G. S. and Wahba, G. A correspondence between Bayesian estimation on stochastic

processes and smoothing by splines. Annals of Mathematical Statistics, 41:495502, 1970.
[16] Scholkopf, Bernhard and Smola, A. J. Learning with Kernels. MIT Press, Cambridge, MA,

2002.
[17] Steinwart, Ingo and Christmann, Andreas. Support Vector Machines. Springer, 2008.
[18] P. Ricktarik and M. Takac, Iteration complexity of randomized block-coordinate descent meth-

ods for minimizing a composite function, School of Mathematics, University of Edinburgh,
Tech. Rep., 2011.

[19] Chen, S.-T., Lin, H.-T. and Lu, C.-J. An online boosting algorithm with theoretical justifica-
tions. ICML 2012.

[20] Taskar, B., Guestrin, C., and Koller, D. Max-margin Markov networks. NIPS 16, 2004.
[21] G. Song et.al. Reproducing kernel Banach spaces with the l1 norm. Journal of Applied and

Computational Harmonic Analysis, 2011.

9

Appendix: Sparse Random Feature Algorithm
as Coordinate Descent in Hilbert Space

Ian E.H. Yen 1 Ting-Wei Lin 2 Shou-De Lin 2 Pradeep Ravikumar 1 Inderjit Dhillon 1

Department of Computer Science
1: University of Texas at Austin, 2: National Taiwan University

1: {ianyen,pradeepr,inderjit}@cs.utexas.edu,
2: {b97083,sdlin}@csie.ntu.edu.tw

1 Proof of Lemma 1

Lemma 1. Suppose loss function L(z, y) has β-Lipchitz-continuous derivative and |ϕh(x)| ≤
B,∀h ∈ H,∀x ∈ X . The loss term Loss(w̄;ϕ) = 1

N

∑N
n=1 L(⟨w̄,ϕ(xn)⟩, yn) in (9) has

Loss(w̄ + ηδh;ϕ)− Loss(w̄;ϕ) ≤ ghη +
γ

2
η2

, where δh = δ(∥x− h∥) is a Dirac function centered at h, gh = ∇w̄Loss(w̄;ϕ)(h) is the Frechet
derivative of loss term evaluated at h, and γ = βB2.

Proof. For a loss function of β-Lipchitz-continuous derivative, we have

L(z + d, y)− L(z, y) ≤ L′(z, y)d+
β

2
d2 (1)

. For w̄ + ηδh, we have z + d = ⟨w̄,ϕ(xn)⟩ + ηϕh(xn). Substitute it into (1), average over n,
apply the bound |ϕh(xn)| ≤ B, and the result follows.

2 Proof of Corollary 1

Corollary 1 (Approximation Guarantee). The output of Algorithm 1 has

E
[
λ∥w̄(D)∥1 + Loss(w̄(D);ϕ)

]
≤

{
λ∥w∗∥2 + Loss(w∗; ϕ̄)

}
+

2γ∥w∗∥22
D′ (2)

with D′ = max{D − c, 0}, where w∗ is the optimal solution of problem (7), c is a constant defined
in Theorem 2.

Proof. Plug wref = w∗ into (18), we have

E[F̄ (w(D))] ≤ λ∥√p ◦w∗∥1 + Loss(w∗; ϕ̄) +
2γ∥w∗∥2

D′ , (3)

where

∥√p ◦w∗∥1 =

∫
h∈H

√
p(h)|w∗(h)|dh ≤

√∫
h∈H

p(h)dh

√∫
h∈H

w∗(h)2dh = ∥w∗∥2 (4)

by Cauchy-Schwarz inequality and the fact probability distribution sums to 1.

1

3 Proof of Corollary 2

Corollary 2. The bound (25) holds for any R ≥ 1 in Algorithm 1, where if there are T iterations
then D = TR.

Proof. We have proved the case when R = 1. To prove bound (25) for R > 1, we simply show
that Algorithm 1 achieves larger descent amount if R > 1. Suppose current solution and working
set are w̄t, A(t). Let w̄t+R

1 , A(t+R)
1 be solution and working set obtained from running Algorithm

1 for R more iterations, each with 1 feature drawn, and let w̄t+1
R , A(t+1)

R be those obtained from
running 1 iteration of Algorithm 1 with R features drawn. From step 4 of Algorithm 1, we have
A

(t+R)
1 ⊆ A

(t+1)
R , and therefore F (w̄t+1

R) ≤ F (w̄t+R
1) following step 3.

2

