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Social network analysis has attracted increasing attention in recent years. In many social net-
works, besides friendship links amongst users, the phenomenon of users associating themselves
with groups or communities is common. Thus, two networks exist simultaneously: the friend-
ship network among users, and the affiliation network between users and groups. In this paper,
we tackle the affiliation recommendation problem, where the task is to predict or suggest new
affiliations between users and communities, given the current state of the friendship and affili-
ation networks. More generally, affiliations need not be community affiliations—they can be a
user’s taste, so affiliation recommendation algorithms have applications beyond community rec-
ommendation. In this paper, we show that information from the friendship network can indeed
be fruitfully exploited in making affiliation recommendations. Using a simple way of combining
these networks, we suggest two models of user-community affinity for the purpose of making affili-
ation recommendations: one based on graph proximity, and another using latent factors to model
users and communities. We explore the affiliation recommendation algorithms suggested by these
models and evaluate these algorithms on two real world networks—Orkut and Youtube. In doing
so, we motivate and propose a way of evaluating recommenders, by measuring how good the top
50 recommendations are for the average user, and demonstrate the importance of choosing the
right evaluation strategy. The algorithms suggested by the graph proximity model turn out to be
the most effective. We also introduce scalable versions of these algorithms, and demonstrate their
effectiveness. This use of link prediction techniques for the purpose of affiliation recommendation
is, to our knowledge, novel.
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1. INTRODUCTION

There has been an explosion in the number of online social networks and their active
members. This wealth of information in the social networks has driven prolific
work on the analysis of the networks, understanding the processes that explain the
evolution of the networks, modeling the spread of behavior through the networks,
predicting their future state and so on.

Users of a social network tend to affiliate with communities. In some social net-
works, the groups are identified more by the preferences of the members of the
social network than by direct declaration: e.g. the genre of movies that a set of
Netflix customers tend to patronize more often. Online social networks like Face-
book, Orkut and LiveJournal are more interesting examples because the affiliation
networks here are explicitly established by the members of the network. Thus,
two networks exist simultaneously: the friendship network among users, and the
affiliation network between users and groups.

The problem. Group formation and evolution in social networks [Backstrom et al.
2006], and co-evolution of social and affiliation networks [Zheleva et al. 2009] have
been recently studied. One of the interesting challenges in social network analysis
is the affiliation recommendation problem, where the task is to recommend com-
munities to users. The fact that the social and affiliation networks “co-evolve”
suggests that a better solution to the affiliation recommendation problem can be
obtained if the friendship network is considered along with the affiliation network.
This problem setting has applications beyond community recommendation. Affil-
iations, for example, can be interpreted in general as a user’s taste for an item.
Neither is it limited to social networks. For example, in biology, the friendship
network can correspond to a network among genes, whereas the affiliation network
can correspond to a network between genes and traits/diseases, and the affiliation
recommendation problem can be viewed as one of identifying genes affecting the
expression of a disease.

Contributions. We consider how one can model the interplay between users and
communities in both networks simultaneously. An ideal unifying model would not
only explain the current state of the networks, but also help in predicting future
relationships among the nodes. Using a simple way of combining these networks, we
suggest and explore two ways of modeling the networks for the purpose of making
affiliation recommendations. The graph proximity model is based on estimating the
affinity between a user and a community by considering their proximity as nodes in
a combined graph, while the latent factors model is based on the proposition that
community affiliations arise from interactions of user factors and group factors.
Each of these network models suggests affiliation recommendation algorithms. In
order to make large-scale recommendations using algorithms suggested by the graph
proximity model, we present two approaches common subspace approximation and
clustered low rank approximation.

We evaluate a set of algorithms on social networks from Orkut consisting of 9,123
users and 75,546 communities, and Youtube consisting of 16,575 users and 21,326
communities. We propose a way of evaluating affiliation recommendations, by mea-
suring how good the top 50 recommendations per user are, and demonstrate the
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importance of designing the right evaluation strategy. Of the algorithms proposed,
those suggested by the graph proximity model turn out to be the most effective and
efficient. This use of link prediction techniques for the purpose of affiliation recom-
mendation is, to our knowledge, novel. We show that information in the friendship
network can be used effectively for affiliation recommendation. We also observe
that the benefit we derive from the social network in affiliation recommendation is
strongly contingent on how the problem is modeled and what algorithms are used.

Overview. We now provide a brief overview of the organization of the paper. In
Section 2, we consider a network formed by merging the friendship and affiliation
networks and introduce two models of the behaviour of nodes in this network: the
graph proximity model, and the latent factors model, and explore recommendation
algorithms that arise from these models. Section 3 details and two scalable models
for large scale group recommendation. In Section 4, we consider how the proposed
models and algorithms relate to prior work. In Section 5 we describe our evaluation
strategy and present experimental results to evaluate the various algorithms for
affiliation recommendation using real world networks. Finally, in Section 6, we
conclude with a summary of our findings and give a brief discussion on future lines
of research.

2. MODELS

In this section, we first establish the notation used, and then pose the affiliation
recommendation problem as a ranking problem. Then we describe a natural way
of combining the friendship and affiliation networks into a single graph. In the
subsections that follow, we describe affiliation recommendation approaches based
on the graph proximity model and those based on the latent factors model.

Notation. We use Nu to denote the total number of users in the affiliation network
and Ng to denote the total number of communities in the affiliation network. A ∈
R

Nu×Ng denotes the user × group adjacency matrix of affiliation network A. S ∈
R

Nu×Nu denotes the user × user adjacency matrix of friendship network S. We
will use Ai,j and [·]i,j to denote the i, j entry of the matrix A or the corresponding
matrix expression within the brackets. Other notation will be introduced as needed.

Ranking problem. We are considering the task to recommend affiliations to a
given user. This problem can be posed as a problem of ranking various affiliations
in the order of the user’s interest in joining them. The methods we describe here
to solve this problem rely on assigning scores to various affiliations in order to rank
them. The task of an affiliation recommendation algorithm can be viewed as one
of generating an Nu × Ng score matrix.

2.1 Prediction on the Combined Graph

Consider the adjacency matrices A and S. For now, we assume S to be symmetric
(or equivalently S to be undirected), although a non-symmetric extension to our
model can be easily obtained. Clearly, S corresponds to an undirected graph among

users and

[

0 A

AT 0

]

corresponds to an undirected bipartite graph between users and

groups. Despite the heterogeneity of the two types of “links”, it is rather natural to
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consider a graph C between all the users and groups, with the combined adjacency
matrix

C =

[

λS A

AT 0

]

, (1)

where the heterogeneity of two types of links is reduced to a single parameter
λ ≥ 0, that controls the ratio of the weight of friendship to the weight of group
membership. Clearly when λ = 0, the user-user friendship ceases to play a role in
this joint graph, and it simply degenerates to the bipartite affiliation graph.

As in the case of prediction with a single graph, the prediction on C can be carried
out from the following two perspectives.
(1) Graph Proximity Model: We assume that the entire graph is known, and

that the prediction of new or unobserved links is based on an estimated prox-
imity in C between nodes.

(2) Latent Factors Model: We model the graph as a matrix, some of whose zero
entries are actually ones, while modelling all entries as the product of latent
factors.

We will elaborate on the two perspectives in the following two subsections.

2.2 Graph Proximity Model

As described earlier, the affiliation network can be modelled by a graph. The graph
proximity model assumes that the probability of there arising a link between two
nodes in a graph is based on an estimated proximity between the two nodes. The
proximity of two vertices can be calculated as the weighted sum of the number of
paths connecting the two with varying lengths. This is the underlying mechanism
of many link prediction models in the context of social network analysis. Consider
the widely-used Katz measure [Katz 1953; Liben-Nowell and Kleinberg 2003] on the
friendship network S. The proximity is given by

Katz(S; β) = βS + β2S2 + β3S3 + · · · =

∞
∑

i=1

βiSi,

where the weights of paths decay exponentially with the length and β is a parameter
to ensure convergence of the series.

A simple extension of Katz to the bipartite graph A is

extKatz(A; β) = (βAAT + β2(AAT )2 + β3(AAT )3 + · · · )A

= Katz(AAT ; β)A, (2)

where, in the co-occurrence matrix AAT , two users i and j are considered connected
if i and j are members in the same group, i.e. [AAT ]i,j > 0. In this case, we consider
the paths of the following types

user i
AA

T

−−−→ j
AA

T

−−−→ k
A
−→ group n.

The intuition in considering AAT A is if user i shares some community with user
j, it is likely that i will join some other community j belongs to. The higher order
terms can be interpreted in a similar way.
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Consider the following Katz measure proximity matrix on the combined graph C

Katz(C; β) = βC + β2C2 + β3C3 + · · · =
∞
∑

i=1

βiCi.

The user-community block1 of Katz(C; β) is denoted Katz(C; β)12 and given by

Katz(C; β)12 = βA + β2λSA + β3(λ2S2A + AATA)+

β4(λ3S3A + λAAT SA + λSAAT A) + · · · . (3)

Equation (3) is another generalization of the Katz measure on the bipartite graph
A by also considering paths involving the frienship graph S, e.g.

user i
S
−→ j

A
−→ group n (in C2)

and

user i
S
−→ j

AA
T

−−−→ k
A
−→ group n (in C4).

Clearly we can use Katz(C; β)12 as a score matrix.
Computing the Katz measure is expensive as it either involves a summation of

large number (infinite) of terms with matrix powers or the inverse of a potentially
large matrix2, where the resulting inverse is dense. We consider a truncated Katz

measure, e.g. with the combined adjacency matrix C we have

tKatz(C, β, k) =
k

∑

i=1

βiCi. (4)

where the truncation parameter k is usually quite small. Also for the truncated
Katz measure we will be interested in only the user-community block, which we will
denote tKatz(C, β, k)12, e.g. with k = 2 we have

tKatz(C, β, 2)12 = βA + β2λSA. (5)

For computing the tKatz or extKatz measures for the graphs C or A, respectively,
a conservative estimate of the computational cost is O(Nu × nnz), where nnz is the
number of non-zeros in (AAT )k.

2.3 Latent Factors Model

We will now describe the latent factors model. We will present the optimization
problem it solves, and examine some of its properties. In this model, the zeros in the
adjacency matrix of the affiliation network, A may be viewed as being unobserved
entries with a huge prior belief in favor of them being actually zero. Every user
i and community j are assumed to have a low dimensional representations ui, gj .
The affinity of a user i to a community j is assumed to correspond to uT

i gj . In
other words, users and communities with a high inner product are assumed to be
connected to each other, i.e. Ai,j ≈ uT

i gj . In matrix form, we express this as

A ≈ UT G, (6)

1The user-community block is the 1-2 block matrix of Katz(C; β), that originates from the block
partitioning of C in Equation (1).
2It can be shown that Katz(C; β) = (I − βC)−1 − I.
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where U ∈ R
d×Nu is the matrix of user factors and G ∈ R

d×Ng is the matrix of
group factors. Note that rank(U) ≤ d, rank(G) ≤ d, and d ≪ Nu, Ng.

To get factors which account for both the observed entries in A as well as the
interactions in S we consider the following combined network,

C′(λ,D) =

[

λS A

AT D

]

, (7)

where D is a derived similarity between groups which is not observed. Note that
C = C′(λ,0). Let C′ ≈ VΛVT be the rank-d dominant spectral approximation,
where the d columns of V are eigenvectors and Λ is a d × d diagonal matrix with
the largest in magnitude eigenvalues. Partitioning the spectral approximation ac-
cording to the block structure of C′ we obatain

C′(λ,D) =

[

λS A

AT D

]

≈

[

V1

V2

]

Λ
[

VT
1 VT

2

]

=

[

V1ΛVT
1 V1ΛVT

2

V2ΛVT
1 V2ΛVT

2

]

.

Clearly, we have A ≈ V1ΛVT
2 and we can set UT = V1Λ and G = VT

2 in model
of Equation (6). The user factors in U and group factors in G contain information
from the friendship network S as the computation of V1, V2 and Λ are influenced
by the presense of S in C′. We also note that the user and group factors are not
unique. It is straightforward to show that the factors V1, Λ and V2 obtained by
the spectral approximation of C′ solve the following minimization problem

arg min
V1,Λ,V2

(

‖V1ΛVT
1 − λS‖2

F + 2‖V1ΛVT
2 − A‖2

F + ‖V2ΛVT
2 − D‖2

F

)

, (8)

with the constraints rank(V1) = rank(V2) = rank(Λ) ≤ d. We will interpret the
low rank approximation of A

A ≈ V1ΛVT
2 (9)

as a score matrix.

Role of λ. Intuitively, in equation (8), λ controls the contribution of S in deciding
the user factors. The larger the λ, the learned factor model describes the friendship
network S better, and correspondingly the affiliation network is described less well.

Choice of D. The derived similarity between the communities D in the combined
matrix C′ can be approximated using proximity between communities in the graph
corresponding to C′. It follows that a potential choice is D = AT A, which is simply
the number of users which any two communities share. One may also consider
weighing the contribution of D with λ, which is the weight factor learnt for S.
We will see later that the experiments suggest that the choice of D is not very
important, and that the information from D, when derived from A, is redundant.

3. SCALING TO LARGE DATA SETS

We have proposed two different approaches to group recommendation in the pre-
vious section. In this section we will consider the computational feasibility of our
approaches when dealing with massive real world data sets. The latent factors
model (Section 2.3) is in fact quite scalable due to the existence of highly efficient
algorithms, e.g. ARPACK [Lehoucq et al. 1998] and PROPACK [Larsen 1998],
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for computing the dominant eigenvectors and corresponding eigenvalues. Unfortu-
nately, the graph proximity model (Section 2.2) is computationally formidable for
large scale friendship networks S and affiliation networks A. This difficulty lies in
the computation of the power of A and S in tKatz(C; β, k)12. For example when
k = 3,

tKatz(C; β, 3)12 = βA + β2λSA + β3(λ2S2A + AAT A),

where both AAT and S2 could get fairly dense and hence the matrix multiplications
S2A and AATA become expensive and the results even denser.

3.1 Common Subspace Approximation

The cost of matrix multiplication can be reduced if we first take low rank approxi-
mation of both S and A. That is

S ≈ USΛSU
T
S , A ≈ UAΣAVT

A, (10)

where S is approximated using the spectral factorization and A is approximated
via the truncated singular value decomposition (SVD) [Golub and Van Loan 1996].
However, this simple approximation does not work well, since with very large A and
S, and small rank d in the approximations, UA and US may be almost orthogonal
to each other, i.e. entries of UT

S
UA are very small. Therefore the approximation

SA ≈ USΛS(UT
SUA)ΣAVT

A

may have almost all of its entries close to zero. One way to remedy this problem is
to extend these low rank approximations so that we have a common subspace, that
captures the dominant part of both S and A. We found that the following heuristic
works fairly well. We first form [US UA] and compute its QR factorization [Golub
and Van Loan 1996], i.e. QR = [US UA]. Then the optimal (in least squares
sense) rank-2d approximations of S and A in terms of Q are given by

S ≈ Q(QTSQ)QT ≡ QDSQ
T , A ≈ Q(QTAV)VT ≡ QDAVT , (11)

where V is an orthogonal matrix that spans the column space of AT Q, e.g. the
Q-part in the QR factorization of ATQ. We also introduced the 2d × 2d matrices
DS = QTSQ and DA = QTAV. Using the low rank approximations in (11) the
user-community block of the tKatz measure becomes

tKatz(C; β, 3)12 ≈ βQDSQT + Q
(

β2λDSDA + β3(λ2D2
S
DA + DADT

A
DA)

)

VT .
(12)

The intuition behind this heuristic is quite simple: we force the low-rank approx-
imations of A and S in (11) to take the same subspace for users. This constraint
certainly lowers the quality of individual approximation task, but better exploits
the interaction between S and A when predicting future affiliations.

3.2 Clustered Low Rank Approximation

An alternative approach related to the latent factor model is to compute a different
(than the spectral) low rank approximation of the combined adjacency matrix C.
It is observed that many real world social networks naturally form a number of
clusters (communities), where the links within the clusters are much denser than
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the ones between clusters. We will generally referred to graphs with clear cluster
structure as clusterable. In the clustered low rank approximation, [Savas and Dhillon
2010; Song et al. 2010] the cluster structure of the network is utilized in the low
rank approximation. We will illustrate the procedure through a 2-cluster example.
Assume that the nodes V = {1, 2, . . . , |V|} are clustered in two disjoint clusters, i.e.
V1∪V2 = V and V1∩V2 = ∅. Then by permuting rows and columns of C according
to the cluster memberships of the nodes we obtain

PCPT = C̄ =

[

C̄11 C̄12

C̄21 C̄22

]

,

where P is a permutation matrix that reorders rows of C so that the first |V1| rows
correspond to nodes from the first cluster, and the remaining |V2| rows correspond
to nodes from the second cluster. The links between nodes from cluster one will
then form the non-zeros of C̄11 and the links between nodes from cluster two form
the non-zeros of C̄22. Then the non-zeros in C̄12 and C̄21 correspond to links
between the two clusters. Assuming the graph is clusterable, the links/non-zeros
of C̄ will be concentrated in the diagonal blocks C̄11 and C̄22. The amount of
links/non-zeros in the off-diagonal blocks depend on how well the graph clusters,
and usually this part is only a small fraction of all links. In a particular example,
with five clusters on the Youtube data set, only about 10% of the links are between
vertices from different clusters. After a clustering of the nodes is obtained, by e.g.
using highly efficient multilevel algorithms [Dhillon et al. 2007; Karypis and Kumar
1998], a low rank approximation is computed of each diagonal block matrix of C̄.
The cluster-wise low rank approximations are computed independently and may be
obtained as the dominant spectral approximation, e.g. with two clusters we have

C̄11 ≈ V̄1Λ̄1V̄
T
1 C̄22 ≈ V̄2Λ̄2V̄

T
2 .

The two cluster-wise approximations are then used to obtain an approximation for
the entire C̄,

C̄ =

[

C̄11 C̄12

C̄21 C̄22

]

≈

[

V̄1 0
0 V̄2

] [

D̄11 D̄12

D̄21 D̄22

] [

V̄1 0
0 V̄2

]T

, (13)

where D̄ij = V̄T
i C̄ijV̄j and clearly if i = j we have D̄ii = Λ̄i. If the rank

of the approximation of each C̄ii is d we see that Equation (13) yields a rank-
2d approximation of C̄. An important observation is that the memory usage for
the rank-2d clustered low rank approximation is almost the same as the memory
usage for a regular rank-d approximation. Recall that V̄i are “long-skinny”, i.e.
d ≪ Nu, thus most of the memory in the low rank approximation is used by the
eigenvectors. Although the cluster-wise low rank approximations do not involve
off-diagonal blocks, e.g. C̄12, information on these blocks in the approximation of
C̄ is included due to the inclusion of D̄12. Experiments show that with the same
memory useage clustered low rank approximation is often much more accurate than
the regular low rank approximation. In addition, the total computational time3 for

3For timing analysis, the clustered low rank approximation includes a clustering step, a step with
approximations of each diagonal block, and finally computing the off-diagonal blocks D̄ij with
i 6= j. Timings are compared for cases where the number of parameters for the clustered and
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the clusterd low rank approxmiationis is usually lower than the time for computing
the truncated SVD for the entire matrix. Interested readers are referred to [Savas
and Dhillon 2010] and [Song et al. 2010].

In summary, the clustered low rank approximation cleverly spends most of its
resource (parameters) on modeling the links within clusters, and is therefore able to
capture more information than regular SVD using the same number of parameters.
The model in (13) may then be used both in the graph proximity model to compute
various Katz measures and in the latent factors model.

4. RELATED WORK

Increasing attention to recommendation systems in general can be attributed pri-
marily to commercial enterprises like Netflix and Amazon, where making good
recommendations for the customers is important for business. A huge body of
literature studies the problem of group recommendation, where the problem is to
recommend items or products to a group of users in a friendship network. Affilia-
tion recommendation for users of a friendship network, however, is relatively new
and less studied.

4.1 Joint matrix factorization models

We now examine the relationship of the latent factors model proposed in this paper
to a variety of other models proposed recently. Bader and Chew [Bader and Chew
2008], in the context of information retrieval, tackle the problem of applying LSA
to multi-lingual corpora. In such corpora, one has access to term-similarity infor-
mation along with term-document matrices corresponding to various languages. In
order to derive low dimensional term and document factors which account for infor-
mation from both these sources, they form a joint matrix similar to our combined
adjacency matrix C and compute its SVD. However, unlike this work, [Bader and
Chew 2008] does not deal with the item recommendation problem, and it does not
view this joint matrix as arising out of a pair of networks.

We will now consider two other joint matrix factorization models: One class of
models uses a probabilistic collaborative filtering to approach the problem, whereas
another tackles the problem of combining information from multiple sources from
the perspective of joint matrix factorization.

4.1.1 Probabilistic Collaborative Filtering Models. Collaborative filtering is a
natural way to approach the affiliation recommendation problem. Typically collab-
orative filtering is applied to user-item preference problems. This is based on the
simple idea that users with similar tastes behave similarly.

This approach has recently been applied to the affiliation recommendation prob-
lem by Chen et al. [Chen et al. 2009]. The authors examined the use of Latent
Dirichlet Allocation (LDA) in affiliation recommendation. The LDA approach does
not use information from the friendship network among users. So, here we briefly
examine the relationship between the latent factors model we propose and this LDA
based approach, while ignoring the friendship network aspects of our model.

Consider the objective (8) we are trying to minimize. In the proposed model, if

regular low rank approximations is the same.

ACM Transactions on Intelligent Systems and Technology, Vol. 555, No. 555, 555 20555.



120 · Vishvas Vasuki et al.

we ignore the constraint that the user factors U do not result in too large a deviation
from S, we are essentially trying to find a low rank approximation to A in terms
of the Frobenius norm. The solution which minimizes that objective is given by
the SVD of A. This is the Latent Semantic Analysis approach (LSA), which has
long been exploited for similar problems in the area of information retrieval. pLSA,
or probabilistic LSA [Hofmann 1999], instead proposes a statistical model for the
process generating A and then learns the model parameters which are most likely
to have generated the observations in A. These parameters can then be used in
finding a low rank approximation to A, in terms of the KL divergence. It can
thus be viewed as the probabilistic version of LSA. LDA, where Dirichlet priors are
added to pLSA’s generative model, can be viewed as the Bayesian version of pLSA.
Thus, the LDA based approach to the affiliation recommendation problem may be
viewed as trying to find a low rank approximation to A, albeit from a probabilistic,
Bayesian perspective, while ignoring information from S.

Combinatorial collaborative filtering [Chen et al. 2008] is another work in the
same vein. Unlike the LDA based approach, however, the probabilistic model of
user-community relationships used in this work utilizes information not only from
A, but also from text descriptions of various communities. Next, we examine a
couple of closely related matrix factorization models.

4.1.2 Linked Matrix Factorization Models. Tang et al have proposed Linked
Matrix Factorization (LMF) [Tang et al. 2009] as a way of combining information
from multiple graphs on the same set of entities, in order to make more accurate
inferences. However, they tackle a different problem, namely, clustering. The link
between their network model and ours is established by the objective functions that
we optimize. The LMF model tries to simultaneously find a low rank approximation
for the adjacency matrix of each network, using matrix factorization. Each such
matrix factorization has a source-specific factor matrix, Λ(m), and a factor matrix,
V, that is shared by all the sources. The objective function of LMF is effectively
to minimize the quantity,

M
∑

i=1

‖A(m) − VΛ(m)VT ‖2
F

Comparing this to (8), we see that U, which represents the user factors, is shared
by the two sources of information, i.e., A and S. However, an important distinction
is that we have two graphs which share only one set of entities in common, whereas
in LMF, each source of information is a network on exactly the same set of users.

Singh and Gordon have proposed a model for relational learning called Collective
Matrix Factorization [Singh and Gordon 2008]. They suggest a generalized frame-
work for inferring relations, given a set of entities and observed relations among
them. This model factors multiple source matrices simultaneously, and uses com-
mon factors for approximation whenever the same entity participates in multiple
relations. It allows different loss functions for each matrix approximation, and
combines the information from multiple relations using weights which reflect the
relative importance for each relation. This essentially generalizes the idea of Linked
Matrix Factorization. The Latent Factors Model proposed in this paper uses the
parameter λ to determine the contribution of the friendship network S in generating
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the user factors.
The above mentioned papers use optimization techniques based on the alternat-

ing least squares approach, we use SVD which efficiently solves the optimization
problem posed by the latent factors model.

4.2 Co-evolution of social and affiliation networks

Researchers have studied the effects of friendship ties on affiliations in other con-
texts, like the growth and evolution of social networks [Backstrom et al. 2006],
and spread of influence through a social network [Kempe et al. 2003; Chen et al.
2009]. They tend to model the dependence of a user joining a group on the number
of friends the user already has in the group. Zheleva et al. [Zheleva et al. 2009]
proposed a unified model for the generation of social and affiliation networks, and
observed that the social network is one of the factors that influences the evolution of
affiliation network. Our idea that friendship network combined with the affiliation
network can be exploited in making affiliation recommendations is inspired by this
line of research.

5. EXPERIMENTAL EVALUATION

We first introduce the data sets on which we conduct our experiments, and describe
the experimental setup. We then describe our methodology for comparing the
performance of various algorithms for the affiliation recommendation task. Finally,
we present a series of experiments using methods presented in previous sections,
and discuss the results.

5.1 Data

We use two popular online social networks for our experiments. These are Orkut
and Youtube, and both are operated by Google. The users of both social networks
explicitly identify themselves as belonging to some communities or groups. Thus, for
each of the networks we have adjacency matrix A that identifies the memberships
of the users in the groups and adjacency matrix S that identifies friendships among
users. For our experiments, we used data gathered by [Mislove et al. 2007]. We
compare the predictive ability of the algorithms using these large networks. In a few
of the experiments we used the largest connected component, denoted with Okrut-1c
and Youtube-1c, as path based measures, e.g. Katz, are decoupled and indepedent
for different components. Some statistics for these networks are presented in Table
I.

5.2 Experiment setup

For every user u and a group g, let Eu = {(u, g) | Au,g = 1} denote the affiliations
of u, as observed in a given affiliation network A. Invariably, in all the experiments,

we set aside a subset of these affiliations E
(t)
u ⊂ Eu as test data. We use |E

(t)
u | =

30%|Eu|. The remaining affiliations E
(tr)
u = Eu \E

(t)
u are used as training data for

the recommendation algorithms.
All of our recommendation algorithms require “learning” parameters for some

model of the affiliation process, and hence for the purposes of learning the parame-

ters, we use a set of validation links E
(v)
u ⊂ E

(tr)
u with |E

(v)
u | = 30%|E

(tr)
u |. During
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Feature Orkut Youtube Orkut-1c Youtube-1c

Number of users, Nu 9123 16575 9123 16535

Number of groups, Ng 75546 21326 20905 17672

Average number of groups per user 55.8 10.5 25 10.2

Minimum number of groups per user 4 4 0 2

Average number of users per group 6.7 8.1 10.9 9.6

Minimum number of users per group 1 1 2 1

Average number of friends per user 46 11.7 46 11.7

Table I. Some statistical properties of the data sets used in our experiments. The Orkut-1c
and Youtube-1c are the largest connected components from the Orkut and Youtube networks,
respectively.

the validation process, we compare different model parameters based on the number
of correct edges among 25Nu recommendations4 made using a model.

5.2.1 Evaluation method. We now describe our methodology for evaluating the
performance of an affiliation recommendation algorithm. We first introduce no-
tions of interest, such as precision, recall, sensitivity, specificity, ROC (receiver
operating characteristic) and AUC (area under curve). We then describe the way
in which we evaluate the performance of a recommendation algorithm based on its
top 50 recommendations to the average user. We then demonstrate the importance
of choosing the right evaluation method for the community recommendation task
by showing that using a different, but less appropriate, evaluation strategy yields
different results.

5.2.2 Performance Measures. Three commonly used measures of quality of so-
lutions in information retrieval and classification tasks are precision, recall or sensi-
tivity and specificity. Precision measures the exactness or fidelity of the prediction
while sensitivity measures the completeness of the prediction. Suppose that the
recommendation algorithm makes n recommendations to a user. Then, precision is
defined as the ratio of the number of correctly identified positives (true positives) to
n, and sensitivity is the ratio of the number of correctly identified positives to the

total number of positives, i.e. |E
(t)
u |. Specificity, on the other hand, measures the

ability of the recommender to exclude uninteresting affiliations from the recommen-
dations it makes. It is defined as the fraction of such “negative affiliations” correctly
excluded from the recommendation. All three of these performance measures range
from zero to one.

5.2.3 ROC—Receiver Operating Characteristic. Often, one is interested in eval-
uating the performance of a recommendation algorithm not for a single value of the
number of recommendations n, but for the entire range of n. For a given recom-
mendation algorithm and a user, sensitivity is a non-decreasing function of n. The
relationship between the increase in sensitivity, as n increases, with the decrease
in specificity is of interest in comparing the quality of recommendations. For a
good recommendation, as n increases, sensitivity increases without a big drop in
specificity. The ROC curve is a plot of the sensitivity vs (1 − specificity) for all

425Nu is chosen because, in Section 5.2.1, we argue that a predictive model should be judged
based on the quality of its top few recommendations.
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values of n. It is a common way of comparing the performance of classification al-
gorithms over the entire range of n (or equivalently cutoff scores). The AUC curve
(area under the ROC curve), is then used as a way to compare different classifi-
cation algorithms: the greater the AUC, the better the algorithm’s sensitivity vs
(1 − specificity) tradeoff.

Consider a social network website, like Orkut or Facebook; or a vendor like Net-
flix which sells movies. They would be interested in making, let us say, five pages
of recommendations to their users, but not much more than that. Certainly not a
hundred. Also, irrespective of whether a user participates in five communities or
seventy, the social networking website would probably want to make roughly the
same number of recommendations per user. So, we choose to evaluate the recom-
mendation algorithms we propose based on their top 50 recommendations. We do
this by examining the portion of the ROC curve obtained by measuring the sen-
sitivity and specificity the recommendation algorithm achieves for an average user
at regular intervals between n = 1 and n = 50. To do this, for a given n between
1 and 50, we compute the sensitivity and specificity for every user in the network,
and take the mean of these values to be the average sensitivity and average speci-
ficity for that n.5 We then plot the average sensitivity vs (1 − average specificity)
curve, as in Figure 2. Note that comparisons made using this method are statisti-
cally robust, as the sensitivities and specificities of recommendation algorithms are
averaged over, e.g., 9500 users in Orkut and 16000 users in Youtube.

5.2.4 “Global” vs “per-user” sensitivity. Let k(nu) be the number of “good
recommendations” made by a recommendation algorithm for a user u, when it
makes nu recommendations to that user. Then, “per user” sensitivity measure is

defined as N−1
u

∑

u(k(nu)/|E
(t)
u |). In our experiments, we will use nu = 50 ∀u.

Contrast this with finding the “global” sensitivity k′(n)/(
∑

u |E
(t)
u |), where k′(n)

denotes the number of “good recommendations” made by a given recommendation
algorithm while making n predictions in total. For a fixed n, this “global” sensitivity
is proportional to precision, and is a commonly used measure of performance of link
prediction algorithms in the context of social network analysis. Note that, in this
case, while n =

∑

u nu, there is no guarantee that, for two given users u and v, nu =
nv; indeed the recommendation algorithm, when asked to make n recommendations,
may not make any recommendations at all for some users. Therefore, this measure
of goodness of a recommendation algorithm is not equivalent to the “per user”
sensitivity.

Judging identical algorithms on identical data sets, using these alternative eval-
uation methods can yield very different rankings of recommendation algorithms, as
illustrated by comparing Figure 1 with Figure 2. Hence, the choice of an appropri-
ate method for evaluating affiliation recommendations is an important one.

5.3 Results and Discussion

In this section, we report and analyse the performance of the various recommen-
dation algorithms, based on the graph proximity model and latent factors model

5So, both average sensitivity and average specificity may be viewed as functions of the number of
recommendations n.
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(a) Orkut data set (b) Youtube data set

Fig. 1. In this figure, various recommendation algorithms are compared using the “global” sen-
sitivity measure described in Section 5.2.4, where a total of

P

u Eu recommendations are made,
with no guarantees about the number of recommendations made for any given user. According
to this evaluation method, LFM(C) appears to be superior to tKatz(C). However, these results
are different from those described in Figure 2, where recommendation algorithms are compared
based on the goodness of the top 50 recommendations made for the average user.
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(a) Orkut data set
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(b) Youtube data set

Fig. 2. Comparison of recommendation algorithms based on graph proximity and latent factors
models, as described in Section 5.2.1. The leading portion of the ROC curve is shown, thus
recommendation algorithms are compared based on the goodness of their top 50 recommendations.
The graph proximity based predictors consistently outperform latent factors based predictors in
the two data sets. See Section 5.3 for further discussion.

discussed in Sections 2 and 3. We compare the performance of the graph proximity
methods with the latent factors methods on the average sensitivity and average
specificity metrics introduced earlier, for a given number of recommendations in
{5, 10, · · · , 45, 50}. We study the performance of the scalable approximation meth-
ods proposed in Section 3, and compare these methods amongst themselves and
with the methods proposed in Section 2. The list of experiments based on latent
factor and graph proximity predictors are presented in Table II.

5.3.1 Performance of recommenders based on the two models. Consider the per-
formance of the recommendation algorithms on the Orkut data set in Figure 2(a).
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Fig. 3. Comparison of latent factors based algorithms for various choices of D, for the Orkut data
set: D2 = AT A, D3 = λAT A.

Experiment Score Matrix

tKatz(A) tKatz(AAT , β, k)A

tKatz(C) Equation (4)

SVD(A) SVD(A)

LFM(C) Equation (9)

LFM-c(C, c) Equation (13) extended to c clusters

tKatzCS(d) Equation (12)

tKatzLFM(C, d) tKatz(Cd), where Cd is rank-d approximation of C

tKatzLFM-c(C, c, d)) tKatz(Cd), where Cd is the clustered rank-d approximation of C

Table II. List of experiments, with the score matrix used for ranking the user-group connections,
based on latent factor and graph proximity models.

SVD(A) gives the lowest performance of all the methods. LFM(C) performs better
than SVD(A), which is expected given that it uses information from the friendship
network S in addition to the information from affiliation network A. For the aver-
age user, the graph proximity model based methods significantly outperform latent
factors based methods as observed in both plots of Figure 2. In particular, we
see that tKatz(C) performs much better than tKatz(A), which in turn outperforms
latent factor based methods. We see that the information in the friendship network
indeed proves highly beneficial in making affiliation recommendations and graph
proximity based methods exploit this information the most. A summary of perfor-
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Algorithm Orkut Youtube

LFM(C) d = 50, λ = 0.8 d = 90, λ = 1

LFM(C′(λAT A)) d = 60, λ = 0.6 d = 70, λ = 1

tKatz(A) β = 10−12 β = 10−12

tKatz(C) β = 0.01, λ = 0.2 β = 0.1, λ = 0.4

Table III. Best parameters learned by the recommendation algorithms using validation.

mances of the algorithms on the Youtube data set are shown in Figure 2 (b). We
observe that the case for Youtube is similar to that of Orkut, in that graph prox-
imity based algorithms significantly outperform latent factors based algorithms. In
particular, tKatz(C) is highly successful compared to the other methods.

Another interesting comparison of latent factor methods based on the choice of D

in constructing the combined network C′ given in (7), is presented in Figure 3. We
observe that the choice of D does not appear to make any significant difference in
the performance of the recommendation algorithm. In the plot we use D2 = AT A

and D3 = λAT A, where λ is also the weight associated with S in the combined
graph. Even though, in case of the Orkut data set, we see that SVD(C′,D) per-
forms slightly better than SVD(C), it appears as if scaling D 6= 0 does not affect
recommendation quality. In case of Youtube (plots not shown), our experiments
indicate that D is not useful at all. The obvious choices for D do not seam to
improve the performance compared with D = 0.

The best parameters learned by the various algorithms are presented in Table III.
Note that the best parameter β = 10−12 implies that the calculated tKatz measure
was effectively using the common neighbors method. In other words, users and com-
munities connected by path lengths 5 or more6 are not useful in making affiliation
recommendations.

We see that the recommendation algorithms perform consistently across the two
data sets, and the evaluations are robust as the specificities and sensitivities are
averaged over 9000 users in Orkut and 16000 users in Youtube.

5.3.2 Scalable approximations to tKatz(C). From Figure 4, we observe that in
general, combining ideas from the latent factor model with graph proximity model
yields better performance than simply using the low rank approximations of C. The
exception to this is the case of recommendations made by LMF-c on the Orkut-1c
data set, here tKatzLMF-c decreases the quality of the predictions made by LMF-c
further.

In Figure 5, we observe that the recommendation quality of the scalable recom-
menders proposed in this paper is close to that of tKatz(C). In particular, we note
that tKatzCS consistently performs very well on both data sets. Comparing the
performance of tKatzLFM and tKatzLFM-c, we also note that the use of clustering
is effective in improving performance, and this suggests that we can perhaps derive
similar benefit out of considering a clustered version of the tKatzCS algorithm.

Finally, in Figure 6, we study the effects of change in the number of clusters
and the number of factors used on the performance of algorithms which use graph
clustering for the purpose of scalability. We observe that changing the number of

6Corresponding to 2nd and higher powers of βAAT in tKatz(A).
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clusters does not make a significant difference in performance, whereas increasing
the number of factors yields better performance. This is not surprising consider-
ing the fact that these algorithms can be viewed as computing approximations of
tKatz(C).
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(a) Orkut-1c data set
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(b) Youtube-1c data set

Fig. 4. In this figure, we observe that, in general, combining ideas from the latent factor model
with ideas from the graph proximity model yields better performance than simply using the low
rank approximations of C in isolation. This is consistent with our observations in Figure 2. See
Section 5.3 for further discussion.
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(a) Orkut-1c data set
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(b) Youtube-1c data set

Fig. 5. Comparison of the performance of the proposed scalable graph proximity based methods.
In this figure, we observe that the recommendation-quality of the scalable recommenders proposed
in this paper is close to that of tKatz(C). In particular, we note that tKatzCS consistently performs
very well on both data sets. Comparing the performance of tKatzLFM and tKatzLFM-c, we also
note that the use of clustering is effective in improving performance.
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(a) Effect of changing the number of clusters.
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Fig. 6. In this figure, we study the effects of change in the number of clusters and the number
of factors used on the performance of algorithms which use graph clustering for the purpose of
scalability. These experiments were conducted on the Youtube-1c data set. We observe that
changing the number of clusters does not make a significant difference in performance, whereas
increasing the number of factors yields better performance. This is not surprising considering the
fact that these algorithms can be viewed as computing approximations of tKatz(C).

6. CONCLUSION AND FUTURE WORK

6.1 Summary and Conclusion

In this paper, we have tackled the affiliation recommendation problem, where the
task is to recommend new affiliations to users, given the current state of the friend-
ship and affiliation networks. We show that information from the friendship net-
work can indeed be fruitfully exploited in making affiliation recommendations. This
auxiliary source of information was hitherto not used in making community recom-
mendations.

Using a simple way of combining these networks, we suggested two ways of mod-
eling the networks for the purpose of making affiliation recommendations (Sec-
tion 2). The first of these approached the problem from the graph proximity view-
point, whereas the second modelled the interactions of users and groups in the
two networks using latent factors derived from optimizing towards a joint matrix
factorization objective. We studied the algorithms suggested by these models on
real world networks (Section 5). We motivated and proposed a way of evaluat-
ing recommenders, by measuring how good the top 50 recommendations are, and
demonstrated the importance of choosing the right evaluation strategy. Algorithms
suggested by the graph proximity model turn out to be the most effective, based
on experiments on large real world data sets. We also introduced scalable versions
of these algorithms, and demonstrated their performance. These results show that
the application of techniques from social network link prediction in affiliation and
item recommendation is a promising one.

6.2 Future Work

There is the intriguing possibility of using an affiliation network for link prediction in
the friendship network. Discovering techniques and models which do this effectively
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seems to be a challenging research avenue. Our early experiments at doing this
indicate that this is a much harder problem. The reasons for this are not yet clear,
and this question seems fertile for further exploration.

Within the ambit of the affiliation recommendation problem itself, one may re-
search the ways of fruitfully using even more sources of information. For example,
[Chen et al. 2008] use information from textual description of communities along
with the affiliation network to make affiliation recommendations. It might be use-
ful to consider the social network together with this auxiliary information. Also,
predictors based on latent factors model and the graph proximity model may be
suited for different types of users, and creating a meta-predictor which combines
predictions from both classes of predictors is another attractive research direction.
Finally, from the perspective of making scalable recommendations, and considering
the relative effectiveness of the common subspace approach to approximate S and
A, we may benefit from a clustered version of the truncated Katz measure when it
is based on the common subspace approximations of the two networks.
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