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Abstract

The key to the recent success of coordinate de-
scent (CD) in many applications is to main-
tain a set of auxiliary variables to facilitate ef-
ficient single variable updates. For example,
the vector of residual/primal variables has to be
maintained when CD is applied for Lasso/linear
SVM, respectively. An implementation with-
out maintenance is O(n) times slower than the
one with maintenance, where n is the number
of variables. In serial implementations, main-
taining auxiliary variables is only a computing
trick without changing the behavior of coordi-
nate descent. However, maintenance of auxil-
iary variables is non-trivial when there are mul-
tiple threads/workers which read/write the auxil-
iary variables concurrently. Thus, most existing
theoretical analysis of parallel CD either assumes
vanilla CD without auxiliary variables (which
ends up being extremely slow in practice) or lim-
its to a small class of problems. In this paper,
we consider a rich family of objective functions
where AUX-PCD can be applied. We also es-
tablish global linear convergence for AUX-PCD
with atomic operations for a general family of
functions and perform a complete backward error
analysis of AUX-PCD with wild updates, where
some updates are not just delayed but lost be-
cause of memory conflicts. Our results enable us
to provide theoretical guarantees for many practi-
cal parallel coordinate descent implementations,
which currently lack guarantees (such as the im-
plementation of Shotgun proposed by Bradley et
al. 2011, which uses auxiliary variables).
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1 Introduction

Stochastic Coordinate descent (CD) is now one of the most
widely used algorithms for solving large-scale machine
learning problems. At each step, a variable is stochastically
selected for update, and the step size for updating this vari-
able is computed by solving a single variable subproblem.
Therefore, the efficiency of coordinate descent heavily de-
pends on how efficiently one can construct and solve the
univariate subproblem. This aspect has been studied sep-
arately for different machine learning problems. For ex-
ample, efficient update rules have been discussed or imple-
mented in dual CD for linear SVM [7, 21], primal CD for
SVM and logistic regression [26, 4], primal Lasso prob-
lems [3], and many others.

Interestingly, most successful coordinate descent algo-
rithms/implementations rely on the maintenance of another
set of auxiliary variables. The use of such auxiliary vari-
ables is the key to the success of CD in many machine
learning applications recently as these variables cache the
latest information required to perform efficient single vari-
able updates. For example, a vanilla dual coordinate de-
scent algorithm for linear SVM requires going through the
entire dataset to update a single variable, but by main-
taining the primal variable the time complexity can be re-
duced to the dimensionality of a single data instance. Sim-
ilar tricks have also been explicitly or implicitly applied in
Lasso and logistic regression problems; they lead to faster
computation without changing the behavior of coordinate
descent. In this paper, we use CD to denote the serial im-
plementation of vanilla stochastic CD and use AUX-CD
to denote the serial implementation of stochastic CD with
auxiliary variables.

Due to the advance of multi-core computing systems, re-
cent research on CD has largely shifted its focus to par-
allelization of CD (PCD). Although AUX-CD works per-
fectly in the serial setting, multi-core parallelization of
AUX-CD (AUX-PCD) can be tricky. As multiple threads
update the auxiliary variables concurrently it is non-trivial
to guarantee the correctness of auxiliary variables and si-
multaneously achieve good speedups. On the other hand,
inconsistency of the auxiliary variables poses new chal-
lenges in theoretical analysis. Instead of the more efficient
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AUX-PCD, [16, 1, 15, 5] give theoretical guarantees for the
vanilla PCD for general problems, but none of them have
considered the case with auxiliary variables. [9] discussed
an AUX-PCD implementation for a specific smooth prob-
lem (the dual formulation of `2-regularized empirical risk
minimization), but their analysis cannot be directly applied
to general problems such as Lasso and `1-regularized Lo-
gistic regression. Furthermore, existing convergence anal-
ysis only considers inconsistency due to bounded delayed
updates, while none of them considers the situations that
have missing updates due to memory conflicts.

In this paper, we consider a rich family of objective func-
tions where vanilla coordinate descent can be accelerated
by AUX-CD, which is an efficient version of CD with the
maintenance of auxiliary variables. This family captures
many existing machine learning problems such as empiri-
cal risk minimization (ERM) with either a smooth or non-
smooth regularizer. Our contributions are summarized be-
low:

• We study various approaches (atomic operations and
wild updates) to handle the issue of inconsistency
of auxiliary variables in AUX-PCD. We also demon-
strate that with a simple extension we can parallelize
a second-order method such as Newton or proximal
Newton with AUX-PCD.

• We bridge the gap between theoretical analysis of par-
allel coordinate descent and practical parallel imple-
mentations. In particular, we establish global linear
convergence of AUX-PCD with atomic operations to
maintain the auxiliary variables.

• We also provide a complete backward error analy-
sis to analyze the convergence behavior of AUX-PCD
with wild updates, where some updates are not just
delayed but lost due to memory conflicts. To best of
our knowledge, our analysis is the first complete back-
ward error analysis to characterize the quality of the
converged solution of AUX-PCD with wild updates.

• We perform experiments to compare the performance
of variants of AUX-PCD along with other state-of-the-
art algorithms on two non-smooth machine learning
problems.

2 Related Work

Stochastic coordinate descent is widely used in several ma-
chine learning applications. Most implementations need
to maintain another set of auxiliary variables in order to
have faster updates. This has been implicitly or explicitly
discussed in varied applications, for example, dual linear
SVM [7], dual linear logistic regression [25], Lasso [6],
primal logistic regressions and SVM [4, 26], and even for
nonconex optimization problems such as matrix comple-
tion [24]. Using a single thread with sequential updates, the
existence of auxiliary variables does not affect the conver-

gence analysis, so the standard analysis for vanilla CD can
be directly applied. For example, the linear convergence of
CD has been shown in [17].

Practical implementation for PCD. In order to be a prac-
tical parallel implementation, one must maintain auxiliary
variables to perform efficient single variable updates (oth-
erwise the implementation will be extremely slow). For
example, the famous Shotgun algorithm for Lasso [3] is
described in their paper as PCD without maintaining aux-
iliary variables for the ease of analysis. However, their
real implementation is indeed an AUX-PCD with atomic
operations to maintain a set of auxiliary variables.1 [20]
also briefly mentioned atomic operations for maintaining
the residual in their paper, but without detailed analysis.

Theoretical analysis for PCD. [18, 5] showed the con-
vergence of a parallel coordinate descent algorithm, where
each processor updates a randomly selected block simulta-
neously. [2] studied asynchronous coordinate updates, but
they assume the Hessian is diagonally dominant. [16, 15, 1]
present global linear convergence rates under looser con-
ditions, where they assume bounded staleness and that
the objective function is essential strongly convex. How-
ever, none of these analyses consider the auxiliary vari-
ables that have to be maintained during the optimization
procedure. Unfortunately, in multi-threaded or distributed
systems there will always be staleness when accessing aux-
iliary variables, so there is still a gap between existing the-
oretical analysis and practical parallel implementations.

Theoretical analysis for AUX-PCD. Another line of re-
search focuses on AUX-PCD for a special class of prob-
lem: the dual form of L2-regularized empirical risk mini-
mization problems, where primal variables are maintained
during the algorithm. [22, 10, 11] consider a variant of
AUX-PCD which requires workers to synchronize. The ex-
isting work that is closest to our paper is the asynchronous
AUX-PCD for the dual form of L2-regularized ERM intro-
duced in [9]. They explicitly state various choices to main-
tain auxiliary variables and provide a theoretical guarantee
for the atomic update version. However, their analysis is
constrained to a limited class of smooth functions. Further-
more, there is a lack of analysis to the convergence behav-
ior of AUX-PCD with wild updates to maintain auxiliary
variables.

3 Asynchronous Parallel Coordinate
Descent with Auxiliary Variables

Coordinate descent is simple as only a single variable is in-
volved at each step. However, the update may involve all
the training samples, so it is often non-trivial to make it ef-
ficient. A common trick used in the literature is to maintain
a set of auxiliary variables [7, 4, 26, 23]. In this paper, we

1
https://github.com/akyrola/shotgun/
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aim to empirically and theoretically study a family of func-
tions where we can apply efficient coordinate descent with
auxiliary variables in parallel.

3.1 A Family of Functions

We are interested in the function F (z) : Rn ! R which
can be written in the following form:

F (z) = F (z, r), s.t. r = Qz,

where F (z, r)=

n

X

i=1

f
i

(z
i

) +D(r), and D(r)=
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family covers many functions used in machine learning:
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is a loss function and R(w) is usually decom-
posable: R(w) =

P
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`2 regularization. We can see that by associating each
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. As a result, this family of functions includes
popular machine learning models such as SVM, logistic re-
gression, and Lasso.

The Dual Form of `2-regularized ERM. In some situa-
tions, it is easier to design an efficient single variable up-
date rule for the dual of (2). In particular, when the `2-
regularizer (R(w) = 1/2kwk2) is used, the dual formula-
tion can be written as follows.
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is the conjugate func-
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z

(zu� `
i

(z)). Note that
we use i to index the data instances. If we let Q = X>,
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) s.t. r = Q↵, which
clearly belongs to the function family defined by (1).

3.2 Algorithms

Let us define T
i

(z) = argmin

u

g(u) := F (z+(u�z
i

)e

i

)

to be the operator to obtain the updated variable for the i-
th coordinate, where e

i

is the i-th column of the identity

matrix I
n

, and g(u) can be expanded as follows:

g(u) := F (z + (u� z
i

)e

i

))

= f
i

(u) +D(Qz + (u� z
i

)q

i

)) + constant (4)

Efficient Variable Update with Auxiliary Variables.
Minimizing (4) usually requires first-order information
about g(u). A straightforward procedure costs O(mn) op-
erations to compute Qz, which is too expensive for a single
variable update. A reformulation with the auxiliary vari-
able r = Qz defined by (1) can be very useful in practice.
g(u) can be re-written as

g(u) = f
i

(u) +D(r + (u� z
i

)q

i

), (5)

where the first-order information of the second term at
u = z

i

is q

>
i

rD(r). Due to the decomposability of
D(r) =

P

m

k=1 dk(rk), rk

D(r) = d0
k

(r
k

), which is the
first differential of d

k

(·), can be computed in O(1) if r
k

is
available. Thus, when the entire r is available, q>

t

rD(r)

only costs O(m) operations. If q
i

is sparse, it only costs
O(kq

i

k0) time. Furthermore, the maintenance of r can
be done by r  r + (u⇤ � z

i

)q

i

, which also only costs
O(kq

i

k0), where u⇤
= T

i

(z).

Note that instead of r, it would be better to maintain some
simple transformation of r such that the computation of
rD(r) can be faster. For example, if d

k

(r
k

) is a squared
function such as d

k

(r
k

) = (r
k

� y
k

)

2/2, then rD(r) =

r�y, where y
k

is the k-th element of a constant vector y 2
Rm. Thus, maintaining r � y, which has the same cost as
maintaining r, can save an extra addition when computing
rD(r). This is the so-called residual in the CD approach
for Lasso. When the logistic loss is used, d

k

(r
k

) = log(1+

exp(�r
k

)), both the first and second order information are
required to perform the single variable update:

d0
k

(r
k

) = 1/(1 + exp(r
k

)) and d00
k

(r
k

) = d0(r
k

)(1� d0(r
k

)).

We can see that maintaining exp(r
k

) for all k can save
us from expensive exponential operations. The update can
also be done using O(kq

i

k0) time.

As the first and/or second-order information is obtained
through the usage of the auxiliary variable r, we can de-
fine the following operator T

i

(r, z
i

):

T
i

(r, z
i

) = min

u

f
i

(u) +D(r + (u� z
i

)q

i

). (6)

In Algorithm 1, we describe a generic procedure for the
single variable update with auxiliary variables.

Parallel Asynchronous Coordinate Updates:
To further accelerate coordinate descent by parallel compu-
tation, we describe AUX-PCD in Algorithm 2, which is a
simple parallel coordinate descent routine with the operator
T
i

(r, z
i

) described in Algorithm 1. As T
i

(r, z
i

) modifies
both z

i

and the auxiliary variable r, concurrent access to
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the same element of r is possible in Algorithm 2. We will
discuss algorithmic issues in this section and leave theoret-
ical issues in Section 4.

As in [9], we discuss the following two approaches2 to deal
with the concurrent access to a shared variable in a multi-
core setting:

• Atomic operations: this approach can be used to
achieve better scalability by trading-off the serializ-
ability. At each update in T

i

(r, z
i

), there may be some
stale values in r. As the atomic operation can guaran-
tee that all the updates will be performed, the bounded
staleness assumption is usually satisfied by this ap-
proach. [3] applied such atomic operations in the co-
ordinate descent for L1-regularized ERM problems.

• Wild access: this approach gives the best scalability in
practice. However, some updates might be lost due to
conflicts in access, which leads to the difficulty of the
theoretical analysis.

Application to Parallelize Second-Order Methods.
Second-order methods are known to enjoy faster conver-
gence than first-order methods such as CD or stochastic
gradient descent in terms of iteration complexity. How-
ever, the cost per iteration of second-order methods is usu-
ally much higher as it requires n2 entries in the Hessian to
construct a quadratic approximation and obtain a Newton
direction s

⇤. Exploiting the structure of the Hessian ma-
trix, some recent works successfully apply CD with auxil-
iary variables to solve the quadratic approximation with the
explicit construction of Hessian matrix, such as GLMNET
for `1-regularized logistic regression [27] and QUIC for `1-
regularized Gaussian graphical model learning [8]. As a
natural application of AUX-PCD, we can parallelize these
inner coordinate descent solvers to speedup these second
order methods. Due to the space limit, we leave the details
in Appendix A, and the experimental results are presented
in Section 5.

4 Theoretical Analysis

In this section, we establish theoretical convergence for
parallel asynchronous stochastic coordinate descent with
auxiliary variables. We make the following assumptions
and notations:

• Either F (z) is a L
max

-smooth function or f
i

(·) can
be non-smooth but ¯L-Lipschitz continuous.

• d
k

(·) is L-Lipschitz continuously differentiable.
• Eq (5) is �-strongly convex.
• M = kQk

F

= 1 and R
max

= max

i

kq
i

k  1

Note that if kQk
F

6= 1, we can always consider an equiva-

2 As shown in [9], the third approach—locking the variables
before access—is even slower than the serial implementation, so
we omit the discussion here.

lent scaled problem with Qnew
= QkQk�1, and f new

i

(z
i

) =

f
i

(kQk
F

z
i

), where ¯Lnew
= kQk¯L. Similar to [9], we as-

sume that F (z) satisfies the following property:

Definition 1. F (z) admits the global error bound if there
is a constant  such that

kz � P
S

(z)k  kT (z)� zk, 8z (7)

where P
S

(·) is the Euclidean projection to the set of opti-
mal solutions, and T : Rn ! Rn is the operator with the
T
i

defined in Section 3.2.

We assign a virtual global counter for the total number of
updates, and i(j) denotes the index of coordinate selected
at the j-th update. Let

�

z

j

 

denote the sequence generated
by AUX-PCD and

�

ˆ

r

j

 

to denote the auxiliary vector used
in Step 2 of Algorithm 2 for the j-th update.

4.1 AUX-PCD with Atomic Operations

We first consider AUX-PCD with atomic operations to up-
date auxiliary variables. This implies the updates to r

might be delayed but definitely not lost. We establish a
linear convergence rate for AUX-PCD when the delay is
bounded.

Here we give the formal definition. We define �z
j

=

T
i(j)(ˆr

j , zj
i(j))�zji(j) = zj+1

i(j) �zji(j) be the step performed
at the j-th update. Let Zj be the set containing all the up-
dates to r until step j:

Zj

= {(t, k) | t < j, k 2 N(i(t))}, (8)

where N(i) is the nonzero elements in q

i

. The set U j is the
updates that have been written to the auxiliary vector ˆ

r at
iteration j, so

Observed auxiliary vector: ˆrj = r

0
+

X

(t,k)2Uj

Q
k,i(t)�z

t

e

k

Real auxiliary vector: rj = r

0
+

X

(t,k)2Zj

Q
k,i(t)�z

t

e

k

,

(9)

where e
k

is the k-th column of the identity matrix. We also
make a bounded delay assumption: the updates to r have
a maximum delay ⌧ , which can be formally written as

Zj�⌧ ✓ U j ✓ Zj . (10)

Based on the above bounded delay assumption, we show
the linear convergence rate of our algorithm in the follow-
ing theorem:

Theorem 1. Assume a function F (z) in the family defined
by (1) admits a global error bound from the beginning. As-
sume there is a constant ¯L such that all f

i

are ¯L-Lipschitz
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Algorithm 1 Single variable update: T
i

(r, z
i

)

Input: selected index i, current z
i

and r

1: Obtain u⇤ by solving (6) with the required first/second
order information computed from r.

2: �z
i

 u⇤ � z
i

3: z
i

 u⇤

4: r  r +�z
i

q

i

Algorithm 2 AUX-PCD: Parallel Stochastic Coordinate
Descent with Auxiliary Variables

Input: Initialize z

0 and r =

P

n

i=1 z
0
i

q

i

1: Each thread repeatedly performs the following updates
in parallel:

2: step 1: Randomly select i
3: step 2: Run Algorithm 1 to update z

i

and maintain
r

continuous. If the upper bound of the staleness ⌧ is small
enough such that the following two conditions hold:

(3(⌧ + 1)

2e ¯M)/
p
n  1, and

2Lc0
�(1� 2c0)

 1,

(11)

where ¯M = ��1L
�

R2
max

+ 2R
max

�

, and c0 =

⌧

2
�

�2
L

2
R

2
max

e

2

n

then Algorithm 2 with atomic operations
has a global linear convergence rate in expectation, that is,
there is a constant c2 > 0 and ⌘ < 1 such that

E
q
F (z

j+1
)� F ⇤

+ c2
�

�T (zj

)� z

j

�

�

y

⌘�Eq
F (z

j

)� F ⇤
+ c2

�

�T (zj�1
)� z

j�1
�

�

y�
, (12)

where F ⇤ is the minimum of F (z).

See Appendix C for a detailed proof for Theorem 1 and Ap-
pendix B for a simplified version with a smooth assumption
on the entire F (·). Note that c2 is a numerical constant that
depends on the problem. L is the Lipschitz constant for
d
k

(·) and � is strong convexity constant for the single vari-
able problem (5). ¯M plays a similar role as the condition
number of the entire problem. It is not hard to see that con-
dition (11) can be satisfied when ⌧ is small enough or n is
large enough.

We highlight some differences of our results and proofs to
the ones in [9]:

• We have established convergence for a rich family
of problems including both smooth and non-smooth
functions, while the analysis in [9] only applies to the
dual form of `2-regularized problems.

• We derive an upper bound for the expansion for the
operator T

i

(r, s) defined in (6) for general f
i

and d
k

.
In the dual formulation of `2-regularized ERM, this
operator is equivalent to a proximal operator so non-
expansiveness is guaranteed.

4.2 Backward Error Analysis for AUX-PCD with
Wild Updates

Next we discuss the behavior of Algorithm 2 without
atomic operations to maintain auxiliary variables. It was
observed that AUX-PCD with wild updates achieves the
best scaling performance in [9], but since the writes can
be overwritten, the algorithm fails to maintain the relation-
ship r

j

= Qz

j . Thus it cannot converge to the exact so-
lution of the original problem. However, intuitively if the

ratio of memory conflicts is low, AUX-PCD with wild up-
dates should still converge to a “reasonable” solution. This
is observed in practice, and here we provide a complete
backward error analysis to formally characterize the con-
vergence properties of the wild variant of AUX-PCD. Our
backward error analysis for AUX-PCD with wild updates
includes three parts:

• B1: model the source of errors ,
• B2: prove that the output of the algorithm is the exact

solution of a “perturbed” problem when the errors are
bounded, and

• B3: derive the bound on the errors accumulated in the
algorithm.

B1 (Modeling the Source of Errors): For simplicity, we
consider the situation where F is smooth and assume that
all the write operations in Algorithm 1 can be overwritten
by another thread with the same probability ✓. Therefore,

rj+1
k

= rj
k

+Q
k,i(j)�z

j

�j
k

8k

where �j
k

is a random variable with probability ✓ to be 0
and 1 � ✓ to be 1. Note that the missing rate is usually
very small (✓ ⌧ 1). For example, consider the perfect case
where nonzero features are distributed uniformly in the en-
tire dataset (i.e., kq0k0 = · · · = kq

d

k0) and two threads in-
dependently pick (k1, i1), (k2, i2) and conduct the update
r
k1  r

k1 + �1Qk1,i1 and r
k2  r

k2 + �2Qk2,i2 simul-
taneously. The conflict write happens only when k1 = k2,
which happens with probability 1/m. This suggests that
for ERM problems (2) the confliction rate decreases as
the number of samples increases. In the left plot of Fig-
ure 1, we perform the experiments on the dataset TFIDF-
2006 with various duplicated copies. AUX-PCD (known
as CDN in the Lasso literature) with wild updates con-
verges to a more close solution as the number of duplica-
tions increases, which confirms that the conflict rate ✓ is in-
verse proportional to m, which is the number of instances
in (2).

Following the notation in (8), we define the set ˆZj to be all
the updates that are not missing until step j:

ˆZj

= {(t, k) | t < j, k 2 N(i(t)), �t
k

= 1} ✓ Zj ,

and the updates in this set will be eventually done (with a
delay up to ⌧ ), so

ˆZj�⌧ ✓ U j ✓ ˆZj .
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Now r

j defined in (9) will not be equal to Qz

j . The ✏

j is
defined to be the error caused by missing updates, where

✏

j

= Qz

j � r

j .

B2. (Exact Solution to a Perturbed Problem.) Assume
z

j converges to ¯

z, which may not be the optimal solution
for F (z). However, we show ¯

z is the solution of a per-
turbed problem if ✏j converges to some vector ✏1:
Theorem 2. If {✏j} converges to ✏

1 and ¯

z is a limit point
of {zj}, then

• ¯

z is a minimizer of the following “perturbed” prob-
lem:

argmin

z

�

n

X

i=1

f
i

(z
i

) +D(Qz � ✏

1
)

 

:= F1
(z)

• Furthermore, the distance between real and computed
solution can be bounded by

k¯z � z

⇤k  ��1Lk✏1k,
where z

⇤ is the optimal solution for the original ob-
jective function F .

Note that the only difference between perturbed problem
F1 and original problem F is the argument of the sec-
ond part, and when ✏

1 is small they will be similar. The
derivation for the Wild algorithm in [9] is a special case of
this analysis; however, they fail to show the existence and
boundedness of ✏1, which makes the story incomplete.

B3. (Bounding the Errors) In the following, we complete
the last part of backward error analysis by showing ✏

1 ex-
ists and is bounded, which is surprisingly a difficult task.
To our knowledge there is no previous analysis for doing
this. Our idea is based on a new notion of “linear con-
vergence” for this process. Note that due to lost updates,
the objective function is also perturbed at each iteration.
We define the perturbed objective function at j-th iterate
based on the current error ✏j : F j

(z) :=

P

n

i=1 fi(zi) =

D(Qz � ✏

j

). Theorem 3 establishes a new type of linear
convergence:

Theorem 3. Let z⇤(j+1), z⇤(j) be the optimal solution for
F j+1, F j respectively. Assume F is L

max

-smooth and
�
min

strongly convex. Assume the conditions (11) in Theo-
rem 1 hold. There exists ⌘̄ < 1 such that the sequence {zj}
generated by the wild algorithm satisfies

E
r
F j+1

(z

j+1
)� F j+1

(z

⇤(j+1)
)

z

 ⌘̄E
r
F j

(z

j

)� F j

(z

⇤(j)
)

z
, (13)

if c̄0 + ✓c̄1 < 1, where c̄0 and c̄2 are positive numerical
constants, and ✓ is the conflict rate defined earlier (See Ap-
pendix D.3 for details).

With the linear convergence stated in Theorem 3, we can
show that {✏j} converges.
Theorem 4. If (13) holds, then {✏j} converges. In partic-
ular, we have

EJk✏1kK  ✓R
max

p

F (z

0
)� F ⇤

(

1

1�p⌘̄ )
r

1

2�
,

where ⌘̄ 2 (0, 1) is the linear convergence rate in Theorem
3.

5 Experimental Results

The superior performance of the parallel asynchronous co-
ordinate descent scheme has been demonstrated for the
dual form of `2-regularized ERM problems [9]. In this pa-
per, we are interested in the empirical performance for the
proposed approach for the primal formulation of ERM with
non-smooth regularization. In particular, we conduct ex-
periments for Lasso and `1-regularized logistic regression.

We consider three datasets: kddb, webspam for classifi-
cation and TFIDF-2006 for regression, and kddb. See Ta-
ble 1 for the detailed information. All the experiments are
performed on an Intel multi-core dual-socket machine with
20 cores and 256 GB memory. In particular, the machine
are equipped with two Intel Xeon E5-2680 v2 Ivy Bridge
sockets with 10 CPUs cores per socket.

5.1 `1-regularized Least Squares (Lasso)

Compared Methods
• parallel CDN: a parallel version of CDN [26] for

Lasso problem. It is well-known as Shotgun [3],
which is possibly the most cited work for parallel
coordinate descent. Although the auxiliary variable
maintenance is not mentioned explicitly in that paper,
the Shotgun package implements CDN with residual
maintenance. However, Shotgun does not include ran-
dom coordinate selection in its Lasso implementation,
which might lead to slower convergence. To have
a fair comparison, we implement parallel CDN with
random coordinate selection. As mentioned before,
there will be two variants of parallel CDN: one with
atomic operations (which is also used in Shotgun im-
plementation) and the other one with wild updates.

• Thread-Greedy-b: a parallel thread-greedy coordinate
descent proposed in [19]. As there is no publicly avail-
able code, we implement this method following the
description in [20]. We also adopt the technique pro-
posed in [10] to reduce the step size to 1/#threads to
improve convergence.

Our results on both TFIDF-2006 and kddb are shown in
Figure 1. The suffix digit of each legend denotes the num-
ber of threads used for the corresponding method. The re-
sult of serial CDN is also included for reference. The y-axis
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Table 1: Data statistics. #nonzero per feature is corresponding to the kq
i

k0, which is the average time cost per coordinate
update for the primal formulation of ERM problems.

# instances # features avg #nonzero avg #nonzero range of
training test per instance per feature y

TFIDF-2006 16,087 3,308 150,360 1241.4 132.8 [�7.90,�0.52]
kddb 19,264,097 748,401 29,890,095 29.4 18.9 {0, 1}
webspam 315,000 35,000 16,609,143 3727.7 62.84 {0, 1}

Figure 1: Experimental results for Lasso. Both x-axis and y-axis are in the log scale.

Figure 2: Experimental results for L1-regularized Logistic Regression. Both x-axis and y-axis are in the log scale.
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is log-scale of the relative difference to the optimal objec-
tive function value, (F (z)� F (z

⇤
))/F (z

⇤
), and x-axis is

the computation time in log scale. We have the following
observations:

• CDN-Atomic is an order-of-magnitude faster than
Thread-Greedy on both datasets. Although it is con-
trary to the finding in [19], it can be explained by the
stochastic selection of coordinate.

• Without the atomic operations, some updates of aux-
iliary variables of CDN-Wild might be missing. If the
number of missing updates is too large, the converged
solution might be different, which can be observed on
the TFIDF-2006 dataset.

• As discussed in Section 4.2, if all the nonzero entires
are uniformly distributed over n features, the conflict
rate is 1/m where m is number of training samples.
To verify this, we duplicate the dataset by 5 times and
10 times (5x, 10x), and we observe that CDN-Wild
converges to a much better solution when we increase
the number of samples, indicating a smaller conflict
rate.

5.2 `1-regularized logistic regression (L1LR)

Compared Methods.

• CDN-Wild and CDN-Atomic: similar to the Lasso ex-
periments, we include both parallel versions of CDN
for `1-regularized logistic regression. Note that CDN-
Atomic will be the same as the L1-regularized logistic
regression implementation in Shotgun.

• Parallel newGLMNET: As mentioned in Section A,
AUX-PCD can be applied to parallelize a second-
order method. Here, we embed both CDN-Wild and
CDN-Atomic in newGLMNET, which is a proximal
Newton method for L1LR [27].

• Delayed Block Proximal Gradient (DBProxGrad):
this is an asynchronous proximal gradient descent
method for L1LR proposed in [13]. Although it is de-
signed for the distributed computation, it is shown to
be significantly faster than other parallel solvers for
L1LR3. We use the public code available in https:
//github.com/dmlc/parameter_server to
generate the results for DBProxGrad. As this pack-
age is not designed for the multi-core setting, it would
utilize all the computational resource in the single ma-
chine. We follow the suggestion from the author [12]
to use 10 servers and 10 workers on the single machine
we used.

Figure 2 shows the results for kddb and webspam. We
only report the result of DBProxGrad on kddb as there are
some issues for the parameter sever implementation to gen-
erate the results for webspam. The y-axis is the relative
difference the optimal solution in log-scale, while the x-

3See Appendix B of [14]

axis is the computation time in log scale. We make the
following observations:

• GLMNET-Wild seems to converge to a similar solu-
tion as other solvers. It is expected as the quadratic
approximation is re-constructed for each Newton it-
eration, so the errors due to the wild updates are not
accumulated as CDN-Wild does for Lasso.

• On webspam, both GLMNET-Wild and GLMNET-
Atomic are faster than parallel CDN. The gap be-
comes more significant as the time proceeds. This can
be explained by the faster final convergence behavior
of GLMNET, which is a second-order method.

• On kddb, both parallel versions of CDN have similar
performance as GLMNET-Atomic. GLMNET-Wild is
slight slower than GLMNET-Atomic in the later stage.
We found that this is due to the lengthy inner CDN it-
erations in GLMNET-Wild, which can be explained
by CDN-Wild not meeting the inner stopping condi-
tion of GLMNET. We plan to investigate this phe-
nomenon in the future.

• As DBProxGrad adopts proximal operator with a fix-
step size without any line search, final convergence of
DBProxGrad is not stable, which can be observed on
kddb. Apart from that DBProxGrad is slower than
other parallel methods on this multi-core setting.

6 Conclusions

In this paper, we consider a family of objective functions
where parallel coordinate descent with auxiliary variables
(AUX-PCD) can be applied. We also establish theoretical
guarantees for AUX-PCD. With atomic operations, we pro-
vide global linear convergence of AUX-PCD for a rich fam-
ily of objective functions, while for AUX-PCD with wild
updates, we develop backward error analysis to analyze the
convergence behavior. Our results provide theoretical guar-
antees for many practical parallel coordinate descent im-
plementations (such as the implementation of Shotgun [3]
which uses auxiliary variables).
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