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Abstract
Multivariate loss functions are extensively em-
ployed in several prediction tasks arising in Infor-
mation Retrieval. Often, the goal in the tasks is to
minimize expected loss when retrieving relevant
items from a presented set of items, where the ex-
pectation is with respect to the joint distribution
over item sets. Our key result is that for most
multivariate losses, the expected loss is provably
optimized by sorting the items by the conditional
probability of label being positive and then se-
lecting top k items. Such a result was previously
known only for the F -measure. Leveraging on
the optimality characterization, we give an algo-
rithm for estimating optimal predictions in prac-
tice with runtime quadratic in size of item sets
for many losses. We provide empirical results on
benchmark datasets, comparing the proposed al-
gorithm to state-of-the-art methods for optimiz-
ing multivariate losses.

1. Introduction
A recent flurry of theoretical results and practical algo-
rithms highlights a growing interest in understanding and
optimizing general multivariate losses (Joachims, 2005;
Petterson and Caetano, 2011; Dembczynski et al., 2011; Ye
et al., 2012; Koyejo et al., 2014; Narasimhan et al., 2014).
Conventional losses such as the 0-1 loss (or the error) in
binary or multiclass classification, and Hamming loss in
case of multilabel learning fall short in many applications,
such as medical diagnosis, fraud detection, and informa-
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tion retrieval, with imbalanced and rare event classifica-
tion tasks (Lewis and Gale, 1994; Drummond and Holte,
2005; Gu et al., 2009; He and Garcia, 2009). Practitioners
employ multivariate loss functions such as the F -measure
that capture non-linear trade-off between the entries of the
“confusion matrix”, namely, true positives, false positives,
true negatives and false negatives. Multivariate loss func-
tions are defined on vector-valued predictions, such as label
vectors in multilabel learning, subsets of classes in multi-
class classification, etc. The goal in the prediction tasks
is to minimize expected loss when retrieving relevant items
from a presented set of items, where the expectation is with
respect to the joint distribution over item sets (that models
uncertainty in the data).

Algorithmic approaches for minimizing expected multi-
variate losses such as structured support vector machines
have been proposed (Joachims, 2005; Petterson and Cae-
tano, 2011). Interestingly, the optimization can be per-
formed efficiently for most multivariate losses that can be
written as a function of the entries of the confusion ma-
trix. However, there are no known consistency guarantees
for these approaches; in fact, recently, Dembczynski et al.
(2013) showed that structured loss minimization is not con-
sistent for the F -measure. On the other hand, an impor-
tant theoretical question is if and when one can explicitly
characterize the optimal solution for the loss minimization
problem. A key difficulty in the analysis of general mul-
tivariate losses is that they are often non-decomposable,
i.e., the loss on prediction vectors does not decompose into
the sum of losses over individual predictions. Two decades
ago, Lewis (1995) showed that the optimal solution to min-
imizing expected F -measure, under the assumption that
the labels are conditionally independent, admits a simple
form — in particular, it requires only the knowledge of
the marginals P(Yi|x). Then, Dembczynski et al. (2011)
showed that the optimal solution for F -measure can be de-
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scribed using O(n2) parameters for a general distribution
P over sets of n items. Since then, there has been extensive
work focusing on binary and multilabel F -measure (Dem-
bczyński et al., 2012; Ye et al., 2012; Dembczynski et al.,
2013; Waegeman et al., 2014; Lipton et al., 2014). Yet,
the question of characterizing optimal prediction for many
other losses used in practice remains largely unknown.

In this paper, we provide a general theoretical anal-
ysis of expected loss minimization for general, non-
decomposable, multivariate losses in binary, multiclass and
multilabel prediction problems. Under conditional inde-
pendence assumption on the underlying distribution, we
show that the optimal solution for most losses exhibit a
simple form, and depends only on the conditional proba-
bility of the label being positive. In multiclass classifica-
tion, the joint distribution is a multinomial, and we show
that a similar result holds. In particular, we identify a nat-
ural sufficient condition for any loss under which it allows
such a simple characterization of optimal — we require the
loss to be monotonically decreasing in true positives; this
is satisfied by most, if not all, loss functions including the
monotonic family studied by Narasimhan et al. (2014), and
the linear fractional family studied by Koyejo et al. (2014;
2015). As a special case of our analysis, we naturally re-
cover the F -measure result of Lewis (1995) for binary clas-
sification, and the result of Coz Velasco et al. (2009) for
multiclass classification.

Minimizing (and even evaluating) expected multivariate
losses can involve exponential-time computation, even
when given access to the exact label distribution. As we
show, in light of our main result characterizing optimal pre-
dictions, and with careful implementation, computations
can be greatly simplified. We give an algorithm that runs
in O(n3) time for a general loss, where n is the size of
the item set (number of instances or labels or classes as the
case maybe). For special cases such as Fβ and Jaccard, the
algorithm can be implemented to run in time O(n2) . We
prove that our overall procedure for computing the optimal
in practice is consistent. We also support our theoretical
results with experimental evaluation on synthetic and real-
world datasets.

Related Work: We highlight some of the key results
relating to prediction with general multivariate losses. Ex-
isting theoretical analysis has focused on two distinct ap-
proaches for characterizing the population version of multi-
variate losses: identified by Ye et al. (2012) as decision the-
oretic analysis (DTA) and empirical utility maximization
(EUM). In DTA, the goal is to minimize the expected loss
of a classifier on sets of predictions, which is the setting in
our work here, while in EUM, the goal is to minimize the
loss applied to population confusion matrix with expected
values as entries. We can interpret DTA as minimizing the

average loss over an infinite set of test sets, each of a fixed
size, while EUM as minimizing the loss of a classifier over
a single infinitely large test set. More recently, there have
been several theoretical and algorithmic advances relating
to general performance measures (Parambath et al., 2014;
Koyejo et al., 2014; Narasimhan et al., 2014; Kar et al.,
2014; Narasimhan et al., 2015; Koyejo et al., 2015) used in
binary, multiclass and multilabel classification in the EUM
setting. In stark contrast, we know much less about the
setting in our paper; several authors have proposed algo-
rithms for empirical optimization of the expected Fβ mea-
sure including Chai (2005), Jansche (2007) and Dembczyn-
ski et al. (2011). Ye et al. (2012) compare the DTA and the
EUM analyses for Fβ , showing an asymptotic equivalence
as the number of test samples goes to infinity. Quevedo
et al. (2012) propose a cubic complexity dynamic program-
ing algorithm for computing optimal labeling under condi-
tional label independence assumption, albeit without pro-
viding an optimality characterization or consistency.

2. Multivariate Loss Minimization
We consider the problem of making multivariate predic-
tions y = {y1, y2, . . . , yn} ∈ {0, 1}n, for a given set of in-
stances (described by their features) x ∈ X . Let X denote
the random variable for instances, Y denote the random
variable for label vectors of length n (with Yi denoting the
random variable for ith label). Given a multivariate loss L,
the goal is to minimize the expected loss wrt. the underly-
ing joint distribution P over X and Y:

h∗ = arg min
h:x7→y

E(X,Y)∼PL(h(X),Y).

Note that h∗ optimizes the expected loss wrt. to the condi-
tional P(Y|x) at each x; therefore it is sufficient to analyze
the optimal predictions at a given x.

h∗(x) = arg min
h:x 7→y

EY∼P(Y|x)L(h(x),Y). (1)

The choices of x,y and L depend on the prediction task:

• In binary classification, x = {x1, x2, . . . , xn} is a
set of instances, yi ∈ {0, 1} corresponds to the label
of instance xi and hi(x) ∈ {0, 1} denotes the pre-
dicted label for xi. One may be interested in retrieving
the positive instances with high precision or high re-
call (or a function of the two, such as the F -measure).
We let L : {0, 1}n × {0, 1}n → R+.

• In multiclass classification with n classes, x = {x}
is an instance, y ∈ [n] corresponds to the class of in-
stance x, whereas the prediction h(x) ⊆ [n] corre-
sponds to a subset of predicted classes (represented
by a binary vector in {0, 1}n). Here we want to re-
trieve the true class in a predicted subset of small size
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k � n; so, L : [n] × {0, 1}n → R+. This problem
can be thought of as learning non-deterministic clas-
sifiers (Coz Velasco et al., 2009).

• In multilabel learning with n labels, x = {x} is
an instance, y,h(x) ∈ {0, 1}n correspond to the set
of relevant and predicted labels respectively for in-
stance x. Popular choices of loss functions include
multilabel F -measure and the Hamming loss. Here,
L : {0, 1}n × {0, 1}n → R+.

2.1. Hardness of the general setting

The optimization problem (1) essentially entails a search
over binary vectors of length n. Efficient search for optimal
solution or obtaining a consistent estimator can be notori-
ously hard depending on the loss function and the joint dis-
tribution. Of course, if the loss function is decomposable
over instances (such as the Hamming loss in case of multi-
label learning, or 0-1 loss in case of binary classification),
a consistent estimator of the optimal solution can be ob-
tained via empirical risk minimization. Dembczynski et al.
(2011) showed that for the F -measure, and arbitrary distri-
bution P, optimal solution to (1) can be obtained provided
we can estimate O(n2) parameters of P — in particular,
P(Yi = 1,

∑n
i=1 Yi = s|x), i, s ∈ [n] × [n]. In case of the

subset 0/1 loss defined as L(h(x),y) = 1 if h(x) 6= y and
L(h(x),y) = 0 otherwise, h∗(x) is the mode of the distri-
bution P(Y|x), which is infeasible to estimate for arbitrary
P. For general multivariate losses, one popular algorithmic
approach is to employ structural support vector machines
(Joachims, 2005; Petterson and Caetano, 2011) which opti-
mize a convex upper bound of the expected loss on training
data. However, there are no consistency results known for
the approach. In fact, Dembczynski et al. (2013) show that
structural SVMs are inconsistent for arbitrary P, in case of
the F -measure. More recently, Wang et al. (2015) study
the multivariate loss minimization problem from an adver-
sarial point of view, and provide a game-theoretic solution.
Inevitably, they require solving sub-problems of the form
(1), which (as they discuss) can be worked out for a few
specific losses (such as the F -measure) but are hard in gen-
eral.

2.2. Conditional independence

Consider the setting when P(Y|x) satisfies conditional in-
dependence. In case of binary classification, instances
are typically assumed to be i.i.d., and therefore condi-
tional independence P(Y|x) = Πn

i=1P(Y |xi) holds. In
case of multilabel learning, conditional label independence
P(Y|x) = Πn

i=1P(Yi|x) may be strong, as labels are likely
to be correlated in practice. It has been known for a long
time that for the F -measure, under conditional indepen-
dence (Lewis, 1995), the optimal solution to (1) can be

computed by simply sorting the instances according to
P(Y |xi) and setting the labels for the top k instances to
1 and the rest to 0 (for some 0 ≤ k ≤ n). As a conse-
quence, we only require estimates of the marginals to com-
pute the optimal solution. For convenience, denote h(x)
by s ∈ {0, 1}n (and the optimal solution to (1) by s∗).

Theorem (Lewis (1995)). Consider:

LFβ (s,y) = 1−
(1 + β)2

∑n
i=1 siyi∑n

i=1 si + β2
∑n
i=1 yi

. (2)

Let xi’s be sorted in decreasing order of the marginals
P(Y |xi). Then, the optimal predictions s∗ (1) for the Fβ
loss in (2) is given by s∗i = 1, for i ∈ [k∗], s∗i = 0 other-
wise, for some 0 ≤ k∗ ≤ n that may depend on x.

But such a characterization of optimality is not known for
other multivariate losses used in practice.

2.3. Multinomial distributions

Note that in case of multiclass classification with n classes,
C1, C2, . . . , Cn, one can alternatively think of a joint distri-
bution P(Y|x) over label vectors y ∈ {0, 1}n such that the
distribution is supported only on y satisfying

∑n
i=1 yi = 1.

Letting ei ∈ {0, 1}n be the indicator vector for class Ci,
define:

P(Y = ei|x) = P(Y = Ci|x),

P(Y = y|x) = 0, otherwise. (3)

Characterizing optimal solution is simple in this setting as
well. Coz Velasco et al. (2009) proved a result very similar
to that of (Lewis, 1995) (although the proof turns out to
be much simpler in this case), in the context of multiclass
classification with Fβ-measure.

Theorem (Coz Velasco et al. (2009)). Consider:

s∗ = arg min
s∈{0,1}n

EY∼P(Y |x)LFβ (s, eY ),

where LFβ is defined as in (2). Let the classes Ci be in-
dexed in the decreasing order of the conditionals P(Y =
Ci|x). Then, s∗ satisfies s∗i = 1, for i ∈ [k∗], s∗i = 0
otherwise, for some 0 ≤ k∗ ≤ n that may depend on x.

Next, we show that the above results indeed hold for gen-
eral multivariate losses.

3. Main Results
We now show that for most multivariate losses L, the cor-
responding optimal predictions (1) can be explicitly char-
acterized for multinomial distributions (as in the case of
multiclass classification) and joint distributions satisfying
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conditional independence (as in the cases of binary classi-
fication and multilabel learning with conditional label in-
dependence assumption). To this end, we consider general
losses that are functions of the entries of the so-called con-
fusion matrix, namely true positives, true negatives, false
positives and false negatives. The empirical confusion ma-

trix is computed as Ĉ(s,y) =

[
T̂P F̂N
F̂P T̂N

]
with entries:

T̂P =
1

n

n∑
i=1

siyi, T̂N =
1

n

n∑
i=1

(1− si)(1− yi),

F̂P =
1

n

n∑
i=1

si(1− yi), F̂N =
1

n

n∑
i=1

(1− si)yi.

Most multivariate loss functions used in practice (see Table
1) admit the above form. For example, LFβ in (2) can be
written as:

LFβ (s,y) := LFβ (Ĉ(s,y)) = 1− (1 + β2)T̂P

(1 + β2)T̂P + β2F̂N + F̂P
.

Without loss of generality, we let L : [0, 1]4 7→ R+ de-
note a multivariate loss function evaluated on the entries of
the confusion matrix. We begin by observing the follow-
ing equivalent representation for loss L. All the proofs in
the manuscript are supplied in the Appendix due to limited
space.

Proposition 1. Let u(s,y) = T̂P(s,y), v = v(s) :=
1
n

∑
i si and p = p(y) := 1

n

∑
i yi, then ∃ Φ : [0, 1]3 →

R+ such that L(Ĉ(s,y)) = Φ(u(s,y), v(s), p(y)).

Next, we define a certain monotonicity property which can
be seen to be satisfied by popular loss functions.

Definition 1 (TP Monotonicity). A loss function L is said
to be TP monotonic if for any v, p, and u1 > u2, it holds
that Φ(u1,v, p) < Φ(u2, v, p).

In other words, L satisfies TP monotonicity if the corre-
sponding representation Φ (Proposition 1) is monotonically
decreasing in its first argument. It is easy to verify, for in-
stance that ΦFβ (u, v, p) = 1 − (1+β2)u

β2p+v is monotonically
decreasing in u. We are now ready to state our main re-
sult regarding minimizing expected losses wrt. distribu-
tions satisfying conditional independence.

Theorem 1 (Binary Losses). Assume the joint distribution
P satisfies conditional independence. Let L be a multivari-
ate loss that satisfies TP monotonicity. Then, the optimal
predictions s∗ := h∗(x) in (1) satisfy:

min{P(Y = 1|xi)|s∗i = 1} ≥ max{P(Y = 1|xi)|s∗i = 0}.

In other words, s∗i = 1, for all i ∈ [k∗], for some 0 ≤ k∗ ≤
n that may depend on x, and s∗i = 0 for i 6∈ [k∗].

Note that the above result also applies to multilabel clas-
sification, albeit under conditional label independence as-
sumption. Next, we give a result for multiclass classifica-
tion, where the joint distribution is multinomial.
Theorem 2 (Multiclass Losses). Fix a multinomial distri-
bution P (3). Let L be a multivariate loss that satisfies
TP monotonicity. Let the classes Ci be indexed in the de-
creasing order of the conditionals P(Y = Ci|x). Then the
optimal predictions s∗ := h∗(x) in (1) is given by: s∗i = 1,
for i ∈ [k∗], for some 0 ≤ k∗ ≤ n that may depend on x,
and s∗i = 0 otherwise.

The proof essentially is a direct consequence of TP mono-
tonicity and thus gives a generalization of the result in
(Coz Velasco et al., 2009).

3.1. Recovered and New Results

It is clear that our results generalize those by Lewis (1995)
and by Coz Velasco et al. (2009) for expected loss mini-
mization. Now, we draw attention to some of the recent
optimality results in classification using general loss func-
tions, where the objective is different from (1). The mo-
tivation of this section is to highlight the generality of our
analysis and place our contributions in the context of recent
results in a closely related setting. For a binary classifier
h : X 7→ {0, 1} and a distribution P over X × {0, 1}, let

C(h;P) =

[
TP FN
FP TN

]
represent the population confusion

matrix with entries:

TP = P(h(x) = 1, y = 1), TN = P(h(x) = 0, y = 0),

FP = P(h(x) = 1, y = 0), FN = P(h(x) = 0, y = 1).

Koyejo et al. (2014) and Narasimhan et al. (2014) are inter-
ested in optimizing the following notion of expected loss:

h∗ = arg min
h:X→{0,1}

L(C(h;P))

i.e., L is applied to the population confusion matrix. Un-
der mild assumptions on the distribution P, they show for a
large family of loss functions, that the optimal solution sat-
isfies a thresholded form, i.e. h∗(x) = sign(P(Y |x)− δ∗),
where δ∗ is a constant that depends only on the distribution
and the loss itself. In contrast, for the expected loss mini-
mization in (1), there need not be a threshold in general that
minimizes the expected loss on a given x (as also discussed
in (Lewis, 1995)).

The Fractional Linear Family: Koyejo et al. (2014;
2015) studied a large family LFL of losses that are repre-
sented by:

ΦFL(T̂P(s,y), v(s), p(y)) =
c0 + c1T̂P + c2v + c3p

d0 + d1T̂P + d2v + d3p
(4)
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for constants ci, di, i = {0, 1, 2, 3}. We identify a subclass
of LFL where our results apply. The following result can be
proven by inspection and is stated without proof.

Proposition 2. If c1 < d1, then LFL satisfies TP mono-
tonicity.

Note that this essentially constitutes the most useful losses
in LFL where increase in true positives (for a fixed total
number of predictions) leads to decrease in loss.

Metrics from Narasimhan et al. (2014): The follow-
ing alternative three-parameter representation of losses L
was studied by Narasimhan et al. (2014). Let p =

p(y) := 1
n

∑
i yi, rp = T̂PR(s,y) = T̂P(s,y)

p(y) and rn =

T̂NR(s,y) = T̂N(s,y)
1−p(y) , then ∃ Γ : [0, 1]3 → R+ such that:

L(Ĉ(s,y)) = Γ(T̂PR(s,y), T̂NR(s,y), p(y)). (5)

As shown in Table 1, many losses used in practice are eas-
ily represented in this form. Representation for additional
losses is simplified by including the empirical precision,
given by P̂rec(s,y) = T̂P(s,y)

v(s) , where v(s) := 1
n

∑
i si =

T̂P + F̂P. Consider the following monotonicity property
relevant to the representation (5).

Definition 2 (TPR/TNR Monotonicity). A loss L is said to
be TPR/TNR monotonic if when rp1 > rp2 and rn1 > rn2
and p fixed, then Γ(rp1, rn1, p) < Γ(rp2, rn2, p).

In other words, L satisfies TPR/TNR monotonicity if the
corresponding Γ in (5) is monotonically decreasing in its
first two arguments. It can be shown that all the losses
listed in Table 1 satisfy TPR/TNR monotonicity. The fol-
lowing proposition states that any loss function that satis-
fies TPR/TNR monotonicity also satisfies TP monotonicity.

Proposition 3. If L satisfies TPR/TNR monotonicity, then
L satisfies TP monotonicity.

We can verify from the third column of Table 1 that each
of the TPR/TNR monotonic losses Φ(u, v, p) is mono-
tonically decreasing in u. So any loss that satisfies
TPR/TNR monotonicity admits optimal classifier (1) as
stated in Theorems 1 and 2.

The area under the ROC curve (AUC): AUC is an im-
portant special case, which reduces to ΦAUC (see Table 1) in
case of binary predictions (Joachims, 2005). It is clear that
following proposition follows directly, and is stated with-
out proof:

Proposition 4. ΦAUC satisfies TP monotonicity.

While prior work on AUC has focused on optimizing pre-
diction of continuous scores, our approach is able to opti-
mize explicit label predictions. Note that optimality results

Table 1. Examples of TP monotonic losses.

LOSS DEFINITION Φ(u, v, p)

AM 1− T̂PR+T̂NR
2 1− u+p(1−v−p)

p(1−p)

Fβ 1− 1+β2

β2

P̂rec
+ 1

T̂PR

1− (1+β2)u
β2p+v

Jaccard F̂P+F̂N
T̂P+F̂P+F̂N

p+v−2u
p+v−u

G-TP/PR 1−
√

T̂PR.P̂rec 1− u√
p.v

G-Mean 1−
√

T̂PR.T̂NR 1− u(1−v−p+u)
p(1−p)

H-Mean 1− 2/
(

1

T̂PR
+ 1

T̂NR

)
1− 2u(1−v−p+u)

(1−v−p)p+u

AUC F̂P . F̂N
(T̂P+F̂N)(F̂P+T̂N)

(v−u)(p−u)
p(1−p)

for continuous scores need not trivially extend to optimality
results for discrete label decisions.

4. Algorithms
For multiclass classification, Theorem 2 immediately sug-
gests O(n2) algorithm for computing the optimal solution
when P(Y = Ci|x) is known — for each k = 1, 2, . . . , n,
evaluate the expected loss in selecting the top k classes
(classes are sorted by P(Y = Ci|x)), which can be done
in O(n) time. However, in binary and multilabel learn-
ing scenarios, even when P(Yi = 1|x) is known exactly,
characterization of optimality in Theorem 1 falls short in
practice — it is not obvious how to compute the expecta-
tion in (1) without exhaustively enumerating 2n possible y
vectors. In this section, we present efficient algorithms for
computing estimators for optimal predictions given x and
a TP monotonic loss function L. We also prove the consis-
tency of the proposed algorithms.

4.1. Computing Optimal in Practice

We observe that by evaluating the loss L through the func-
tion Φ (as defined in Proposition 1), we can generalize the
approach suggested by Ye et al. (2012) for Fβ-measure to
obtain a template algorithm for optimizing any TP mono-
tonic L. Consider the vector s ∈ {0, 1}n with the top k
values set to 1 and the rest to 0, and let Si:j :=

∑j
l=i yl.

Note that for any y ∈ {0, 1}n that satisfies S1:k = k1
and Sk+1:n = k2, L(s,y) can simply be evaluated as
Φ( 1

nk1,
1
nk,

1
n (k1 + k2)). Thus

∑
y∈{0,1}n P(y|x)L(s,y)

can be evaluated as a sum over possible values of k1 and
k2, where the expectation is computed wrt. P (S1:k =
k1)P (Sk+1:n = k2) with 0 ≤ k1 ≤ k and 0 ≤ k2 ≤
n − k. Now, it remains to compute P (S1:k = k1) and
P (Sk+1:n = k2) efficiently.

Let ηi = P(Yi = 1|x). A consistent estimate of this quan-
tity may be obtained by minimizing a strongly proper loss



Optimal Classification with Multivariate Losses

function such as logistic loss (Reid and Williamson, 2009).
Using the conditional independence assumption, we can
show that P (S1:k = k1) and P (Sk+1:n = k2) are the
coefficients of zk1 and zk2 in Πk

j=1[ηjz + (1 − ηj)] and
Πn
j=k+1[ηjz + (1 − ηj)] respectively, each of which can

be computed in time O(n2) for fixed k. Note that the loss
L itself can be evaluated in constant time. Let Lk denote
the expected loss wrt. the estimated conditionals ηi, cor-
responding to setting the predictions of indices with top k
highest conditional probabilities to 1. The resulting algo-
rithm is presented in Algorithm 1. Though the computa-
tional complexity of Algorithm 1 is O(n3), we find that in
practice it suffices to run the outer iterations until k∗ where
k∗ is the first k s.t. Lk ≤ Lk+1 (or k∗ = n if no such k ex-
ists), because for all k > k∗, Lk ≥ Lk∗ holds. It is not ob-
vious if this is a property enjoyed by all TP monotonic loss
functions under conditional independence, but it would be
interesting to theoretically establish this. The improvement
in runtime is significant as multivariate losses are typically
employed in scenarios where there is heavy imbalance in
the distribution (in case of binary classification) or typi-
cally a small set of labels are relevant for a given instance
(in case of multilabel learning), so k∗ � n, for large n.
Finally, we note that for a sub-family of fractional-linear
losses studied by Koyejo et al. (2014; 2015), we can get
a faster algorithm that runs in time O(n2) using the trick
by Ye et al. (2012). Due to limited space, the resulting al-
gorithm is presented in Appendix B.1.

Remark on multinomial distributions. For multiclass
classification, note that computing the expectation wrt. the
multinomial distribution is straight-forward. We simply re-
place steps 4-6 of Algorithm 1 with the following step:

Lk ←
∑
j≤k

Φ

(
1

n
,
k

n
,

1

n

)
. ηj +

∑
k<j≤n

Φ

(
0,
k

n
,

1

n

)
. ηj

4.2. Consistency Analysis

Consider a procedure that minimizes (1) computed with re-
spect to a consistent estimate P̂(Yi|x) of the conditional
P(Yi|x). Here, we show that any such procedure is consis-
tent.
Theorem 3. Let ηi = P(Yi = 1|x), and as-
sume the estimate η̂i satisfies η̂i

p→ ηi. Given
a bounded loss function L and a set of instances
x, let s∗ = arg mins∈{0,1}n EY∼P(.|x)L(s,Y) be
the optimal prediction with respect to P and ŝ =
arg mins∈{0,1}n EY∼P̂(.|x)L(s,Y) be the optimal predic-

tion with respect to the consistent estimate P̂, then

EY∼P(.|x)
[
L(ŝ,Y)− L(s∗,Y)

] p→ 0.

Our consistency result also applies to previous algorithms
proposed for Fβ in different settings e.g. by Lewis (1995);

Algorithm 1 Computing s∗ for TP Monotonic L
1: Input: L and estimates of ηi = P(Yi = 1|x), i =

1, 2, . . . , n sorted wrt. ηi
2: Init s∗i = 0,∀i ∈ [n].
3: for k = 1, 2, . . . , n do
4: For 0 ≤ i ≤ k, set Ck[i] as the coefficient of zi in

Πk
i=1

(
ηiz + (1− ηi)

)
.

5: For 0 ≤ i ≤ n− k, set Dk[i] as the coefficient of zi

in Πn
i=k+1

(
ηiz + (1− ηi)

)
.

6: Lk ←
∑

0≤k1≤k
0≤k2≤n−k

Ck[k1]Dk[k2]Φ(k1n ,
k
n ,

1
n (k1 + k2)).

7: end for
8: k∗ ← arg mink Lk.
9: return s∗ s.t. s∗i ← 1 for i ∈ [k∗].

Chai (2005); Jansche (2007); Coz Velasco et al. (2009); Ye
et al. (2012), where analysis of consistency with empiri-
cal probability estimates was lacking. For TP monotonic
multivariate losses, it is immediate from Theorem 3 that
Algorithm 1 is consistent.

5. Experiments
We present two sets of experiments. The first is an ex-
perimental validation on synthetic data with known ground
truth probabilities. The results serve to verify our main re-
sult (Theorem 1) for some of the losses in Table 1. The
second set is an experimental evaluation of the proposed
algorithm for computing optimal prediction on benchmark
datasets, with comparisons to baseline and state-of-the-art
algorithms for classification with general losses.

5.1. Synthetic data: Verification of the theory

We consider four losses from Table 1 based on the perfor-
mance metrics AM, Jaccard, F1 (harmonic mean of Pre-
cision and Recall) and G-TP/PR (geometric mean of Pre-
cision and Recall). To simulate, we sample a set of ten
2-dimensional vectors x = {x1, x2, . . . , x10} from the
standard Gaussian. The conditional probability is mod-
eled using a sigmoid function: ηi = P(Y = 1|xi) =

1
1+exp (−wT xi) , for a random vector w also sampled from
the standard Gaussian. The optimal predictions s∗ (1) are
then obtained by exhaustive search over the 210 possible
label vectors. For each loss, we plot the conditional proba-
bilities (in decreasing order) and s∗ in Figure 1. We observe
that it is optimal to assign positive labels to top k∗ instances
with highest P(Y |x), as given in Theorem 1, where k∗ de-
pends on the instances, the distribution and the loss itself.
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Figure 1. Optimal predictions for losses from Table 1 demonstrated on synthetic data. In each case, we verify that s∗ conforms to the
ordering of P(Yi|x) as stated in Theorem 1.

DATASET T Proposed Baseline Tuning δ S-SVM Proposed Baseline Tuning δ S-SVM
F1 F1 F1 F1 Jaccard Jaccard Jaccard Jaccard

1 0.4125 0.4849 0.5020 0.3254 0.5239 0.5692 0.5691 0.4977
REUTERS 10 0.1753 0.2376 0.2401 0.1604 0.3199 0.3591 0.3090 0.2983
(65) 50 0.1003 0.1572 0.1490 0.1533 0.2485 0.2552 0.2422 0.2528

100 0.0144 0.0325 0.0331 0.0360 0.0602 0.0625 0.0643 0.0689
LETTERS (26) 1 0.2890 0.5173 0.4255 0.4395 0.5728 0.6368 0.5682 0.5029
SCENE (6) 1 0.3084 0.8023 0.5603 0.3937 0.6460 0.9794 0.7920 0.5541
WEB PAGE 1 0.1606 0.3145 0.3191 0.4700 0.5363 0.4785 0.4806 0.5758
SPAMBASE 1 0.1552 0.1202 0.1161 0.2263 0.2686 0.2133 0.1997 0.3461
IMAGE 1 0.1458 0.1429 0.1419 0.1227 0.2545 02500 0.2377 0.2235
BREAST CANCER 1 0.0207 0.0411 0.0234 0.0270 0.0658 0.0789 0.0519 0.0526

Table 2. Comparison of methods: Fractional-linear losses, F1 and Jaccard defined in Table 1. Reported values correspond to losses on
test data (lower values are better). Baseline refers to thresholding η̂(x) at 0.5; ‘Tuning δ’ refers to the plugin-estimator combined with
threshold selection method in Koyejo et al. (2014); S-SVM refers to the structured SVM method proposed by Joachims (2005). First
three are multiclass datasets (number of classes indicated in parenthesis).

5.2. Benchmark data: Proposed algorithms

We perform classification using the proposed approach:
(i) obtain a model for the conditional distribution η(x) =
P(Y = 1|x) using training data and (ii) compute s∗ for the
test data using estimated conditionals in the proposed Al-
gorithm 1 (and in the faster Algorithm 2 in the Appendix,
when applicable). We use logistic loss on the training sam-
ples (with L2 regularization) to obtain an estimate η̂(x)
of P(Y = 1|x). In our experiments, we consider losses
based on four performance metrics AM, F1, Jaccard and G-
TP/PR. For AM and G-TP/PR we use Algorithm 1, while
for the fractional-linear losses Jaccard and F1 we use the
more efficient Algorithm 2. We report the loss on the test
data.

We compare our approach with that of structured hinge
loss minimization for multivariate losses (Joachims, 2005).
We use the MATLAB wrapper provided by Vedaldi (2011),
which internally uses the fast svm-struct implementa-
tion of (Joachims, 2005). The solver is based on cutting-
plane method and for each of the aforementioned losses,
we can implement the constraint generation step efficiently.
We also compare with that of the plugin-estimator com-
bined with threshold selection (which we refer to as ‘Tun-

ing δ’) proposed by Koyejo et al. (2014) and Narasimhan
et al. (2014), that minimizes the loss on the population con-
fusion matrix (as discussed in Section 3.1). In this case, the
optimal classifier is given by sign(η̂(x)− δ∗). The training
data is split into two sets, one set is used for estimating η̂(x)
and the other for selecting the optimal δ for the loss func-
tion. The predictions are then made by thresholding η̂(x)
of the test data points at δ. We also compare to the standard
baseline method for binary classification — thresholding
η̂(x) at 1/2.

We report results on seven benchmark datasets (used in
(Koyejo et al., 2014; Ye et al., 2012)). (1) REUTERS,
consisting of 8293 news articles categorized into 65 top-
ics. We present results for averaging over topics with at
least T positives in the training (5946 articles) as well as
the test (2347 articles) data; (2) LETTERS dataset con-
sisting of 20000 handwritten characters (16000 training
and 4000 test instances) categorized into 26 letters; (3)
SCENE (a UCI benchmark dataset) consisting of 2230 im-
ages (1137 training and 1093 test instances) categorized
into 6 scene types; (4) WEBPAGE binary dataset, consist-
ing of 34780 web pages (6956 train and 27824 test); highly
imbalanced, with only about 182 positive instances in the
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DATASET T Proposed Baseline Tuning δ S-SVM Proposed Baseline Tuning δ S-SVM
AM AM AM AM G-TP/PR G-TP/PR G-TP/PR G-TP/PR

1 0.1166 0.2777 0.2267 0.0598 0.2711 0.4553 0.4782 0.2700
REUTERS 10 0.0480 0.1640 0.0889 0.0368 0.1934 0.2200 0.1924 0.1579
(65) 50 0.0341 0.0983 0.0418 0.0374 0.1505 0.1559 0.1309 0.1527

100 0.0217 0.0239 0.0219 0.0235 0.0313 0.0325 0.0328 0.0369
LETTERS (26) 1 0.1285 0.2980 0.1280 0.1800 0.4213 0.4936 0.4098 0.3465
SCENE (6) 1 0.4160 0.4935 0.4190 0.2250 0.4931 0.9395 0.6152 0.3935
WEB PAGE 1 0.1311 0.1795 0.1250 0.1528 0.3383 0.3133 0.3114 0.4384
SPAMBASE 1 0.1220 0.0990 0.0910 0.1650 0.1506 0.1169 0.1087 0.2204
IMAGE 1 0.1959 0.1808 0.1931 0.1599 0.1324 0.1423 0.1298 0.1198
BREAST CANCER 1 0.0204 0.0399 0.0170 0.0205 0.0340 0.0410 0.0266 0.0270

Table 3. Comparison of methods: AM and G-TP/PR losses defined in Table 1. Reported values correspond to losses on test data (lower
values are better). Baseline refers to thresholding η̂(x) at 0.5; ‘Tuning δ’ refers to the plugin-estimator combined with threshold selection
method in Narasimhan et al. (2014). First three are multiclass datasets (number of classes indicated in parenthesis).

train; (5) IMAGE, with 1300 train and 1010 test images; (6)
BREAST CANCER, with 463 train and 220 test instances,
and (7) SPAMBASE with 3071 train and 1530 test instances.
See (Koyejo et al., 2014; Ye et al., 2012) for more details
on the datasets. Note that in case of the multiclass datasets,
we report results (using one-versus-all classifiers) averaged
over classes.

The results for F1 and Jaccard losses are presented in Ta-
ble 2. Note that the reported values correspond to losses —
smaller values are better. We find that our proposed algo-
rithm almost always achieves the least F1 loss compared to
other methods. However, in case of the Jaccard loss, tuning
a threshold on training data seems to perform better though
it is theoretically not optimal. The structured SVM method,
though not known to have strong consistency properties, is
competitive here. The results for AM and G-TP/PR losses
are presented in Table 3. We find that the proposed ap-
proach is competitive across many datasets for the AM loss.
Again, we find that the structured SVM method is compet-
itive in case of the G-TP/PR loss. Perhaps, structured loss
minimization may hold promise for certain data distribu-
tions and it is an interesting future research direction.

6. Conclusions
We study optimizing expected multivariate losses used in
several prediction tasks. Our analysis shows that for losses
that satisfy an intuitive monotonicity property, optimal pre-
dictions can be computed given the knowledge of the con-
ditional probability of the positive class. We propose effi-
cient and consistent estimators for computing optimal pre-
dictions in practice. Our results are complementary to some
of the recent advances in the understanding of optimal clas-
sification (Koyejo et al., 2014; Narasimhan et al., 2014) and
a leap forward in the direction initiated two decades ago
by Lewis (1995).
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A. Appendix A
A.1. Proof of Theorem 1

The proof is by contradiction. Fix a distribution P satis-
fying conditional independence, and let x denote a fixed
set of instances. Denote P(Y = 1|xi) = ηi and the op-
timal classifier by s∗ ∈ {0, 1}n. Suppose there exist in-
dices j, k such that s∗j = 1, s∗k = 0 and ηj < ηk. Let
s′ ∈ {0, 1}n be such that s′j = 0 and s′k = 1, but identical
to s∗ otherwise i.e. s∗i = s′i ∀i ∈ [n]\{j, k}. Note that∑n
i=1 s

∗
i =

∑n
i=1 s

′

i. For convenience, define:

UL(s;P) := EY∼P(.|x)L(s,Y) .

By optimality of s∗,

UL(s∗;P)− UL(s′;P) ≤ 0. (6)

Consider the LHS, UL(s∗;P)− UL(s′;P) is equal to:

∑
y∈{0,1}n

P (y|x)[L(s∗,y)− L(s′,y)] =

∑
y∈{0,1}n:yj 6=yk

P (y|x)[L(s∗,y)− L(s′,y)]

+
∑

y∈{0,1}n:yj=yk

P (y|x) [L(s∗,y)− L(s′,y)]︸ ︷︷ ︸
(∗)

Note that when yj = yk,
∑n
i=1 s

∗
i yi =

∑n
i=1 s

′
iyi, so

L(s∗,y)−L(s′,y) = 0. It follows that the term (∗) equals
0.

Next we apply the representation of Proposition 1 with
v(s) = 1

n

∑n
i=1 si and p(y) = 1

n

∑n
i=1 yi. Let z ∈

{0, 1}n−2 denote the vector corresponding to n−2 indices
{yi, i ∈ [n] \ {j, k}}, then UL(s∗;P)−UL(s′;P) is given
by: ∑
y∈{0,1}n:yj 6=yk

P(y|x)[L(s∗,y)− L(s′,y)] =

∑
z∈{0,1}n−2

P(z, yj = 1, yk = 0|x)
[
Φ(T̂P(s∗,y), v(s∗), p(y))

− Φ(T̂P(s′,y), v(s′), p(y))
]

+ P(z, yj = 0, yk = 1|x)
[
Φ(T̂P(s∗,y), v(s∗), p(y))

− Φ(T̂P(s′,y), v(s′), p(y))
]

Let s̃ = {s∗i ∀i ∈ [n] \ {j, k}} and define #TP (z) :=∑
i s̃izi and #p(z) = zi (where the # prefix indi-

cates counts rather than normalized values), and note that
v(s∗) = v(s′). With these substitutions, UL(s∗;P) −

UL(s′;P) is given by:∑
z∈{0,1}n−2

P(z, yj = 1, yk = 0|x)

[
Φ

(
1

n
(#TP (z) + 1), v(s′),

1

n
(#p(z) + 1)

)
− Φ

(
1

n
#TP (z), v(s′),

1

n
(#p(z) + 1)

)]
+ P(z, yj = 0, yk = 1|x)

[
Φ

(
1

n
#TP (z), v(s′),

1

n
(#p(z) + 1)

)
−Φ(

1

n
(#TP (z) + 1), v(s′),

1

n
(#p(z) + 1)

)]
By conditional independence, we have that
P (z, yj , yk|x) = P (z|x)P (yj |x)P (yk|x), so that the
equation further simplifies to:∑
z∈{0,1}n−2

P(z|x)

[
Φ

(
1

n
(#TP (z) + 1), v(s′),

1

n
(#p(z) + 1)

)
− Φ

(
1

n
#TP (z), v(s′),

1

n
(#p(z) + 1)

)]
[
ηj(1− ηk)− ηk(1− ηj)

]
=

(ηj − ηk)
∑

z∈{0,1}n−2

P(z|x)

[
Φ

(
1

n
(#TP (z) + 1), v(s′),

1

n
(#p(z) + 1)

)
− Φ

(
1

n
#TP (z), v(s′),

1

n
(#p(z) + 1)

)]
Note that for each z ∈ {0, 1}n−2:

• Φ

(
1
n (#TP (z) + 1), v(s′), 1

n (#p(z) + 1)

)
can be

interpreted as L computed on the vectors y ∈ Rn
defined as {yi = zi ∀ i ∈ [n] \ {j, k}} ∪ {yj =
1} ∪ {yk = 0}, and s∗ ∈ Rn (which is the assumed
optimal).

• Φ

(
1
n#TP (z), v(s′), 1

n (#p(z) + 1)

)
can be inter-

preted as L computed on the vectors y ∈ Rn defined
as above and s′ ∈ Rn.

By TP monotonicity of L, for each z, the difference term

Φ

(
1

n
(#TP (z) + 1), v(s′),

1

n
(#p(z) + 1)

)

−Φ

(
1

n
#TP (z), v(s′),

1

n
(#p(z) + 1)

)
< 0.

This combined with (6) implies that ηj − ηk ≥ 0 which is
a contradiction.
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A.2. Proof of Theorem 2

Fix a multinomial distribution P, and instance x. Let the
classes C1, C2, . . . , Cn be indexed according to the de-
scending order of ηi := P(Y = Ci|x). First, observe
that it suffices to show that for any fixed 0 ≤ k ≤ n,
the optimal solution denoted by s∗(k) that minimizes the
expected loss restricted to subset of vectors Sk = {s ∈
{0, 1}n |

∑n
i=1 si = k} satisfies s∗1(k) = s∗2(k) = · · · =

s∗k(k) = 1, and s∗k+1(k) = · · · = s∗n(k) = 0. Define
[[P ]] = 1 if the predicate P is true or 0 otherwise. Now, for
any s ∈ Sk, we have,

EY∼P(.|x)[L(s, Y )] =
∑
i∈[n]

Φ

(
1

n
[[si = 1]],

k

n
,

1

n

)
ηi

=
∑
i:si=1

Φ

(
1

n
,
k

n
,

1

n

)
ηi +

∑
i:si=0

Φ

(
0,
k

n
,

1

n

)
ηi

= Φ

(
1

n
,
k

n
,

1

n

) ∑
i:si=1

ηi + Φ

(
0,
k

n
,

1

n

)(
1−

∑
i:si=1

ηi

)
=

(
Φ

(
1

n
,
k

n
,

1

n

)
− Φ

(
0,
k

n
,

1

n

)) ∑
i:si=1

ηi

+ Φ

(
0,
k

n
,

1

n

)
By TP monotonicity of L, we have,

Φ

(
1

n
,
k

n
,

1

n

)
< Φ

(
0,
k

n
,

1

n

)
.

So, to minimize the RHS of the above set of equations,
we need to maximize

∑
i:si=1 ηi. Restricting to Sk, the

sum is maximized when we choose classes with k largest
ηi values. We conclude that s∗(k) is the minimizer. This
completes the proof.

A.3. Sufficiency of TP Monotonicity

TP monotonicity of L is sufficient but not necessary for
the optimality characterization we show in the paper. For
instance, consider the subclass of losses where Φ(·, v, p)
is independent of the first argument i.e. independent of
T̂P. SEC is an example of a loss in this family with
ΦSEC(T̂P, v, p) = 2−v−p. But then, it is straight-forward
to characterize optimal solution for such losses:

Proposition 5. Let L = Φ(T̂P, v, p) be a loss independent
of T̂P, then the optimal (1) under L satisfies the ordering of
marginal probabilities as in Theorem 1.

Proof. Suppose Φ(·, v, p) is independent of its first argu-
ment. Let s∗ be an optimal classifier, with v∗ = v(s∗). If
s∗ does not already satisfy the property, then simply sort s∗

with respect to P(Yi|x) to obtain a new classifier s̃. Clearly,
v(s̃) = v∗, and Φ(·, v(s̃∗), p) = Φ(·, v∗, p).

A.4. Proof of Proposition 3

Suppose L satisfies TPR/TNR monotonicity. Let u1 =
TP(s1,y1) and u2 = TP(s2,y2), v = v(s1) = v(s2)
and p = p(y1) = p(y2). Note that Φ(u1, v, p) =
Γ(u1

p ,
1−v−p+u1

1−p , p) (and similarly equality holds for

Φ(u2, v, p)). Now, whenever u1 = T̂P(s1,y1) >

T̂P(s2,y2) = u2, v(s1) = v(s2) = v, and
p(y1) = p(y2) = p, we have T̂PR(s1,y1) >

T̂PR(s2,y2), T̂NR(s1,y1) > T̂NR(s2,y2), and

Φ(u1, v, p) = Γ(
u1
p
,

1− v − p+ u1
1− p

, p)

= Γ(T̂PR(s1,y1), T̂NR(s1,y1), p)

(∗)
< Γ(T̂PR(s2,y2), T̂NR(s2,y2), p)

= Γ(u2.p,
1− v − p+ u2

1− p
, p)

= Φ(u2, v, p)

where (∗) follows from TPR/TNR monotonicity ofL. Thus
L satisfies TP monotonicity.

B. Appendix B
B.1. Faster Algorithm for Fractional-Linear Losses

We focus our attention on the fractional-linear family of
losses studied by Koyejo et al. (2014; 2015). A fractional-
linear loss can be represented by ΦFL as given in (4).
As shown in Proposition 2, LFL satisfies TP monotonic-
ity when c1 < d1. When c3 = 0 and the constants
{d0, d1, d2, d3} are rational in (4), we can get a quadratic-
time procedure for computing s∗ appealing to the method
proposed by Ye et al. (2012). Formally, we consider the
sub-family of TP monotonic fractional-linear losses:

{LSFL : ΦFL(u, v, p) =
c0 + c1u+ c2v

d0 + d1u+ d2v + d3p
, c1 < d1,

and d0, d1, d2, d3 are rational},
(7)

which includes the loss based on Jaccard measure and oth-
ers not studied by Ye et al. (2012). Consider Step 6 of
Algorithm 1 for a loss in family (7):

Lk ←
∑

0≤k1≤k

C[k1](c0n+ c1k1 + c2k) .

∑
0≤k2≤n−k

D[k2]/(d0n+ (d1 + d3)k1 + d2k + d3k2).

Define b(k, α) =
∑

0≤k2≤n−kDk[k2]/(α + d3k2). Ver-
ify that b(n, α) = 1/α. From the fact that Dk−1[i] =
ηkDk[i− 1] + (1− ηk)Dk[i], it follows that:

b(k − 1, α) = ηkb(k, α+ d3) + (1− pk)b(k, α).
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Now, when di’s are rational, i.e. di = qi/ri, the above
induction can be implemented using an array to store the
values of b, for possible values of α.

Algorithm 2 Computing s∗ for LSFL in the family (7)
1: Input: Estimates of ηi = P(Yi = 1|x), i = 1, 2, . . . , n

sorted wrt. ηi, and c0, c1, c2, di = qi/ri, i = 0, 1, 2, 3
corresponding to LSFL

2: Init s∗i = 0,∀i ∈ [n].
3: Set j0 ← r1r2r3q0, ju,1 ← r0r2r3q1, ju,2 ←
r0r1r2q3, jv ← r0r1r3q2

4: for 1 ≤ i ≤ (|ju,1|+ |ju,2|+ |jv|)n do
5: set S[i]← r0r1r2r3/(i+ j0n).
6: end for
7: for k = n to 1 do
8: For 0 ≤ i ≤ k, set Ck[i] as the coefficient of zi in

Πk
i=1

(
ηiz + (1− ηi)

)
.

9: LSFL;k ←
∑

0≤k1≤k

(c0n+ c1k1 + c2k)Ck[k1]S[(ju,1 +

ju,2)k1 + jvk].
10: for i = 1 to (|ju,1|+ |ju,2|+ |jv|)(k − 1) do
11: S[i]← (1− ηk)S[i] + ηkS[i+ ju,2].
12: end for
13: end for
14: Set k∗ ← arg mink LSFL;k and s∗i ← 1 for i ∈ [k∗].
15: return s∗

Correctness of Algorithm 2: When d3 6= 0, at line
7 of Algorithm 2, we can verify that S[i] = b(k, (i +
j0n)d3/ju,2), and therefore at line 9, S[(ju,1 + ju,2)k1 +
jvk] = b(k, (ju,1 + ju,2)k1 + jvk + j0n)d3/ju,2) =
b(k, (d1 + d3)k1 + d2k + d0n) as desired. When d3 = 0,
b(k, α) = b(k − 1, α) for all 1 ≤ k ≤ n. Let q3 = 0 and
r3 = 1. Then, line 5 sets S[i] = r0r1r2/(i+ j0n), line 11
maintains this invariant as ju,2 = 0 in this case, and there-
fore at line 9, S[(ju,1 + ju,2)k1 + jvk] = 1/(d1k1 + d2k+
d0n) as desired.

B.2. Proof of Theorem 3

For convenience, define:

UL(s;P) := EY∼P(.|x)L(s,Y) .

Let UL∗ := UL(s∗;P) and let ÛL = UL(ŝ;P). Also define
the empirical distribution:

P̂(y|x) = Πn
i=1η̂

yi
i (1− η̂i)1−yi .

Now consider:

ÛL − UL∗ = ÛL + UL(ŝ; P̂)− UL(ŝ; P̂)− UL∗
≤ ÛL + UL(s∗; P̂)− UL(ŝ; P̂)− UL∗
≤ 2 max

s

∣∣UL(s;P)− UL(s; P̂)
∣∣ (8)

For any fixed s ∈ {0, 1}n, we have:∣∣UL(s;P)− UL(s; P̂)
∣∣ =∣∣ ∑

y∈{0,1}n
P̂(y|x)L(s,y)−

∑
y∈{0,1}n

P(y|x)L(s,y)
∣∣

≤
∑

y∈{0,1}n

∣∣P̂(y|x)− P(y|x)
∣∣L(s,y) (9)

Let η(x) denote the empirical estimate obtained using m
training samples. Now because η̂(x)

p→ η(x), we have that
for sufficiently large set of training examples, P̂(y|x)

p→
P(y|x); i.e. for any given ε > 0, there exists mε such
that for all m > mε, |P̂(y|x) − P(y|x)| < ε, with
high probability. It follows that, with high probability,
(9) ≤ ε

∑
y∈{0,1}n L(s,y). Assuming L is bounded, we

have that for any fixed s,
∣∣UL(s;P) − UL(s; P̂)

∣∣ ≤ Cε,
for some constant C that depends only on the metric L and
(fixed) test set size n. The uniform convergence also fol-
lows because the max in (8) is over finitely many vectors
s. Putting together, we have that for any given δ, ε′ > 0,
there exists training sample size mε′,δ such that the out-
put ŝ of our procedure satisfies, with probability at least
1− δ, ÛL − UL∗ < ε′; when L is unbounded, we have that
s∗ = arg min

s∈{0,1}n
L(s, ·) over all unbounded L(s,y). Thus

all that is required is support consistency i.e. {y|P̂(y|x) >

0} p→ {y|P(y|x) > 0} which is a much weaker condition
than distribution consistency. The proof is complete.

C. Appendix C
EUM and DTA Classification

A recent flurry of theoretical results and practical al-
gorithms highlights a growing interest in understanding
and optimizing non-decomposable metrics (Dembczyn-
ski et al., 2011; Ye et al., 2012; Koyejo et al., 2014;
Narasimhan et al., 2014). Existing theoretical analysis
has focused on two distinct approaches for characterizing
the population version of the non-decomposable metrics:
identified by Ye et al. (2012) as decision theoretic analy-
sis (DTA) and empirical utility maximization (EUM). DTA
population utilities measure the expected gain of a classi-
fier on a fixed-size test set, while EUM population utilities
are a function of the population confusion matrix. In other
words, DTA population utilities measure the the average
utility over an infinite set of test sets, each of a fixed size,
while EUM population utilities evaluate the performance
of a classifier over a single infinitely large test set.

It has recently been shown that for EUM based popu-
lation utilities, the optimal classifier for large classes of
non-decomposable binary classification metrics is just the
sign of the thresholded conditional probability of the posi-
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tive class with a metric-dependent threshold (Koyejo et al.,
2014; Narasimhan et al., 2014). In addition, practical algo-
rithms have been proposed for such EUM consistent clas-
sification based on direct optimization for the threshold on
a held-out validation set. In stark contrast to this burgeon-
ing understanding of EUM optimal classification, we are
aware of only two metrics for which DTA consistent classi-
fiers have been derived and shown to exhibit a simple form;
namely, the Fβ metric (Lewis, 1995; Dembczynski et al.,
2011; Ye et al., 2012) and squared error in counting (SEC)
studied by Lewis (1995).

While the optimal classifiers of both EUM and DTA pop-
ulation utilities associated with the performance metrics
we study comprise signed thresholding of the conditional
probability of the positive class, the evaluation and opti-
mization for EUM and DTA utilities require quite different
techniques. Given a classifier and a distribution, evaluat-
ing a population DTA utility can involve exponential-time
computation, even leaving aside maximizing the utility on
a fixed test set. As we show, in light of the probability rank-
ing principle, and with careful implementation, this can ac-
tually be reduced to cubic complexity. These computations
can be further reduced to quadratic complexity in a few
special cases (Ye et al., 2012). To this end, we propose two
algorithms for optimal DTA classification. The first algo-
rithm runs in O(n3) time for a general metric, where n is
the size of the test set and the second algorithm runs in time
O(n2) for special cases such as Fβ and Jaccard. We show
that our overall procedure for decision-theoretic classifica-
tion is consistent. More recently, Parambath et al. (2014)
gave a theoretical analysis of the binary and multi-label Fβ
measure in the EUM setting. Dembczynski et al. (2011)
analyzed the Fβ measure in the DTA setting including the
case where the data is non i.i.d., and also proposed efficient
algorithms for optimal classification.
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