
Fast Classification with Binary Prototypes

Kai Zhong† Ruiqi Guo‡ Sanjiv Kumar‡
Bowei Yan† David Simcha‡ Inderjit S. Dhillon†
† University of Texas at Austin, TX, USA and ‡ Google Research, NY, USA

Abstract

In this work, we propose a new technique for
fast k-nearest neighbor (k-NN) classification
in which the original database is represented
via a small set of learned binary prototypes.
The training phase simultaneously learns a
hash function which maps the data points
to binary codes, and a set of representative
binary prototypes. In the prediction phase,
we first hash the query into a binary code
and then do the k-NN classification using the
binary prototypes as the database. Our ap-
proach speeds up k-NN classification in two
aspects. First, we compress the database into
a smaller set of prototypes such that k-NN
search only goes through a smaller set rather
than the whole dataset. Second, we reduce
the original space to a compact binary embed-
ding, where the Hamming distance between
two binary codes is very efficient to compute.
We propose a formulation to learn the hash
function and prototypes such that the classi-
fication error is minimized. We also provide
a novel theoretical analysis of the proposed
technique in terms of Bayes error consistency.
Empirically, our method is much faster than
the state-of-the-art k-NN compression meth-
ods with comparable accuracy.

1 Introduction

The classical k-Nearest Neighbor (kNN) classfication
technique is attractive due to its simplicity and in-
terpretability. Moreover, when the number of labels
is large, the performance of kNN-based classification
is very competitive. Theoretically, a kNN classifier

Proceedings of the 20th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2017, Fort Laud-
erdale, Florida, USA. JMLR: W&CP volume 54. Copyright
2017 by the author(s).

asymptotically converges to Bayes optimal classifier
as the number of data points approaches infinity [7].
Even though a classical kNN classifier does not need a
training phase1, it requires a huge amount of time and
storage for predicting labels of new data points when
databases are large. Besides, its performance highly
depends on the quality of the distance metric.

To speed up the search process, several approximate
nearest neighbor search techniques have been proposed,
including tree-based techniques [3, 4, 23, 29], hash-
ing/binary embedding techniques [11, 18, 21, 24, 28, 30],
and vector quantization [13]. Tree based methods per-
form recursive partitioning of the data via a tree data
structure to reduce the number of data points to be
searched. Binary embedding techniques represent data
points as compact binary codes, allowing fast com-
putation of pairwise distances. Vector quantization
techniques quantize the data points such that both
the storage of the database and the time to calculate
the distance are reduced. Most such techniques are
traditionally applied in an unsupervised setting.

For fast kNN classification, an alternative strategy
has been explored where the database is replaced by
a smaller set of prototypes. At prediction time, a
query is matched against this prototype set, leading
to fast classification. The idea behind these neighbor
compression techniques is that for classification, not all
of the database items are needed. The aim is to remove
the redundant points to reduce the search complexity.
In some cases, removing redundant points also improves
the generalization performance of the kNN classifier
by getting rid of noisy points. There are two main
approaches to neighbor compression: 1. Prototype
Selection, where a subset of the database is chosen as
the prototype set, and 2. Prototype Generation, where
a set of new points (which are not part of the database)
is used as the prototype set.

There exist extensive studies on techniques to gener-
ate a representative training set with reduced sample

1Sometimes training is used to learn appropriate features
or distance metric.

Fast Classification with Binary Prototypes

size. [8, 25] provide a thorough survey and comparison
of different prototype generation/selection algorithms.
These can be classified into four types based on the
mechanisms adopted: class relabeling, centroid based,
space splitting and positioning adjustment. However
techniques for learning the prototype set do not scale
well with the database size. More recently, [16] pro-
posed a data compression method, Stochastic Neigh-
bor Compression(SNC). The prototypes, or reference
vectors, are initialized from a random subset of the
training set, and then optimized by minimizing the
training classification error.

In all of the above prototype selection/generation works,
prototypes are selected or built in the same space as
the input data. To retain accuracy similar to a kNN
classifier applied to the whole database, the number
of prototypes must be large. For instance in SNC, the
authors show that they need to retain about 1% or
more of the database points to achieve high accuracy.
Hence, for a database containing hundreds of millions
of points, the prototype set must contain millions of
points. kNN classification even in this reduced set can
be costly, especially for high dimensional data. In this
work, we propose to learn a reduced prototype set,
where each prototype is a compact binary code such
that distances calculated in the binary space capture
the similarity between points in the original input space.
We also show that simultaneously learning the reduced
set and the binary coding is superior to converting
the prototypes learned by other techniques into binary
codes in a post-hoc manner.

Supervised learning of binary codes has been proposed
previously [15, 19, 21, 26]. The goal in such learning,
for instance, can be to map the original data points into
binary codes such that neighbors or points that have
the same labels have small Hamming distance, and vice-
versa. However, simultaneous learning of the reduced
prototype set and the binary embedding function is
challenging and has not yet been attempted. Moreover,
we provide guarantees of convergence to the Bayes
optimal classifier which were not provided for previous
binary embedding techniques even with the full dataset.

In this paper, we propose a new technique called Binary
Neighbor Compression (BNC) which learns both the
prototypes and the binary hash functions that convert
an input point into a binary code. This is achieved by
minimizing a margin-based loss, which is a surrogate
to the 0-1 loss. We provide Bayes consistency guar-
antees for our method when the optimal solution is
obtained by minimizing a surrogate loss. In particular,
when the number of prototypes m is proportional to
the number of data points N , i.e., m = βN for any
constant β ∈ (0, 1], and the number of bits of the bi-
nary code r satisfies r = O(N 1

16d), where d is the data

dimension, then the generalization error of the solution
will converge to the Bayes error as N goes to infinity.
We hope this novel Bayes consistency analysis can pro-
vide insights for other analyses with binary embedding
techniques.

The paper is organized as follows: In Section 2, we
formulate the learning problem and the relaxed objec-
tive function. In Section 3, we propose a two-phase
algorithm to learn the binary prototypes and the hash
functions. Section 4 provides the Bayes consistency
guarantees. In Section 5, we show our experimental
results.

2 Binary Neighbor Compression
(BNC)

Given N training data points, X = [x1,x2, · · · ,xN] ∈
Rd×N , and their corresponding labels [y1, y2, · · · , yN]
for yi ∈ Y, where Y is the set of labels, our goal
is to find m binary prototypes, each of length r, de-
noted as B = [b1, b2, · · · , bm] ∈ {−1, 1}r×m with la-
bels [z1, z2, · · · , zm], such that the test points can be
classified accurately using kNN on the prototypes. For
simplicity, we fix the labels of the prototypes and choose
the number of prototypes for each label based on the
proportion of each class in the dataset. We define a set
of r hash functions, i.e., the mapping from input space
to r-bit binary codes as g : Rd → {−1, 1}r. We use
ρH(b1, b2) to denote the Hamming distance between
two binary codes, b1 and b2. We would like to learn a
mapping g and a prototype set B such that for as many
data points as possible, minj:zj=yi ρH(g(xi), bj) <
minj:zj 6=yi ρH(g(xi), bj), where the left term is the
smallest distance between a hashed data point and
the prototypes with the same label, and the right term
is that with a different label.

In this work, we focus on linear hash functions, i.e.,
g(x) = sign (Wx), where W := [w1,w2, · · · ,wr]T ∈
Rr×d.

Since both g(x) and bj are binary codes with values
±1,

ρH(g(x), bj) = 1
4‖g(x)− bj‖2 = 1

2(r − g(x)T bj).

Given W and B, we define a scoring function for each
data pair {x, y} as

φW,B(x, y)
:=2(min

j:zj 6=y
ρH(sign (Wx) , bj)

− min
j:zj=y

ρH(sign (Wx) , bj))

= max
j:zj=y

(
sign (Wx)T bj

)
− max
j:zj 6=y

(
sign (Wx)T bj

)
(1)

Kai Zhong†, Ruiqi Guo‡, Sanjiv Kumar‡, Bowei Yan†, David Simcha‡, Inderjit S. Dhillon†

The prediction for a given x is ŷ = arg maxy φW,B(x, y).
The generalization error can be formulated as,

R(φW,B) := E[1[φW,B(x, y) < 0]]. (2)

The training error is

R̂(φW,B) = Ê[1[φW,B(x, y) < 0]],

where we denote

Ê[h(x, y)] := 1
N

N∑
i=1

h(xi, yi),

for some function h. Since both the indicator function
1[·] and sign (·) are not differentiable, we replace sign (·)
by tanh(γ(·)) and 1[·] by Φ(·) (defined in Eq. (5)). Φ
is also used by [14] to prove the Bayes consistency of
1-NN classifier. Note that if u (u 6= 0) is fixed, then
limγ→∞ tanh(γu) = sign (u) and limα→0,ξ→0 Φ(u) =
1[u < 0].

Now we formulate our problem,

min
W,B

F (W,B) := 1
N

N∑
i=1

Φ(φ̃W,B(xi, yi)),

s.t., ‖wk‖ = 1,∀k ∈ [r] and B ∈ {−1, 1}r×m,

(3)

where

φ̃W,B(x, y) := max
j:zj=y

(
tanh(γWx)T bj

)
− max
j:zj 6=y

(
tanh(γWx)T bj

)
− ν,

(4)

Φ(u) =


1 if u ≤ α(1− ξ),
0 if u ≥ α,
(α− u)/(αξ) otherwise.

(5)

Here γ is used to approximate sign (·) by tanh(·), {α, ξ}
are for the approximation of 1[·] by Φ(·) and ν en-
sures φ̃W,B 6= 0 when γ is large. The constraint
‖wk‖ = 1 is used with the hope that when γ → ∞,
tanh(γwT

k x) → sign
(
wT
k x
)
because wk is not inde-

pendent of γ. In Sec. 4, we will show that the classifier
formed by the optimal solution of the formulation (3) is
Bayes consistent. The above constants and constraints
are essential to our consistency analysis.

3 Algorithm

Although the objective function in Eq. (3) is continuous
in x, it is difficult to optimize because 1) the objec-
tive function is highly non-convex; 2) B takes discrete
values. In this section, we discuss the techniques for
relieving these difficulties.

First, we relax the non-convex surrogate loss Φ(·) to
the convex hinge loss, which is inspired by recent works
on large margin nearest neighbor classification [22, 27].
Second, we relax B to be box-constrained continuous
values, i.e., B̃ ∈ [−1, 1]r×m, where B̃ is the relaxed
version of B. During the prediction phase, we still use
B = sign

(
B̃
)
. Therefore, we consider minimizing the

following surrogate objective for training,

min
W,B̃

1
N

N∑
i=1

[
α− max

j:zj=yi

(
tanh(γWxi)T b̃j

)
+ max
j:zj 6=yi

(
tanh(γWxi)T b̃j

)]
+

+ λ
∑
k∈[r]

(‖wk‖2 − 1)2,

s.t. W ∈ Rr×d, B̃ ∈ [−1, 1]r×m,

(6)

where [z]+ = max{z, 0} and b̃j is j-th column of B̃.
α absorbs ν in Eq. (4). The hard constraint ‖wk‖ =
1 is replaced by the continuous regularization term
(‖wk‖2 − 1)2.

Next we propose a two-phase algorithm with a special
initialization step to optimize this non-convex function.
We will show in Sec. 5 that all of these techniques
improve the empirical performance of the algorithm.

3.1 Initialization

We initialize W with a random Gaussian matrix. It
is well known that binary hashing based on random
projections, i.e., b = sign (Wx), where W is a random
Gaussian matrix, approximates the Euclidean distance
between samples when the number of bits is large and
the samples are normalized to unit L2 norm [12]. For
initialization of prototypes, we can randomly sample
binary codes from the existing hashed data points as ini-
tial prototypes. However, good prototypes are typically
not a random subset. In real world data, points tend
to form local clusters. A better choice of prototypes is
to pick representatives of these clusters. Therefore we
first do k-means clustering on the data points in each
class separately, and then initialize the prototypes as
the centers of the clusters. By this construction, each
k-means cluster only contains data points from a single
class. Let Cy,p denote the p-th cluster of Class y and
my be the number of clusters belonging to Class y. Let
cy,p be the center of cluster Cy,p. Now we show the
proposed initialization ensures zero training error when
the data is well-behaved.
Proposition 1. Assume that: 1) The magnitude of
the data points is equal to 1. 2) The clusters from
different classes are separated by a margin µ. Formally
speaking, for any data point x ∈ Cy,p, assume

‖x− cy′,p′‖ − ‖x− cy,p‖ > µ, (7)

Fast Classification with Binary Prototypes

for any y′ 6= y and any p′ ∈ [my′].

Then if r ≥ 8 log(2mN/δ)
µ2 , w.p. 1 − δ, any data point

xi ∈ Cy,p satisfies

ρH(sign (Wxi) , sign (Wcy,p))
<ρH(sign (Wxi) , sign (Wcy′,p′))

(8)

for any y′ 6= y and any p′ ∈ [my′]. In other words, the
training error will be zero w.p. 1− δ.

Remark: The above proposition assumes the data
points are separable by the classes, therefore, we can
obtain zero training error w.h.p.. This assumption is
too strong in real-world settings. So we treat this propo-
sition as a sanity check for our initialization method.
Note that our main theorem (Theorem 1) is indepen-
dent of Proposition 1, so it does not require this as-
sumption. We defer the proof to Appendix A. Also, we
will show in Section 5.1 that this k-means initialization
empirically works better than random initialization.

3.2 Phase 1: Learn linear transformation and
relaxed binary prototypes

To learn the parameters W and B̃ from loss function
in (6), alternating minimization is a possible choice.
However, since each alternating step doesn’t have a
closed-form solution, we need to introduce an inner
loop to iteratively solve W or B̃ when fixing the other.
Hence, we directly minimize the loss function (6) over
W and B̃ jointly using stochastic gradient descent
followed by a projection of B̃ to [−1, 1]r×d.

3.3 Phase 2: Learn linear transformation
with binary prototypes fixed

A caveat of joint learning is that the binarization step
in the prediction phase for bothWx and B̃ may lead to
a noticeable loss in accuracy. Thus we propose to learn
W again by fixing B̃ as binary codes after the joint
learning step. So, only sign (Wx) is approximated by
tanh(γWx) in the second phase.

A detailed algorithm for BNC can be found in Algo-
rithm 1. In this algorithm, the compression ratio β
is m/N . The number of prototypes/clusters for each
class in the initialization step is set to βNy, where Ny
is the number of data points in Class y.

4 Consistency Analysis

In the analysis, we consider the Bayes consistency for
the binary classification case, i.e., Y = {1,−1}. First
we introduce some notation. In the binary classification
case, we define the generalization risk

R(f) := E[1[yf(x) < 0]]

Algorithm 1 Stochastic Gradient Descent for Binary
Neighbor Compression
Require: Dataset {xi, yi}i=1,2,...,N , number of bits r,

the compression ratio β, and hyper-parameters α,
λ and γ.

Ensure: W and B.
1: Initialize W via random Gaussian distribution.
2: Do k-means clustering for the data points in each

class, where the number of clusters for each class is
ky = βNy, for Ny being the number of points from
Class y.

3: Form the centers of the clusters into a matrix C,
where the columns of C ∈ Rd×m are the centers of
the clusters cyk (k-th cluster of Class y) from all
the classes.

4: Set the binary prototypes to be B̃ = B =
sign (WC).

5: for t = 0, 1, 2, · · · , T1 do //Phase 1: Jointly learn
W and B̃

6: Calculate the gradient of W and B̃ for Eq.(6)
using a small batch.

7: Update W and B̃ by their gradients.
8: Project B̃ to the cube [−1, 1]r×m.
9: end for

10: B = sign
(
B̃
)
.

11: for t = T1 + 1, · · · , T2 do //Phase 2: Learn W
when fixing B

12: Calculate the gradient of W for Eq.(6) using a
small batch.

13: Update W by its gradient
14: end for

for a scoring function, f : x → R. Define the Bayes
optimal risk,

R∗ := inf
f

E[1[yf(x) < 0]].

For the binary classification case, we can reformulate
Eq.(1) as φ̃W,B(x, y) = yf̃W,B(x), where

f̃W,B(x) := max
j:zj=1

(
tanh(γWx)T bj

)
− max
j:zj=−1

(
tanh(γWx)T bj

)
− ν

We also denote

fW,B(x) := max
j:zj=1

(
sign (Wx)T bj

)
− max
j:zj=−1

(
sign (Wx)T bj

)
− ν

Assumption 1. Assume the data points are generated
from Sd−1, i.e., ‖x‖ = 1 and the data distribution
satisfies P[|wTx| ≤ θ] ≤ C1θ for some constant C1,
any fixed unit vector w (‖w‖ = 1) and any θ > 0.

Kai Zhong†, Ruiqi Guo‡, Sanjiv Kumar‡, Bowei Yan†, David Simcha‡, Inderjit S. Dhillon†

Remark: The above assumption holds when, for ex-
ample, data points are distributed uniformly on Sd−1

(see Lemma 2.2 [6]).

Let [W ∗, B∗] be an optimal solution of Eq. (3),

[W ∗, B∗] := arg min
‖wk‖=1,B∈{−1,1}r×m

1
N

N∑
i=1

Φ(yif̃W,B(xi)).

(9)
The following theorem shows the Bayes consistency of
our classifier.

Theorem 1. Let β be any constant satisfying 0 < β ≤
1. Set r = C d3/2 log d

2d N
1

16d , m = βN and α = ν =
32N−

1
16d2 , γ = C1(d)N 3

32d , ξ = C2(d)N− 1
32d , where C

is a constant and C1(d), C2(d) depend only on d. Then
under Assumption 1,

R(fW∗,B∗)
p→ R∗ as N →∞, (10)

where p represents convergence in probability.

Remark: Theorem 1 shows that the optimal so-
lution of our model converges to the Bayes optimal
classifier as long as the compression ratio is a constant
satisfying 0 < β ≤ 1 and the number of bits satisfies
r = O(N 1

16d). For the compression ratio, if we don’t
care about the convergence rate, it can be set to be
any constant among (0, 1]. But a smaller β will hurt
the convergence rate to some extent (see the probabili-
ties in Lemma 3 and Lemma 4). In practice, given a
large number of data points, a small compression ratio
suffices for good generalization performance, as shown
by our experiments. To the best of our knowledge, this
is the first Bayes consistency guarantee for compressed
binary embedding techniques. However, this analysis
assumes the non-convex objective with discrete values,
Eq. (9), to be minimized exactly, which is not guaran-
teed by our current algorithm. We leave this problem
as a future work. Our empirical results show that
our method achieves the generalization performance of
state-of-the-art methods.

Proof Sketch. The key idea of this proof follows
from the fact that when r and m are large enough, the
classifier f̃W∗,B∗ can classify as well as any 2-Lipschitz
function, which is a Bayes consistent classifier (see
Lemma 5 in [14]). Specifically, we bound the difference
between the generalization error of the Bayes optimal
classifier and our classifier by introducing some inter-
mediate terms, each of which can be bounded. Let

R(fW∗,B∗)−R∗ (11a)
=E[1[yfW∗,B∗(x) < 0]]− E[1[yf̃W∗,B∗(x) < 0]]

(11b)
+ E[1[yf̃W∗,B∗(x) < 0]]− E[Φ(yf̃W∗,B∗(x))]

(11c)
+ E[Φ(yf̃W∗,B∗(x))]− Ê[Φ(yf̃W∗,B∗(x))] (11d)
+ Ê[Φ(yf̃W∗,B∗(x))]− Êβ [Φ(yf∗2α(x))] (11e)
+ Êβ [Φ(yf∗2α(x))]− E[Φ(yf∗2α(x))] (11f)
+ E[Φ(yf∗2α(x))]− E[1[yf∗2α(x) < α]] (11g)
+ E[1[yf∗2α(x) < α]]−R∗, (11h)

where Êβ [h(x, y)] :=
∑
i∈Ωβ

1
|Ωβ |h(xi, yi) for a ran-

dom subset Ωβ ⊂ [N] with size |Ωβ | = βN , f∗2α :=
arg minf∈F2 E[1[yf(x) < α]] and F2 is the family of
2-Lipschitz functions.

The first term Eq. (11b), which is due to the approxima-
tion of tanh(·) to sign (·), can be bounded when γ →∞
under Assumption 1. The second term Eq. (11c) and
the last-but-one term Eq. (11g) are less than zero by
the definition of Φ. The third term Eq. (11d) is the dif-
ference between the empirical loss and the population
loss, which can be bounded by Rademacher complex-
ity, since the loss function Φ and the classifier f̃W∗,B∗
are Lipschitz functions. The fourth term Eq. (11e) is
the difference between the loss of our classifier and
the loss of the best 2-Lipschitz classifier, which can be
bounded when r and m are large enough. The fifth
term Eq. (11f) is the empirical error and the popula-
tion error of a given classifier, thus can be bounded by
Hoeffding inequality. The last term Eq. (11h) is the
difference between the best 2-Lipschitz classifier and
the Bayes optimal classifier, which has been studied in
Lemma 5 in [14]. The details of these bounds can be
found from Lemma 1 to Lemma 5 below. Finally, by set-
ting proper values for the hyper-parameters, Eq. (10)
will hold. The detailed proof about how to set the
hyperparameters can be found in Appendix A.2.

The following lemmata provide bounds for most terms
in Eq. (11). Their proofs can be found in the appendix.
Lemma 1 (Bound for Eq. (11b)). Let γ ≥
C1r
2δ log(32r

ν). Then under Assumption 1,

|E[1[yfW∗,B∗(x) < 0]]− E[1[yf̃W∗,B∗(x) < 0]]| ≤ δ
(12)

Lemma 2 (Bound for Eq. (11d)). For any ε satisfying

21+1/(4d+4)(32rγ)d/(2d+2)
√
αξN1/(4d+4) < ε < 1, (13)

we have w.p. 1− e−Nε2/C3

|E[Φ(yf̃W∗,B∗(x))]− Ê[Φ(yf̃W∗,B∗(x))]| ≤ 2ε, (14)

Fast Classification with Binary Prototypes

where C3 is a constant.
Lemma 3 (Bound for Eq. (11e)). Let the data points
be sampled from the unit sphere, i.e., ‖x‖ = 1, ∀x ∈
X . If r ≥ C2d

3/2 log(d)/(α(1−ξ)
8)d−1, γ ≥ 4(ν+α)

α(1−ξ) and
m = βN , then for some ε satisfying

21+1/(4d+4)(32rγ)d/(2d+2)
√
αξ(βN)1/(4d+4) < ε < 1, (15)

w.p. 1− 2e−βNε2/C3 , we have

Ê[Φ(yf̃W∗,B∗(x))]− Êβ [Φ(yf∗2α(x))] ≤ 4ε (16)

where C2 is a constant.
Lemma 4 (Bound for Eq. (11f)). W.p. 1− 2e−2βNt2

|Êβ [Φ(yf∗2α(x))]− E[Φ(yf∗2α(x))]| ≤ t (17)

for any t > 0
Lemma 5 (Bound for Eq. (11h), Lemma 5 in [14]).

R∗ = lim
α→0

inf
f∈F2

E[1(yf(x) < α)].

5 Experimental Results

In this section, we compare our Binary Neighbor Com-
pression (BNC) method on 1-NN classification task
with state-of-the-art techniques. [16] has shown that
SNC (Stochastic Neighbor Compression) outperforms
existing techniques, kNN, CNN [10] and FCNN [2]. One
obvious question is what happens if, instead of jointly
learning binarization and neighbor compression as pro-
posed in our work, we binarize the prototypes learned
by SNC using a standard hashing technique. To this
end, we construct a simple baseline called SNC+LSH
for comparison, where we use signed-random LSH for bi-
narization. In particular, we take Bs = sign (WP + b)
as the binary prototypes, where W is a random Gaus-
sian matrix, b is a random Gaussian vector, and P
is the real-valued prototypes generated by SNC. Note
that there exist numerous approximate nearest neigh-
bor (ANN) methods in the literature. However, most of
them are unsupervised methods, such as Product Quan-
tization [13], tree-based ANN methods, while our BNC
method is a supervised method. With the same budget
of memory and prediction time, supervised methods
typically have better performance on classification task
than unsupervised methods. So it is unfair to compare
BNC with unsupervised methods. Nevertheless, we
still include one of recent ANN packages, ANNOY [1],
to make a comparison. In summary, we compare our
method with kNN, CNN, FCNN, SNC, SNC+LSH and

ANNOY on the memory usage, prediction time and
testing accuracy.

We compare all aforementioned methods on these
benchmark datasets: isolet, letters, adult, w8a, yale-
faces and mnist. Statistics of the datasets are shown
in Table 1. These datasets are those used in SNC [16].
We do so to avoid any selection bias on the datasets.
We refer interested reader to [16] for a full description
of these datasets.

We fix the number of bits to be 128 for BNC. Two com-
pression ratios (ratios between number of prototypes
and sample size), 1% and 8%, are used for all methods
those are applicable. We set the number of trees as
10 and 1 for ANNOY. Note that a larger number of
trees leads to higher accuracy but slower computation.
We find that empirical performance is not sensitive to
the parameters γ, λ, so we fix them to be γ = 1, λ = 1.
The batch size of SGD is set as 128. The learning rate
of SGD and the margin α are chosen to achieve the
fastest decrease of the training error. For SNC+LSH
we simply binarize the output prototypes of SNC. For
the calculation of kNN classification for real-valued
vectors, we use the knncl function provided by LMNN2
[27] and the Hamming distance calculation is imple-
mented using Yael library2. For ANNOY, except for
the number of trees, all the other parameters are set as
default values. The results of SNC, CNN and FCNN
come from the numbers reported in [16].

Prediction Time. When doing prediction, BNC
needs a linear projection onto a r-dim space to get
the binary code, followed by computing the Hamming
distance between the hashed code and all binary proto-
types. The first step takes O(rd) time, and the second
step takes O(m) Hamming distance calculations for
r-bit codes, which is very fast. For SNC, the prediction
time is O(md). When r � m, which is usually the
case, it is much slower than BNC.

Memory Usage. BNC only needs to store W , B
and the labels of the prototypes, which are O(rd) real
numbers and m r-bit binary codes. SNC need store
m d-dimensional non-binary prototypes, which counts
for O(md) real numbers. Since ANNOY needs to save
all the original data points, there is almost no memory
reduction by ANNOY.

Both CNN and FCNN select a subset of the training
set, so they will have similar memory reduction and
speedup to SNC, while SNC+LSH has the same mem-
ory complexity and time complexity as BNC. Therefore
we only list the memory usage and prediction time for
kNN, BNC, SNC and ANNOY in Table 1. To highlight
the changes, we list the difference of each method with

2http://yael.gforge.inria.fr/index.html

Kai Zhong†, Ruiqi Guo‡, Sanjiv Kumar‡, Bowei Yan†, David Simcha‡, Inderjit S. Dhillon†

Table 1: Dataset descriptions and performance comparison of different neighbor compression methods against
brute force kNN on the entire dataset. The speedup and memory consumption are shown relative to kNN. ’x%’
implies the fraction of database points kept as prototypes by neighbor compression techniques. “10 ANN" and “1
ANN" imply ANNOY with 10 trees and 1 tree repsectively. BNC tends to have much higher speed and lower
memory usage than SNC and ANNOY.

|Y| dim #Train #Test kNN 1% BNC 8% BNC 1% SNC 8% SNC 10 ANN 1 ANN

adult 2 50 32561 16281
19.32s speedup 479.51 171.77 115.92 31.67 66.12 106.68
12M mem. red. 1500.00 375.00 125.00 15.96 1.09 1.71

w8a 2 100 49749 14951
52.47s speedup 1028.82 295.60 248.91 41.09 203.58 257.47
31M mem. red. 3875.00 704.55 117.42 15.50 1.24 1.55

isolet 26 172 3898 3899
0.77s speedup 33.15 30.76 16.83 8.48 4.38 5.49
4.9M mem. red. 1225.00 612.50 94.23 12.13 1.58 1.81

letters 26 16 16K 4K
2.36s speedup 274.71 123.69 101.39 25.08 46.50 86.65
1.9M mem. red. 475.00 118.75 95.00 12.84 0.59 1.36

yalefaces 38 100 1961 491
0.10s speedup 60.24 56.89 35.31 14.22 9.29 10.92
1.4M mem. red. 350.00 350.00 87.50 11.67 1.40 1.72

mnist 10 164 60K 10K
93.46s speedup 1865.53 659.12 419.87 56.29 155.97 187.64
72M mem. red. 6000.00 947.37 97.30 12.41 1.57 1.85

Table 2: Comparison of testing accuracy of different methods. * These values are missing in the paper [16], so the
best performance among kNN, CNN/FCNN using other compression ratios is filled.

Dataset adult w8a isolet letters yale-
faces mnist

KNN 0.793 0.979 0.944 0.967 0.945 0.978
8% BNC 0.838 0.990 0.931 0.929 0.937 0.968
8% SNC 0.812 0.994 0.951 0.972 0.943 0.982

8% SNC+LSH 0.765 0.981 0.916 0.483 0.933 0.961
8% CNN 0.600 0.994∗ 0.920 0.780 0.780 0.960
8% FCNN 0.570 0.994∗ 0.944∗ 0.720 0.730 0.960

10 trees ANNOY 0.79 0.97 0.93 0.94 0.93 0.96
1% BNC 0.838 0.991 0.934 0.914 0.945 0.969
1% SNC 0.820 0.991 0.944 0.898 0.945 0.978

1% SNC+LSH 0.801 0.962 0.872 0.169 0.265 0.939
1% CNN 0.550 0.953 0.740 0.330 0.280 0.720
1% FCNN 0.530 0.961 <0.700 <0.300 <0.200 <0.700

1 tree ANNOY 0.79 0.89 0.91 0.89 0.88 0.94

respect to kNN. We can see from the table that BNC is
much more efficient, both in terms of speed and mem-
ory usage. Compared to full kNN, it reduces memory
consumption by hundreds or thousands of times across
all datasets while speeding up prediction by hundreds
or thousands of times as well.

Testing Accuracy. We illustrate the testing accuracy
of different methods in Table 2. For most datasets,
both BNC and SNC have competitive results compared
to full kNN and are better than other compression
methods, CNN, FCNN and SNC+LSH, ANNOY. 128-
bit binary prototypes of our method achieve almost
the same testing accuracy as that of SNC, which uses
non-binary prototypes. With the same length binary
codes and the same ratio of neighbor compression,
BNC outperforms SNC+LSH on all datasets. This
implies that the joint optimization of W and B is
indeed useful for learning better binary prototypes.
Note that the letters dataset has very low accuracy
after LSH. This is because some features in the letters
dataset are much more important than others. LSH
eliminates the effect of these important features in the

randomized projection step.

5.1 Performance from Different Phases

Next, we analyze the testing accuracy of our algorithm
in different phases under different initializations, as
shown in Table 3. K-means initialization usually has
performance superior to random initialization before
optimization. First phase (jointly optimizingW and B)
significantly improves accuracy over K-means initializa-
tion. In the second phase (fixing B), the performance
further improves compared to the first phase.

5.2 Different Number of Prototypes

The number of prototypes chosen is closely related to
the accuracy of classification. As seen in Table 2, the
accuracy increases as we use more prototypes per cate-
gory for both BNC and SNC, at the price of increased
memory consumption and prediction time. However, a
very small number of prototypes often achieves reason-
able performance. Clearly, the number of prototypes

Fast Classification with Binary Prototypes

Table 3: Testing accuracy from different phases of the proposed BNC algorithm for 1% compression ratio.

Dataset adult w8a isolet letters yale-
faces mnist

Random init. 0.758 0.971 0.663 0.405 0.550 0.950
K-means init. 0.794 0.979 0.846 0.464 0.780 0.959
After Phase 1 0.840 0.974 0.900 0.880 0.945 0.967
After Phase 2 0.838 0.990 0.934 0.914 0.945 0.969

Figure 1: Prototype visualization on mnist and yalefaces. Each block of three rows visualizes a category, and
each row of a block visualizes a distinct prototype of that category with the eight instances having the smallest
Hamming distance to the binary prototype.

required is closely related to the separability of data
from different classes. In this work, we have treated
this as a model selection problem.

5.3 Illustration of Prototypes

We use multiple binary prototypes to represent a cate-
gory. This model is similar to multiple-prototype theory
in categorization, which suggests that each prototype
should be able to capture a locally similar space within
a category. To verify this, we visualize the examples
closest to each binary prototype. We perform BNC on
the MNIST and yalefaces dataset where we fix each
category to have 3 prototypes. Different prototypes
tend to capture semantically similar neighborhoods
in the input space.In Figure 1, we visualize each pro-
totype by plotting the 8 instances whose hamming
distance is closest to the binary prototype. As we can
see from the MNIST example, different prototypes cap-
ture different writing styles of the same character. For
example, number “2" can be written with a straight or
a round bottom, as captured by the first and the third

prototypes in Figure 1.

6 Conclusion and Future work

We have proposed a technique where a reduced set of
binary prototypes are learned to speed up kNN clas-
sification. The theoretical analysis and the empirical
performance both demonstrate its efficacy over the ex-
isting methods. Note that instead of fixing the number
of prototypes for each class according to the fraction of
points in that class, classes that are harder to separate
from other classes need more prototypes. It will be
useful to have the algorithm automatically learn the
number of prototypes for each class.

Acknowledge

This research was supported by NSF grants CCF-
1320746, IIS-1546452 and CCF-1564000.

Kai Zhong†, Ruiqi Guo‡, Sanjiv Kumar‡, Bowei Yan†, David Simcha‡, Inderjit S. Dhillon†

References
[1] Approximate nearest neighbors oh yeah. GitHub code,

https://github.com/spotify/annoy.
[2] Fabrizio Angiulli. Fast condensed nearest neighbor

rule. In ICML, pages 25–32. ACM, 2005.
[3] Jon Louis Bentley. Multidimensional binary search

trees used for associative searching. Communications
of the ACM, 18(9):509–517, 1975.

[4] Alina Beygelzimer, Sham Kakade, and John Langford.
Cover trees for nearest neighbor. In ICML, pages
97–104. ACM, 2006.

[5] Károly Böröczky Jr and Gergely Wintsche. Cover-
ing the sphere by equal spherical balls. In Discrete
and computational geometry, pages 235–251. Springer,
2003.

[6] Sanjoy Dasgupta and Anupam Gupta. An elemen-
tary proof of a theorem of johnson and lindenstrauss.
Random Structures & Algorithms, 22(1):60–65, 2003.

[7] Richard O Duda, Peter E Hart, et al. Pattern classifi-
cation and scene analysis. Wiley New York, 1973.

[8] Salvador Garcia, Joaquín Derrac, José Ramón Cano,
and Francisco Herrera. Prototype selection for nearest
neighbor classification: Taxonomy and empirical study.
PAMI, 34(3):417–435, 2012.

[9] Lee-Ad Gottlieb, Aryeh Kontorovich, and Robert
Krauthgamer. Efficient regression in metric spaces via
approximate lipschitz extension. In Similarity-Based
Pattern Recognition, pages 43–58. Springer, 2013.

[10] Phil Hart. The condensed nearest neighbor rule. Infor-
mation Theory, IEEE Transactions on, 14(3):515–516,
1968.

[11] Piotr Indyk and Rajeev Motwani. Approximate near-
est neighbors: towards removing the curse of dimen-
sionality. In Proceedings of the thirtieth annual ACM
symposium on Theory of computing, pages 604–613.
ACM, 1998.

[12] Laurent Jacques, Jason N Laska, Petros T Boufounos,
and Richard G Baraniuk. Robust 1-bit compressive
sensing via binary stable embeddings of sparse vec-
tors. Information Theory, IEEE Transactions on,
59(4):2082–2102, 2013.

[13] Herve Jegou, Matthijs Douze, and Cordelia Schmid.
Product quantization for nearest neighbor search.
PAMI, 33(1):117–128, 2011.

[14] Aryeh Kontorovich and Roi Weiss. A bayes consistent
1-nn classifier. In AISTATS, 2015.

[15] Brian Kulis and Trevor Darrell. Learning to hash with
binary reconstructive embeddings. In NIPS, pages
1042–1050, 2009.

[16] Matt Kusner, Stephen Tyree, Kilian Q Weinberger,
and Kunal Agrawal. Stochastic neighbor compression.
In ICML, pages 622–630, 2014.

[17] Michel Ledoux and Michel Talagrand. Probability in
Banach Spaces: isoperimetry and processes. Springer
Science & Business Media, 2013.

[18] Ke Li and Jitendra Malik. Fast k-nearest neighbour
search via dynamic continuous indexing. In ICML,
pages 671–679, 2016.

[19] Wei Liu, Jun Wang, Rongrong Ji, Yu-Gang Jiang, and
Shih-Fu Chang. Supervised hashing with kernels. In
CVPR, pages 2074–2081. IEEE, 2012.

[20] Mehryar Mohri, Afshin Rostamizadeh, and Ameet

Talwalkar. Foundations of machine learning. MIT
Press, 2012.

[21] Mohammad Norouzi and David M Blei. Minimal loss
hashing for compact binary codes. In ICML, pages
353–360, 2011.

[22] Mohammad Norouzi, David M Blei, and Ruslan R
Salakhutdinov. Hamming distance metric learning. In
NIPS, pages 1061–1069, 2012.

[23] Stephen Malvern Omohundro. Five balltree construc-
tion algorithms. Berkeley: International Computer
Science Institute, 1989.

[24] Fumin Shen, Chunhua Shen, Wei Liu, and Heng
Tao Shen. Supervised discrete hashing. In CVPR,
pages 37–45, 2015.

[25] Isaac Triguero, Joaquín Derrac, Salvador Garcia, and
Francisco Herrera. A taxonomy and experimental
study on prototype generation for nearest neighbor
classification. Systems, Man, and Cybernetics, Part
C: Applications and Reviews, IEEE Transactions on,
42(1):86–100, 2012.

[26] Jun Wang, Sanjiv Kumar, and Shih-Fu Chang. Semi-
supervised hashing for scalable image retrieval. In
Computer Vision and Pattern Recognition (CVPR),
2010 IEEE Conference on, pages 3424–3431. IEEE,
2010.

[27] Kilian Q Weinberger and Lawrence K Saul. Distance
metric learning for large margin nearest neighbor clas-
sification. The Journal of Machine Learning Research,
10:207–244, 2009.

[28] Yair Weiss, Antonio Torralba, and Rob Fergus. Spec-
tral hashing. In NIPS, pages 1753–1760, 2009.

[29] Peter N Yianilos. Data structures and algorithms for
nearest neighbor search in general metric spaces. In
SODA, 1993.

[30] Felix Yu, Sanjiv Kumar, Yunchao Gong, and Shih-fu
Chang. Circulant binary embedding. In ICML, pages
946–954, 2014.

Fast Classification with Binary Prototypes

Appendix
A Proofs

We introduce some lemmata here, whose proofs can be
found in the following sections.
Lemma 6 (Approximation error between sign and tanh).
Under Assumption 1, w.p. 1− C1rθ

|f̃W∗,B∗(x)− fW∗,B∗(x)| ≤ 8re−2γθ

By taking θ = δ/(C1r), we have w.p., 1− δ

|f̃W∗,B∗(x)− fW∗,B∗(x)| ≤ 8re−2γδ/(C1r)

Lemma 7 (Lemma 2 in [12]). If W ∈ Rr×d is a random
matrix, whose entries are sampled from N (0, 1) i.i.d. and
‖x‖ = ‖x′‖ = 1, then w.p. 1− 2e−2ε2r,

|1
r
ρH(sign (Wx) , sign

(
Wx′

)
)− ρ(x,x′)| ≤ ε (18)

where ρ(·, ·) is the Euclidean distance.
Lemma 8 (Covering Spheres with Spheres. Corollary 1.2
in [5]). For any 0 < φ ≤ arccos(1√

d+1), a sphere Sd−1 can
be covered by

C2d
3/2

sind−1 φ
ln(d)

spherical balls of radius φ, where C2 is a global constant.

A.1 Proof of Proposition 1

Proof. We use Lemma 7 to prove this lemma. There are
mN data pairs {xi, cy,p} for i ∈ [N], y ∈ Y and p ∈ [my].
Then, w.p. 1− 2mNe−2ε2r, Eq. (18) holds for all the pairs.
Set 2mNe−2ε2r ≤ δ. Then if r ≥ log(2mN/δ)

2ε2 , for all i ∈ [N],
y ∈ Y and p ∈ [my], w.p. 1− δ,

|1
r
ρH(sign (Wxi) , sign (Wcy,p))− ρ(xi, cy,p)| ≤ ε. (19)

Setting ε = µ/4 and applying the second assumption com-
pletes the proof.

A.2 Proof of Theorem 1

First, by setting α = ν = 32N−
1

16d2 and ξ = O(N− 1
32d) for

large enough N such that ξ ≤ 1/2, Lemma 3 requires r ≥
Cd3/2 log d

2d N
1

16d and γ ≥ 16. Setting δ = N−
1

32d , Lemma 1
requires γ ≥ C1(d)N 3

32d for some constant C1(d) depending
on d. For Lemma 4, we set t = N−

1
32d . Finally, by setting

ξ = C2(d)N− 1
32d for some constant C2(d) depending d and

β, Eq. (13) in Lemma 2 and Eq. (15) in Lemma 3 will hold
for ε = N−

1
32d . By now we have shown that when N goes

to∞, the probabilities of Lemma 2 and Lemma 4 will go to
1 and the errors in the lemmata from Lemma 1 to Lemma 5
will go to zero. So we complete the proof.

A.3 Proof of Lemma 1

Proof.

|E[1[yfW∗,B∗(x) < 0]]− E[1[yf̃W∗,B∗(x) < 0]]|
=|E[1[yfW∗,B∗(x) < 0]− 1[yf̃W∗,B∗(x) < 0]]|

(20)

Note that fW∗,B∗(x) can only take values in {{−2r −
ν,−2r+1−ν, · · · ,−1−ν,−ν, 1−ν, · · · , 2r−ν}}. So if we can
show |fW∗,B∗(x) − f̃W∗,B∗(x)| ≤ ν

4 , then fW∗,B∗(x) and
f̃W∗,B∗(x) will have the same sign, and 1[yfW∗,B∗(x) <
0]− 1[yf̃W∗,B∗(x) < 0] = 0.

According to Lemma 6 with γ ≥ C1r
2δ log(32r

ν
), we have

|fW∗,B∗(x)− f̃W∗,B∗(x)| ≤ ν
4 , w.p. at least 1− δ.

Therefore, we obtain

|E[1[yfW∗,B∗(x) < 0]]− E[1[yf̃W∗,B∗(x) < 0]]| ≤ δ (21)

A.4 Proof of Lemma 2

Proof. We use the Rademacher complexity to bound this
quantity. First, let’s apply Theorem 3.1 in [20], given ε > 0,

P[sup
W,B

|E[Φ(yf̃W,B(x))]− Ê[Φ(yf̃W,B(x))]|

>RN (Φ ◦ FW,B) + ε] ≤ e−Nε
2/C3 ,

(22)

where FW,B is the collection of functions formed by f̃W,B
and RN is the conditional Rademacher average. Since
Φ is 1

αξ
-Lipschitz and f̃W,B is 2rγ-Lipschitz, by Lemma

5.2, Lemma 5.4 in [9] (f̃W,B can be scaled such that the
condition of Lemma 5.4 is satisfied) and the Talagrand’s
contraction lemma [17], we have

RN (Φ ◦ FW,B) ≤ 1
αξ
RN (FW,B)

≤ 1
αξ

inf
ε>0

(
ε+

√
2(32rγ

ε
)2d log(8/ε)
N

)

≤ 2(2d+3)/(2d+2)(32rγ)2d/(2d+2)

αξN1/2d+2

√
log(8/κ),

(23)
where κ = 21/(2d+2)(32rγ)2d/(2d+2)

αξN1/(2d+2) . As long as κ < 1
4 , we

have
√

log(8/κ) ≤ 1/
√
κ. Therefore, RN (Φ◦FW,B) ≤ 2

√
κ.

We finish the proof by setting 2
√
κ ≤ ε.

A.5 Proof of Lemma 3

Proof. We decompose

Ê[Φ(yf̃W∗,B∗(x))]− Êβ [Φ(yf∗2α(x))] (24a)

=Ê[Φ(yf̃W∗,B∗(x))]− Ê[Φ(yf̃W̃ ,B̃(x))] (24b)

+ Ê[Φ(yf̃W̃ ,B̃)]− Êβ [Φ(yf̃W̃ ,B̃)] (24c)

+ Êβ [Φ(yf̃W̃ ,B̃)]− Êβ [Φ(yf∗2α(x))] (24d)

where W̃ , B̃ will be defined later.

Kai Zhong†, Ruiqi Guo‡, Sanjiv Kumar‡, Bowei Yan†, David Simcha‡, Inderjit S. Dhillon†

Eq. (24b) is less than zero because of the definition of
W ∗, B∗.

Eq. (24c) can be further decomposed into

Ê[Φ(yf̃W̃ ,B̃)]− Êβ [Φ(yf̃W̃ ,B̃)] (25a)

=Ê[Φ(yf̃W̃ ,B̃)]− E[Φ(yf̃W̃ ,B̃)] (25b)

+ E[Φ(yf̃W̃ ,B̃)]− Êβ [Φ(yf̃W̃ ,B̃)] (25c)

Since Lemma 2 holds for any W,B, if Eq. (13) holds, w.p.
1− e−Nε

2/C3 ,

|Ê[Φ(yf̃W̃ ,B̃)]− E[Φ(yf̃W̃ ,B̃)]| ≤ 2ε,

For the second term, we need to slightly modify this bound
as we have βN data points rather than N . It can be
presented as, if ε satisfies

21+1/(4d+4)(32rγ)d/(2d+2)
√
αξ(βN)1/(4d+4)

< ε < 1, (26)

we have w.p. 1− e−βNε
2/C3

|E[Φ(yf̃W̃ ,B̃(x))]− Êβ [Φ(yf̂W̃ ,B̃(x))]| ≤ 2ε, (27)

where C3 is a constant. So now we can bound Eq. (24c) by
4ε w.p. 1− 2e−βNε

2/C3 given that Eq. (15) holds for ε.

Next we show that given the conditions in the lemma,
Eq. (24d) will be less than zero. Define S̃ ⊂ Ωβ ,

S̃ := {xi ∈ Ωβ |yif∗2α(xi) ≥ α(1− ξ)}.

Then

Êβ [Φ(yf∗2α(x))] = 1
|Ωβ |

∑
i∈Ωβ

Φ(yif∗2α(xi))

≥ 1
|Ωβ |

∑
i∈Ωβ

1[yif∗2α(xi) < α(1− ξ)]

= 1
|Ωβ |

∑
i∈Ωβ

(1− 1[yif∗2α(xi) ≥ α(1− ξ)])

≥1− |S̃|
βN

(28)
By the definition of Φ, we also have

Êβ [Φ(yf̃W̃ ,B̃(x))] ≤ Êβ [1[yf̃W̃ ,B̃(x) < α]] (29)

So in the following we will show that under the condition
given in the lemma, there exists a pair of W̃ and B̃ such
that

Êβ [1[yf̂W̃ ,B̃(x) < α]] ≤ 1− |S̃|
βN

(30)

Define

S̃+ := {xi ∈ S̃|yi = 1, f2α(xi) ≥ α(1− ξ)}

and

S̃− := {xi ∈ S̃|yi = −1, f2α(xi) ≤ −α(1− ξ)}.

Therefore, S̃ = S̃+ ∪ S̃−. Now given any xi ∈ S̃+ and
xj ∈ S̃−, f∗2α ∈ F2 implies

‖xi − xj‖ ≥ |f2α(xi)− f2α(xj)|/2 ≥ α(1− ξ).

For some small τ > 0, set r = C2d
3/2 log(d)/τd−1. Ac-

cording to Lemma 8, the sphere Sd−1 can be covered
by r spherical balls with radius arcsin τ . Let {wk}k∈[r]
be the centers of these spherical balls. Then for any
xi ∈ Sd−1, there exists a wk, such that ‖wk − xi‖ ≤ 2τ .
Set W̃ = [w1,w2, · · · ,wK]T

Let B̃ = sign
(
W̃ S̃

)
, i.e., B̃ = {sign

(
W̃x

)
|x ∈ S̃} and the

labels of B̃ follows the corresponding x. Note that the
size of B̃ is less than βN , but is in order of O(βN), so for
simplicity, we set m = βN . Let B̃+ = sign

(
W̃ S̃+) and

B̃− = sign
(
W̃ S̃−

)
.

Êβ [1[yf̂W̃ ,B̃(x) < α]]

= 1
|Ωβ |

∑
i∈Ωβ

1[yif̃W̃ ,B̃(xi) < α]

≤1− |S̃|
βN

+ 1
βN

∑
xi∈S̃

1[yif̃W̃ ,B̃(xi) < α]

(31)

We are now going to show yif̃W̃ ,B̃(xi) ≥ α holds for all
xi ∈ S̃. We now just consider the case when yi = 1 and
the case for yi = −1 is similar. For xi ∈ S̃+.

f̃W̃ ,B̃(xi)

= max
j∈B̃+

(
tanh(γW̃xi)T bj

)
−max
j∈B̃−

(
tanh(γW̃xi)T bj

)
− ν

≥ tanh(γW̃xi)T sign
(
W̃xi

)
− tanh(γW̃xi)T sign

(
W̃xj∗−

)
− ν

≥ tanh(γW̃xi)T
(
sign

(
W̃xi

)
− sign

(
W̃xj∗−

))
− ν

(32)
where j∗− = arg maxj∈B̃−

(
tanh(γW̃xi)T bj

)
. For any k ∈

[r], we have

tanh(γwT
k xi)

(
sign

(
wT
k xi
)
− sign

(
wT
k xj∗−

))
≥ 0

Let

k∗ = arg min
k∈[r]

{
‖wk −

xi − xj∗−
‖xi − xj∗−‖

‖

}
.

Then

wT
k∗xi =xTi (wk∗ −

xi − xj∗−
‖xi − xj∗−‖

) + xTi
xi − xj∗−
‖xi − xj∗−‖

≥ 1
2‖xi − xj∗−‖ − 2τ ≥ α(1− ξ)

2 − 2τ.

And

wT
k∗xj∗− =xTj∗−

(wk∗ −
xi − xj∗−
‖xi − xj∗−‖

) + xTj∗−

xi − xj∗−
‖xi − xj∗−‖

≤ −1
2‖xi − xj∗−‖+ 2τ ≤ −α(1− ξ)

2 + 2τ.

Fast Classification with Binary Prototypes

By setting τ = α(1−ξ)
8 , we see that

tanh(γwT
k∗xi)

(
sign

(
wT
k∗xi

)
− sign

(
wT
k∗xj∗−

))
≥ γα(1− ξ)

4

Therefore, as long as γ ≥ 4(ν+α)
α(1−ξ) , we have 1[yif̃W̃ ,B̃(xi) <

α] = 0 for all xi ∈ S̃, and Eq. (30) holds.

Finally by combining Eq. (28), Eq. (29) and Eq. (30), we
have Eq. (24d) ≤ 0. This completes the proof.

A.6 Proof of Lemma 4

Proof. Since f∗2α is independent of xi and 0 ≤ Φ ≤ 1, by
Hoeffding bound, w.p. 1− 2e−2βNt2

|Ê[Φ(yf∗2α(x))]− E[Φ(yf∗2α(x))]| ≤ t (33)

A.7 Proof of Lemma 6

Proof.

|f̃W∗,B∗(x)− fW∗,B∗(x)|

≤ max
j∈B−

(
| tanh(γW ∗x)T b∗j − sign (W ∗x)T b∗j |

)
+ max
j∈B+

(
| tanh(γW ∗x)T b∗j − sign (W ∗x)T b∗j |

)
≤2 max

j∈B

(
| tanh(γW ∗x)T b∗j − sign (W ∗x)T b∗j |

)
≤4rmax

k∈[r]
| tanh(γw∗Tk x)− sign

(
w∗Tk x

)
|

Given Assumption 1, we have w.p. at least 1 − c1rθ,
|w∗Tk x| ≥ θ for all k ∈ [r] and

| tanh(γw∗Tk x)− sign
(
w∗Tk x

)
| ≤ 2e−2γθ

	Introduction
	Binary Neighbor Compression (BNC)
	Algorithm
	Initialization
	Phase 1: Learn linear transformation and relaxed binary prototypes
	Phase 2: Learn linear transformation with binary prototypes fixed

	Consistency Analysis
	Experimental Results
	Performance from Different Phases
	Different Number of Prototypes
	Illustration of Prototypes

	Conclusion and Future work
	Proofs
	Proof of Proposition 1
	Proof of Theorem 1
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Lemma 6

