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Abstract. This paper discusses a new class of matrix nearness problems that measure approx-
imation error using a directed distance measure called a Bregman divergence. Bregman divergences
offer an important generalization of the squared Frobenius norm and relative entropy, and they all
share fundamental geometric properties. In addition, these divergences are intimately connected
with exponential families of probability distributions. Therefore, it is natural to study matrix ap-
proximation problems with respect to Bregman divergences. This article proposes a framework for
studying these problems, discusses some specific matrix nearness problems, and provides algorithms
for solving them numerically. These algorithms apply to many classical and novel problems, and
they admit a striking geometric interpretation.
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1. Introduction. A recurring problem in matrix theory is to find a structured
matrix that best approximates a given matrix with respect to some distance measure.
For example, it may be known a priori that a certain constraint ought to hold, and
yet it fails on account of measurement errors or numerical roundoff. An attractive
remedy is to replace the tainted matrix by the nearest matrix that does satisfy the
constraint. Matrix approximation problems typically measure the distance between
matrices with a norm. The Frobenius and spectral norms are pervasive choices because
they are so analytically tractable. Nevertheless, these norms are not always defensible
in applications, where it may be wiser to tailor the distance measure to the context.

In this paper, we discuss a new class of matrix nearness problems that use a
directed distance measure called a Bregman divergence. Given a differentiable, strictly
convex function ϕ that maps matrices to the extended real numbers, we define the
Bregman divergence of the matrix X from the matrix Y as

Dϕ(X;Y )
def
= ϕ(X) − ϕ(Y ) − 〈∇ϕ(Y ),X − Y 〉 ,

where the inner product 〈X,Y 〉 = Re TrXY ∗. The two principal examples of Breg-
man divergences deserve immediate mention. When ϕ(X) = 1

2‖X‖2
F , the associated

divergence is the squared Frobenius norm 1
2‖X − Y ‖2

F . When ϕ is the negative
Shannon entropy, we obtain the Kullback–Leibler divergence, which is also known as
relative entropy. But these two cases are just the tip of the iceberg.

Bregman divergences are well suited for nearness problems because they share
many geometric properties with the squared Frobenius norm. They also exhibit an
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intimate relationship with exponential families of probability distributions, which rec-
ommends them for solving problems that arise in the statistical analysis of data. We
will elaborate on these connections in what follows.

Let us begin with a formal statement of the Bregman nearness problem. Suppose
that Dϕ is a Bregman divergence, and suppose that {Ck} is a finite collection of
closed, convex sets whose intersection is nonempty. Given an input matrix Y , our
goal is to produce a matrix X in the intersection that diverges the least from Y , i.e.,
to solve

(1.1) min
X

Dϕ(X;Y ) subject to X ∈
⋂

k
Ck.

Under mild conditions, the solution to (1.1) is unique, and it has a variational char-
acterization analogous with the characterization of an orthogonal projection onto a
convex set [10]. Minimization with respect to the second argument of the divergence
enjoys rather less structure, so we refer the reader to [5] for more details. A major
advantage of our problem formulation is that it admits a natural algorithm. If one
possesses a method for minimizing the divergence over each of the constraint sets,
then it is possible to solve (1.1) by minimizing over each constraint in turn while in-
troducing a series of simple corrections. Several classical algorithms from the matrix
literature fit into this geometric framework, but it also provides an approach to many
novel problems.

We view this paper as an expository work with two central goals. First, it in-
troduces Bregman divergences to the matrix theory literature, and it argues that
they provide an important and natural class of distance measures for matrix nearness
problems. Moreover, the article unifies a large class of problems into a geometrical
framework, and it shows that these problems can be solved with a set of classical
algorithms. Second, the paper provides specific examples of nearness problems with
respect to Bregman divergences. One example is the familiar problem of producing
the nearest contingency table with fixed marginals. Novel examples include comput-
ing matrix approximations using the minimum Bregman information (MBI) principle,
identifying the metric graph nearest to an arbitrary graph, and determining the near-
est correlation and kernel matrix with respect to matrix divergences, such as the von
Neumann divergence. These applications show how Bregman divergences can be used
to preserve and exploit additional structure that appears in a problem.

We must warn the reader that, in spite of the availability of some general purpose
algorithms for working with Bregman divergences, they may require a substantial
amount of computational effort. One basic reason is that nearness problems with
respect to the Frobenius norm usually remain within the domain of linear algebra,
which is a developed technology. Bregman divergences, on the other hand, transport
us to the world of convex optimization, which is a rougher frontier. As outlined in
section 8, there remain many unresolved research issues on the computational aspects
of Bregman divergences.

Here is a brief outline of the article. Section 2 introduces Bregman divergences and
Bregman projections along with their connection to exponential families of probability
distributions. Matrix Bregman divergences that depend on the spectral properties
of a matrix are covered in subsection 2.6. Section 3 discusses numerical methods
for the basic problem of minimizing a Bregman divergence over a hyperplane. In
section 4, we develop the successive projection algorithm for solving the Bregman
nearness problem subject to affine constraints. Section 5 gives several examples of
these problems: finding the nearest contingency table with fixed marginals, computing
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1122 INDERJIT S. DHILLON AND JOEL A. TROPP

matrix approximations for data analysis, and determining the nearest correlation
matrix with respect to the von Neumann divergence. Section 6 presents the successive
projection–correction algorithm for solving the Bregman nearness problem subject to
a polyhedral constraint. In section 7 we discuss two matrix nearness problems with
nonaffine constraints: finding the nearest metric graph and learning a kernel matrix
for data mining and machine learning applications.

2. Bregman divergences and Bregman projections. This section develops
the directed distance functions that were first studied by Bregman [8]. Our primary
source is the superb article of Bauschke and Borwein [4], which studies a subclass
of Bregman divergences that exhibits many desirable properties in connection with
nearness problems like (1.1).

2.1. Convex analysis. The literature on Bregman divergences involves a sig-
nificant amount of convex analysis. Some standard references for this material are
[35, 20]. We review some of these ideas in an effort to make this article accessible to
readers who are less familiar with this field.

We will work in a finite-dimensional, real inner-product space X . The real-linear
inner product is denoted by 〈·, ·〉 and the induced norm by ‖·‖2. In general, the
elements of X will be expressed with lowercase bold italic letters such as x and y.
We will switch to capitals, such as X and Y , when it is important to view the elements
of X as matrices.

A convex set is a subset C of X that exhibits the property

sx + (1 − s)y ∈ C for all s ∈ (0, 1) and x,y ∈ C.

In words, the line segment connecting each pair of points in a convex set falls within
the set. The relative interior of a convex set, abbreviated ri, is the interior of that
set considered as a subset of the lowest-dimensional affine space that contains it.

In convex analysis, functions are defined on all of X , and they take values in the
extended real numbers, R ∪ {±∞}. The (effective) domain of a function f is the set

dom f
def
= {x ∈ X : f(x) < +∞}.

A function f is convex if its domain is convex and it verifies the inequality

f(sx + (1 − s)y) ≤ s f(x) + (1 − s) f(y) for all s ∈ (0, 1) and x,y ∈ dom f .

If the inequality is strict, then f is strictly convex. In words, the chord connecting
each pair of points on the graph of a (strictly) convex function lies (strictly) above the
graph. A convex function is proper if it takes at least one finite value and never takes
the value −∞. A convex function f is closed if its lower level set {x : f(x) ≤ α} is
closed for each real α. In particular, a convex function is closed whenever its domain
is closed (but not conversely).

For completeness, we also introduce some technical definitions that the casual
reader may prefer to glide through. A proper convex function f is called essentially
smooth if it is everywhere differentiable on the (nonempty) interior of its domain and
if ‖∇f(xt)‖ tends to infinity for every sequence {xt} from ri(dom f) that converges to
a point on the boundary of dom f . Roughly speaking, an essentially smooth function
cannot be extended to a convex function with a larger domain. The function f(x) =
− log(x) with domain (0,+∞) is an example of an essentially smooth function. In
what follows, we will focus on convex functions of Legendre type. A Legendre function
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is a closed, proper, convex function that is essentially smooth and also strictly convex
on the relative interior of its domain.

Every convex function has a dual representation in terms of its supporting hyper-
planes. This idea is formalized in the Fenchel conjugate, which is defined as

f∗(θ)
def
= supx

{
〈x,θ〉 − f(x)

}
.

No confusion should arise from our usage of the symbol ∗ for complex-conjugate
transposition as well as Fenchel conjugation. The following facts are valuable. The
conjugate of a convex function is always closed and convex. If f is a closed, convex
function, then (f∗)∗ = f . A convex function has Legendre type if and only if its
conjugate has Legendre type.

Finally, we say that a convex function f is cofinite when

lim
ξ→∞

f(ξ x)/ξ = +∞ for all nonzero x in X .

This definition means that a cofinite function grows superlinearly in every direction.
For example, the function ‖·‖2

2 is cofinite, but the function exp(·) is not. It can be
shown that a closed, proper, convex function f is cofinite if and only if dom f∗ = X .

2.2. Divergences. Suppose that ϕ is a convex function of Legendre type. From
every such seed function, we may construct a Bregman divergence1

Dϕ : domϕ× ri(domϕ) → [0,+∞)

via the rule

Dϕ(x;y)
def
= ϕ(x) − ϕ(y) − 〈∇ϕ(y),x− y〉 .

Geometrically, the divergence calculates how much the supporting hyperplane to ϕ at
y underestimates the value of ϕ(x). For an illustration, see Figure 2.1. A Bregman
divergence equals zero whenever x = y, and it is positive otherwise. It is strictly
convex in its first argument, and it is jointly continuous in both arguments.

As a first example, consider the seed function ϕ(x) = 1
2 ‖x‖

2
2, which is a Legendre

function on all of X . The associated divergence is

Dϕ(x;y) = 1
2 ‖x− y‖2

2 .

We will refer to this function as the Euclidean divergence. Observe that it is symmetric
in its two arguments, but it does not satisfy the triangle inequality.

Another basic example arises from the negative Shannon entropy,

ϕ(x) =
∑

n
xn log xn − xn,

where we place the convention that 0 log 0 = 0. This entropy is a Legendre function
on the nonnegative orthant, and it yields the divergence

(2.1) Dϕ(x;y) =
∑

n

[
xn log

xn

yn
− xn + yn

]
,

1It is also possible to define Bregman divergences with respect to any differentiable, strictly
convex function. These divergences are not necessarily well behaved.
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y x

ϕ(z)= 1
2 zT z

h(z)

Dϕ(x,y)= 1
2‖x−y‖2

Fig. 2.1. An example of a Bregman divergence is the squared Euclidean distance. The Bregman
divergence Dϕ(x; y) calculates how much the supporting hyperplane to ϕ at y underestimates the
value of ϕ(x).

which is variously called the relative entropy, the information divergence, or the gen-
eralized Kullback–Leibler divergence. This divergence is not symmetric, and it does
not satisfy the triangle inequality.

Bregman divergences are often referred to as Bregman distances, but this termi-
nology is misleading. A Bregman divergence should not be viewed as a generalization
of a metric but rather as a generalization of the preceding two examples. Like a met-
ric, every Bregman divergence is positive except when its arguments coincide. On the
other hand, divergences do not generally satisfy the triangle inequality, and they are
symmetric only when the seed function ϕ is quadratic. In compensation, divergences
exhibit other structural properties. For every three points in the interior of domϕ,
we have the relation

Dϕ(x;z) = Dϕ(x;y) + Dϕ(y;z) − 〈∇ϕ(z) −∇ϕ(y),x− y〉 .

When Dϕ is the Euclidean divergence, one may identify this formula as the law of
cosines. Later, we will also encounter a Pythagorean theorem.

We also note another expression for the divergence, which emphasizes that it is a
sort of locally quadratic distance measure,

Dϕ(x;y) = (x− y)∗
{
∇2ϕ(ξ)

}
(x− y),

where ξ is an unknown vector that depends on x and y. This formula can be obtained
from the Taylor expansion of the seed function with an exact remainder term.

2.3. Exponential families. Suppose that ψ is a Legendre function. A (full)
regular exponential family is a parameterized family of probability distributions on
X with density function (with respect to the Lebesgue measure on X ) of the form

pψ(x |θ) = exp{〈x,θ〉 − ψ(θ) − h(x)},

where the parameter θ is drawn from the open set domψ [3]. The function ψ is called
the cumulant function of the exponential family, and it completely determines the
function h. The expectation of the distribution pψ( · |θ) is the vector

μ(θ)
def
=

∫
X

x pψ(x |θ) dx,
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where dx denotes the Lebesgue measure on X . Many common probability distribu-
tions belong to exponential families. Prominent examples include Gaussian, Poisson,
Bernoulli, and gamma distributions.

It has recently been established that there is a unique Bregman divergence that
corresponds to every regular exponential family.

Theorem 1 (Banerjee et al. [2]). Suppose that ϕ and ψ are conjugate Legendre
functions. Let Dϕ be the Bregman divergence associated with ϕ, and let pψ( · |θ) be a
member of the regular exponential family with cumulant function ψ. Then

pψ(x |θ) = exp{−Dϕ(x;μ(θ))} gϕ(x),

where gϕ is a function uniquely determined by ϕ.
The spherical Gaussian distribution provides an especially interesting example of

this relationship [2]. Suppose that μ is an arbitrary vector in X , and let σ2 be a fixed
positive number. The spherical Gaussian distributions with mean μ and variance
σ2 form an exponential family with parameter θ = μ/σ2 and cumulant function

ψ(θ) = σ2

2 ‖θ‖2
2. The Fenchel conjugate of the cumulant function is ϕ(x) = 1

2σ2 ‖x‖2
2,

and so the Bregman divergence that appears in the bijection theorem is

Dϕ(x;μ) =
1

2σ2
‖x− μ‖2

2 .

We see that the density of the distribution at a point x depends essentially on the
Bregman divergence of x from the mean vector μ. This observation reinforces the in-
tuition that the squared Euclidean norm enjoys a profound relationship with Gaussian
random variables.

2.4. Bregman projections. Suppose that ϕ is a convex function of Legendre
type, and let C be a closed, convex set that intersects ri(domϕ). Given a point y
from ri(domϕ), we may pose the minimization problem

(2.2) min
x

Dϕ(x;y) subject to x ∈ C ∩ ri(domϕ).

Since Dϕ( · ;y) is strictly convex, it follows from a standard argument that there exists
at most one minimizer. It can be shown that, when ϕ is a Legendre function, there
exists at least one minimizer [4, Theorem 3.12]. Therefore, the problem (2.2) has a
single solution, which is called the Bregman projection of y onto C with respect to
the divergence Dϕ. Denote this solution by PC(y), and observe that we have defined
a map

PC : ri(domϕ) → C ∩ ri(domϕ).

It is evident that PC acts as the identity on C ∩ ri(domϕ), and it can be shown that
PC is continuous.

There is also a variational characterization of the Bregman projection of a point
y from ri(domϕ) onto the set C,

(2.3) Dϕ(x;y) ≥ Dϕ(x;PC(y)) + Dϕ(PC(y);y) for every x ∈ C ∩ domϕ.

Conversely, suppose we replace PC(y) with an arbitrary point z from C ∩ ri(domϕ)
that verifies the inequality. Then z must indeed be the Bregman projection of y onto
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C. When the constraint C is an affine space (i.e., a translated subspace), then the
Bregman projection of y onto C has a formally stronger characterization,

(2.4) Dϕ(x;y) = Dϕ(x;PC(y)) + Dϕ(PC(y);y) for every x ∈ C ∩ domϕ.

When the Bregman divergence is the Euclidean divergence, formula (2.3) reduces to
the criterion for identifying the orthogonal projection onto a convex set [14, Chap-
ter 4], while formula (2.4) is usually referred to as the Pythagorean theorem. These
facts justify the assertion that Bregman projections generalize orthogonal projections.

When the constraint set C and the Bregman divergence are simple enough, it may
be possible to determine the Bregman projection onto C analytically. For example,
let us define the hyperplane C = {x : 〈a,x〉 = α}. When ‖a‖2 = 1, the projection of
y onto C with respect to the Euclidean divergence is

(2.5) PC(y) = y − (〈a,y〉 − α)a.

As a second example, suppose that C contains a strictly positive vector and that y is
strictly positive. Using Lagrange multipliers, we check that the projection of y onto
C with respect to the relative entropy has components

(2.6) (PC(y))n = yn exp{ξ an}, where ξ is chosen so that PC(y) ∈ C.

In the case when all the components of a are identical (to one, without loss of gener-
ality), then ξ = logα− log

∑
n yn.

It is uncommon that a Bregman projection can be explicitly determined. In sec-
tion 3, we describe numerical methods for computing the Bregman projection onto
a hyperplane, which is the foundation for producing Bregman projections onto more
complicated sets. For another example of a projection that can be computed analyt-
ically, turn to the end of subsection 3.3.

2.5. A cornucopia of divergences. In this subsection, we will present some
important Bregman divergences. The separable divergences form the most fundamen-
tal class. A separable divergence arises from a seed function of the form

ϕ(x) =
∑

n
wn ϕn(xn) for positive weights wn.

If each ϕn is Legendre, then the weighted sum is also Legendre. In the most common
situation, the weights are constant and all the ϕn are identical. In Table 2.1 we
list some important Legendre functions on R that may be used to build separable
divergences. These examples are adapted from [4] and [2]. Several of the divergences
in Table 2.1 have names. We have already discussed the Euclidean divergence and
the relative entropy. The bit entropy leads to a type of logistic loss, and the Burg
entropy leads to the Itakura–Saito divergence.

Many of these univariate divergences are connected with well-known exponential
families of probability distributions on R. See Table 2.2 for some key examples drawn
from [2].

One fundamental divergence is genuinely multidimensional. Suppose that Q is a
positive-definite operator that acts on X . We may construct a quadratic divergence
on X from the seed function ϕ(x) = 1

2 〈Qx,x〉, resulting in

Dϕ(x;y) = 1
2 〈Q (x− y),x− y〉 .
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This divergence is connected to the exponential family of multivariate Gaussian dis-
tributions with covariance matrix Q−1. In the latter context, the square root of this
divergence is often referred to as the Mahalanobis distance in statistics [29]. Other
multidimensional examples arise when we compose the Euclidean norm with another

function. For instance, one might consider the convex function ϕ(x) = −
√

1 − ‖x‖2
2

defined on the Euclidean unit ball. It yields the Hellinger-like divergence

Dϕ(x;y) =
1 − 〈x,y〉√

1 − ‖y‖2
2

−
√

1 − ‖x‖2
2.

2.6. Matrix divergences. Hermitian matrices admit a rich variety of diver-
gences that were first studied in [4] using the methods of Lewis [27]. Let H be
the space of N × N Hermitian matrices equipped with the real-linear inner product
〈X,Y 〉 = Re TrXY ∗. Define the function λ : H → R

N that maps a Hermitian ma-
trix to the vector listing its eigenvalues in algebraically decreasing order. Let ϕ be a
closed, proper, convex function on R

N that is invariant under coordinate permutation.
That is, ϕ(x) = ϕ(Px) for every permutation matrix P .

By composing ϕ with the eigenvalue map, we induce a real-valued function on
Hermitian matrices. As the following theorem elaborates, the induced map has the
same convexity properties as the function ϕ. Therefore, the induced map can be
used as a seed function to define a Bregman divergence on the space of Hermitian
matrices.

Theorem 2 (Lewis [27, 26]). The induced map ϕ◦λ has the following properties:

1. If ϕ is closed and convex, then the induced map is closed and convex.
2. The domain of ϕ ◦ λ is the inverse image under λ of domϕ.
3. The conjugate of the induced map satisfies the relation (ϕ ◦ λ)∗ = ϕ∗ ◦ λ.
4. The induced map is differentiable at X if and only if ϕ is differentiable at

λ(X). If X has eigenvalue decomposition U {diagλ(X)}U∗, then

∇(ϕ ◦ λ)(X) = U {diag∇ϕ(λ(X))}U∗.

In fact, this formula holds even if ϕ is not convex.
5. The induced map is Legendre if and only if ϕ is Legendre.

Related results hold for the singular value map, provided that ϕ is also absolutely
invariant. That is, ϕ(x) = ϕ(|x|) for all x in R

N , where |·| is the componentwise
absolute value.

Unitarily invariant matrix norms provide the most basic examples of induced
maps. Indeed, item 3 of the last theorem generalizes von Neumann’s famous result
about dual norms of unitarily invariant prenorms [21, 438ff.].

An exquisite example of a matrix divergence arises from ϕ(x) = −
∑

n log xn.
The induced map is (ϕ ◦ λ)(X) = − log detX, whose domain is the positive-definite
cone. Since ∇(ϕ ◦ λ)(X) = −X−1, the resulting divergence is

(2.7) D�d(X;Y ) =
〈
X,Y −1

〉
− log detXY −1 −N.

Intriguingly, certain projections with respect to this divergence can be computed
analytically. See subsection 3.3 for details.
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Another important example arises from the negative Shannon entropy ϕ(x) =∑
n xn log xn − xn. The induced map is (ϕ ◦ λ)(X) = Tr (X logX − X), whose

domain is the positive-semidefinite cone. This matrix function arises in quantum
mechanics, where it is referred to as the von Neumann entropy [31]. It yields the
divergence

(2.8) DvN(X;Y ) = Tr [X(logX − logY ) −X + Y ],

which we will call the von Neumann divergence. In the quantum mechanics literature,
this divergence is referred to as the quantum relative entropy [31]. This formula does
not literally hold if either matrix is singular, but a limit argument shows that the
divergence is finite precisely when the null space of X contains the null space of Y .

When the seed function ϕ is separable, matrix divergences can be expressed in
a way that emphasizes the distinct roles of the eigenvalues and eigenvectors. In
particular, take ϕ(x) =

∑
n ϕ(xn) and assume that X has eigenpairs (um, μm) and

that Y has eigenpairs (vn, νn). Then

Dϕ◦λ(X;Y ) =
∑

m,n
|〈um,vn〉|2 [ϕ(μm) − ϕ(νn) − ϕ′(νn)(μm − νn)]

=
∑

m,n
|〈um,vn〉|2Dϕ(μm; νn).

In words, the matrix divergence adds up the scalar divergences between pairs of
eigenvalues, weighted by the squared cosine of the angle between the corresponding
eigenvectors.

3. Computing Bregman projections. It is not straightforward to compute
the Bregman projection onto a general convex set. Unless additional structure is
present, the best approach may be to apply standard convex optimization techniques.
In this section, we discuss how to develop numerical methods for the basic problem
of projecting onto a hyperplane or a halfspace. As we will see in sections 4 and 6, the
projection onto an intersection of convex sets can be broken down into a sequence of
projections onto the individual sets. Combining the two techniques, we can find the
projection onto any affine space or polyhedral convex set.

3.1. Projection onto a hyperplane. There is an efficient way to compute
the Bregman projection onto a hyperplane. The key idea is to dualize the Bregman
projection problem to obtain a nice one-dimensional problem. This approach can also
be extended to produce the projection onto a halfspace because the convexity of the
divergence implies that the projection lies on the boundary whenever the initial point
is outside the halfspace.

We must solve the following convex program:

(3.1) min
x

Dϕ(x;y) subject to 〈a,x〉 = α.

To ensure that this problem is well posed, we assume that ri(domϕ) contains a feasible
point. A necessary and sufficient condition on the solution x� of (3.1) is that the
equation

∇xDϕ(x;y) = ξ∇x (〈a,x〉 − α)

hold for a (unique) Lagrange multiplier ξ ∈ R. The gradient of the divergence is
∇ϕ(x) −∇ϕ(y), resulting in the equation

∇ϕ(x�) = ξa + ∇ϕ(y).
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The gradient of a Legendre function ϕ is a bijection from domϕ to domϕ∗, and its
inverse is the gradient of the conjugate [35, Thm. 26.5]. Thus we obtain an explicit
expression for the Bregman projection as a function of the unknown multiplier:

(3.2) x� = ∇ϕ∗(ξa + ∇ϕ(y)).

Form the inner product with a and enforce the constraint to reach

(3.3) 〈∇ϕ∗(ξa + ∇ϕ(y)),a〉 − α = 0.

Now, the left-hand side of this equation is the derivative of the strictly convex, uni-
variate function

(3.4) J(ξ) = ϕ∗(ξa + ∇ϕ(y)) − αξ.

There is an implicit constraint that the argument of ϕ∗ must lie within its domain. In
view of (3.3), it becomes clear that the Lagrange multiplier is the unique minimizer
of J . That is,

ξ� = arg minξ J(ξ).

Once we have determined the Lagrange multiplier, we introduce it into (3.2) to obtain
the Bregman projection.

The best numerical method for minimizing J depends strongly on the choice of
the seed function ϕ. In some cases, the derivative(s) of J may be difficult to evaluate.
The second derivative may even fail to exist. To that end, we offer several observations
that may be valuable.

1. The domain of J contains a neighborhood of zero since J(0) = 〈y,∇ϕ(y)〉 −
ϕ(y).

2. Since ϕ∗ is a Legendre function, the first derivative of J always exists. As
shown in (3.3),

J ′(ξ) = 〈∇ϕ∗(ξa + ∇ϕ(y)),a〉 − α.

3. When the Hessian of ϕ∗ exists, we have

J ′′(ξ) = a∗ {∇2ϕ∗(ξa + ∇ϕ(y))
}
a.

4. When the seed function ϕ is separable, the Hessian ∇2ϕ∗ is diagonal.
The next two subsections provide examples that illustrate some of the issues involved
in optimizing J .

3.2. Example: Relative entropy. Suppose that we wish to produce the Breg-
man projection of a nonnegative vector y onto the hyperplane C = {x : 〈a,x〉 = α}
with respect to the relative entropy. This divergence arises from the seed function
ϕ(x) =

∑
n xn log xn − xn, whose conjugate is ϕ∗(θ) =

∑
n exp(θn). To identify the

Lagrange multiplier, we must minimize

J(ξ) =
∑

n
yn exp(ξan) − αξ,

whose derivatives are

J ′(ξ) =
∑

n
anyn exp(ξan) − α,

J ′′(ξ) =
∑

n
a2
nyn exp(ξan).
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These functions are all simple to evaluate, so it is best to use the Newton method
preceded by a bracketing phase [32]. Once we have found the minimizer ξ�, the
Bregman projection is

PC(y) = y · exp(ξ�a),

where · represents the Hadamard product and the exponential is performed compo-
nentwise.

3.3. Example: Log-determinant divergence. Here is a more sophisticated
example that involves the log-determinant divergence. The divergence arises from
the seed function ϕ(X) = − log det(X), whose domain is the positive-definite cone
and whose gradient is ∇ϕ(X) = −X−1. The conjugate function ϕ∗(Θ) = N −
log det(−Θ), whose domain is the negative-definite cone and whose gradient satisfies
∇ϕ∗(Θ) = −Θ−1.

Suppose we need to project the positive-definite matrix Y onto the hyperplane

C = {X : 〈A,X〉 = α}, where A = A∗.

We must minimize

J(ξ) = N − log det(Y −1 − ξA) − αξ,

while ensuring that Y −1 − ξA is positive definite.
Let Y = LL∗, and abbreviate W = L∗AL, which is singular whenever A is rank

deficient. Then the derivatives of J can be expressed as

J ′(ξ) = Tr (W (I − ξW )−1) − α,

J ′′(ξ) = Tr (
(
W (I − ξW )−1

)2
).

In general, J and its derivatives are all costly. It appears that the most efficient way
to calculate them for multiple values of the scalar ξ is to preprocess W to extract its
eigenvalues {λn}. It follows that

J ′(ξ) =

(∑
n

λn

1 − λnξ

)
− α,

J ′′(ξ) =
∑

n

(
λn

1 − λnξ

)2

.

It is worth cautioning that domJ = {ξ : ξ < 1/maxn λn} since the matrix I − ξW
must remain positive definite.

Once again, we see that a guarded or damped Newton method is the best way to
optimize J . Given the solution ξ�, the Bregman projection is

PC(Y ) = L(I − ξ�W )−1L∗.

We can reuse the eigenvalue decomposition to accelerate this final computation.
As shown in [25], these calculations simplify massively when the constraint matrix

has rank one: A = aa∗. In this case, we can find the zero of J ′ analytically because
a∗Y a is the only nonzero eigenvalue of W . Then the Sherman–Morrison formula
delivers an explicit expression for the projection:

PC(Y ) = Y +
a∗Y a− α

(a∗Y a)2
(Y a)(Y a)∗.

The cost of performing the projection totals O(N2).
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4. The successive projection algorithm for affine constraints. Now we
describe an algorithm for solving (1.1) in the special case that the constraint sets are
all affine spaces. In the next section, we will present some concrete problems to which
this algorithm applies. The case of general convex constraint sets will be addressed
afterward. We frame the following hypotheses.

Assumption A.1

The divergence: ϕ is a convex function of Legendre type

domϕ∗ is an open set

The constraints: C1, C2, . . . , CK are affine spaces with intersection C

Constraint qualification: C ∩ ri(domϕ) is nonempty

Note that, by the results of subsection 2.3, all Bregman divergences that arise
from regular exponential families satisfy Assumption A.1.

Given an input y0 from ri(domϕ), we seek the Bregman projection of y0 onto
the intersection C of the affine constraints. In general, it may be difficult to produce
PC(y0). Nevertheless, if the basic sets C1, . . . , CK are chosen well, it may be relatively
straightforward to calculate the Bregman projection onto each basic set. This heuristic
suggests an algorithm: Project successively onto each basic set in the hope that the
sequence of iterates will converge to the Bregman projection onto the intersection.
To make this approach work in general, it is clear that we must choose every set
an infinite number of times, so we add one more requirement to Assumption A.1 as
follows.

Assumption A.2

The control mapping: r : N → {1, . . . ,K} is a sequence that takes each
output value an infinite number of times

Together, Assumptions A.1 and A.2 will be referred to as Assumption A. Here is a
formal statement of the algorithm.

Algorithm A (successive projection). Suppose that Assumption A is in force.
Choose an input vector y0 from ri(domϕ), and form a sequence of iterates via suc-
cessive Bregman projection:

yt = PCr(t)
(yt−1).

Then the sequence of iterates {yt} converges in norm to PC(y0).
We present a short proof that this algorithm is correct. We refer to the article [4]

for the argument that the sequence converges, and we extend the elegant proof from
[12] to show that the limit of the sequence yields the Bregman projection.

Proof. Suppose that a is an arbitrary point in C ∩domϕ. Since the seed function
ϕ is Legendre, Bregman projections with respect to the divergence fall in the relative
interior of domϕ. In particular, each iterate yt belongs to ri(domϕ). Therefore, we
may apply the Pythagorean theorem (2.4) to see that

Dϕ(a;yt−1) = Dϕ(a;yt) + Dϕ(yt;yt−1).

Observe that this equation defines a recurrence, which we may solve to obtain

Dϕ(a;y0) = Dϕ(a;yt) +
∑t

i=1
D(yi;yi−1).
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Under Assumption A, Theorem 8.1 of [4] shows that the sequence of iterates generated
by Algorithm A converges to a point y in C ∩ ri(domϕ). Since the divergence is
continuous in its second argument, we may take limits to reach

Dϕ(a;y0) = Dϕ(a;y) +
∑∞

i=1
Dϕ(yi;yi−1).

We chose a arbitrarily from C ∩ domϕ, so we may replace a by y to see that the
infinite sum equals Dϕ(y;y0). It follows that

Dϕ(a;y0) = Dϕ(a;y) + Dϕ(y;y0).

This equation holds for each point a in C ∩ domϕ, so we see that y meets the
variational characterization (2.4) of PC(y0). Therefore, y is the Bregman projection
of y0 onto C.

If the sets {Ck} are not affine, then Algorithm A will generally fail to produce the
Bregman projection of y0 onto the intersection C. In section 6, we will discuss a more
sophisticated iterative algorithm for solving this problem. Nevertheless, for general
closed, convex constraint sets, the sequence of iterates generated by the successive
projection algorithm still converges to a point in C ∩ ri(domϕ) [4, Theorem 8.1].

To obtain the convergence guarantee for Algorithm A, it may be necessary to
work in an affine subspace of the ambient inner-product space. This point becomes
important when computing the projections of nonnegative (as opposed to positive)
vectors with respect to the relative entropy. It arises again when studying projections
of rank-deficient matrices with respect to the von Neumann divergence. We will touch
on this issue in subsections 5.1 and 5.3.

5. Examples with affine constraints. This section presents three matrix
nearness problems with affine constraints. The first requests the nearest contingency
table with fixed marginals. A special case is to produce the nearest doubly stochastic
matrix with respect to relative entropy. For this problem, the successive projection
algorithm is identical to Kruithof’s famous diagonal scaling algorithm [24, 13].

The second problem centers on a matrix nearness problem from data analysis,
namely, that of finding matrix approximations based on the MBI principle, which is
a generalization of Jaynes’ maximum entropy principle [23].

The third problem shows how to construct the correlation matrix closest to a given
positive-semidefinite matrix with respect to some matrix divergences. For reference,
a correlation matrix is a positive-semidefinite matrix with a unit diagonal.

5.1. Contingency tables with fixed marginals. A contingency table is an ar-
ray that exhibits the joint probability mass function of a collection of discrete random
variables. A nonnegative rectangular matrix may be viewed as the contingency table
for two discrete random variables. We will focus on this case since higher-dimensional
contingency tables essentially are no more complicated.

Suppose that pAB is the joint probability mass function of two random variables
A and B with sample spaces {1, 2, . . . ,M} and {1, 2, . . . , N}. We use X to denote
the M ×N contingency table whose entries are

xmn = pAB(A = m and B = n).

A marginal of pAB is a linear function of X. The most important marginals of
pAB are the vector of row sums X e, which gives the distribution of A, and the vector
of column sums eT X, which gives the distribution of B. Here, e is a conformal vector
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of ones. The distribution of A conditioned on B = n is given by the nth column of
X, and the distribution of B conditioned on A = m is given by the mth row of X.

However, we consider the more general case of arbitrary nonnegative matrices—we
treat X as a member of the collection of M×N real matrices equipped with the inner
product 〈X,Y 〉 = TrXY T . Note that, for the above probabilistic interpretation, X
must be scaled so that its entries sum to 1.

A common problem is to use an initial estimate to produce a contingency table
that has fixed marginals. In this setting, nearness is typically measured with relative
entropy

D(X;Y ) =
∑

m,n

[
xmn log

xmn

ymn
− xmn + ymn

]
.

An important special case is to find the doubly stochastic matrix nearest to a non-
negative square matrix Y0. In this case, we have two constraint sets

C1 = {X : X e = e} and C2 = {X : eT X = eT }.

It is clear that the intersection C = C1 ∩ C2 contains the set of doubly stochastic
matrices. In fact, every nonnegative matrix in C is doubly stochastic. Using (2.6),
it is easy to see that Bregman projection of a matrix onto C1 with respect to the
relative entropy is accomplished by rescaling the rows so that each row sums to one.
Likewise, Bregman projection of a matrix onto C2 is accomplished by rescaling the
columns. Beginning with Y0, the successive projection algorithm alternately rescales
the rows and columns. This procedure, of course, is the diagonal scaling algorithm of
Kruithof [24, 13], sometimes called Sinkhorn’s algorithm [36]. Our approach yields a
geometric interpretation of the algorithm as a method for solving a matrix nearness
problem by alternating Bregman projections. It is interesting that the nonnegativity
constraint is implicitly enforced by the domain of the relative entropy. This viewpoint
can be traced to the work of Ireland and Kullback [22].

There is still a subtlety that requires attention. Assumption A apparently requires
that C contain a matrix with strictly positive entries and that the input matrix Y0 be
strictly positive. In fact, we may relax these premises. A nonnegative matrix whose
zero pattern does not cover the zero pattern of Y0 has an infinite divergence from
Y0. Therefore, we may as well restrict our attention to the linear space of matrices
whose zero pattern covers that of Y0. Now we see that the constraint qualification in
Assumption A requires that C contain a matrix with exactly the same zero pattern
as Y0. If it does, the algorithm will still converge to the Bregman projection of Y0

onto the doubly stochastic matrices. Determining whether the constraint qualification
holds will generally involve a separate investigation [30].

It is also worth noting that Algorithm A encompasses other iterative methods for
scaling to doubly stochastic form. At each step, for example, one might rescale only
the row or column whose sum is most inaccurate. Parlett and Landis have considered
algorithms of this sort [33]. The problem of scaling to have other row and column
sums also fits neatly into our framework, and it has the same geometric interpretation.

5.2. MBI and matrix approximation. This section discusses a novel matrix
nearness problem that arises in data analysis. Given a collection of vectors X =
{x1,x2, . . . ,xN} ⊂ domϕ, the Bregman information [2] of the collection is defined to
be

(5.1) Iϕ(X) =
∑N

j=1
wj Dϕ(xj ;μ),
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where w1, w2, . . . , wN are nonnegative weights that sum to one, and μ is the (weighted)
arithmetic mean of the collection, i.e., μ =

∑
j wj xj . Bregman information gener-

alizes the notion of the variance, σ2 = N−1
∑

j ‖xj − μ‖2
2, of a Gaussian random

variable (where each wj = N−1). When Dϕ is the relative entropy, the Bregman
information that arises with an appropriate choice of weights is called mutual infor-
mation, a fundamental quantity in information theory [11].

Bregman information exhibits an interesting connection with Jensen’s inequality
for a convex function ϕ: ∑

j
wj ϕ(xj) ≥ ϕ

(∑
j
wj xj

)
.

Substituting μ =
∑

j wj xj , we see that the difference between the two sides of the
foregoing relation satisfies∑

j
wj ϕ(xj) − ϕ(μ) =

∑
j
wj ϕ(xj) − ϕ(μ) −

〈
∇ϕ(μ),

∑
j
wjxj − μ

〉
=
∑

j
wj

[
ϕ(xj) − ϕ(μ) − 〈∇ϕ(μ),xj − μ〉

]
= Iϕ(X).(5.2)

In words, the Bregman information is the disparity between the two sides of Jensen’s
inequality. Equation (5.2) can also be viewed as a generalization of the relationship
between the variance and the arithmetic mean,

σ2 = N−1
∑

j
‖xj‖2

2 − ‖μ‖2
2 .

Let us describe an application of Bregman information in data analysis. In this
field, matrix approximations play a central role. Unfortunately, many common ap-
proximations destroy essential structure in the data matrix. For example, consider
the k-truncated singular value decomposition (TSVD), which provides the best rank-
k Frobenius-norm approximation of a matrix. In information retrieval applications,
however, the matrix that describes the co-occurrence of words and documents is both
sparse and nonnegative. The TSVD ruins both of these properties. In this setting,
the Frobenius norm is meaningless; relative entropy is the correct divergence measure
according to the unigram or multinomial language model.

We may also desire that the matrix approximation satisfy some additional con-
straints. For instance, it may be valuable for the approximation to preserve marginals
(i.e., linear functions) of the matrix entries. Let us formalize this idea. Suppose that

Y is an M×N data matrix. We seek an approximation X̃ that satisfies the constraints

Ck = {X : 〈X,Ak〉 = 〈Y ,Ak〉} k = 1, . . . ,K,

where each Ak is a fixed constraint matrix. We will write C =
⋂

k Ck. As an example,
X can be required to preserve the row and/or column sums of Y .

Many different matrices, including the original matrix Y , may satisfy these con-
straints. Clearly, a good matrix approximation should involve some reduction in the
number of parameters used to represent the matrix. The key question is to decide how
to produce the right approximation from C. One rational approach invokes the princi-
ple of minimum Bregman information (MBI) [1], which states that the approximation
should be the (unique) solution of the problem

(5.3) min
X∈C

Iϕ(X) = min
X∈C

∑
m,n

wmn Dϕ(xmn, μ),
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where wmn are prespecified weights and μ =
∑

m,n wmnxmn. If the weights wmn and
the matrix entries xmn are both sets of nonnegative numbers that sum to one, and
if the Bregman divergence is the relative entropy, then the MBI principle reduces to
Jaynes’ maximum entropy principle [23]. Thus, the MBI principle tries to obtain as
uniform an approximation as possible subject to the specified constraints. Note that
problem (5.3) can be readily solved by the successive projection algorithm.

Next, we consider an important and natural source of constraints. Clustering is
the problem of partitioning a set of objects into clusters, where each cluster contains
“similar” objects. Data matrices often capture the relationships between two sets of
objects, such as word–document matrices in information retrieval and gene-expression
matrices in bioinformatics. In such applications, it is often desirable to solve the co-
clustering problem, i.e., to simultaneously cluster the rows and columns of a data
matrix. Formally, a co-clustering (ρ, γ) is a partition of the rows into I row clusters
ρ1, . . . , ρI and the columns into J column clusters γ1, . . . , γJ , i.e.,⋃I

i=1
ρi = {1, 2, . . . ,M}, where ρi ∩ ρ� = ∅ for i �= �,

⋃J

j=1
γj = {1, 2, . . . , N}, where γj ∩ γ� = ∅ for j �= �.

Given a coclustering, the rows belonging to row cluster ρ1 can be arranged first,
followed by rows belonging to row cluster ρ2, etc. Similarly the columns can be re-
ordered. This re-ordering has the effect of dividing the matrix into I · J subblocks,
each of which is called a cocluster.

The coclustering problem is to search for the “best” possible row and column
clusters. One way to measure the quality of a coclustering is to associate it with
its MBI matrix approximation. A natural constraint set C(ρ,γ) for the coclustering
problem contains matrices that preserve marginals of all the I · J coclusters (local
information) in addition to row and column marginals (global information). With
this constraint set, a formal objective for the coclustering problem is to find (ρ, γ),
which corresponds to the best possible MBI approximation:

(5.4) min
ρ,γ

Dϕ(Y ;X(ρ,γ)), where X(ρ,γ) = arg min
X∈C(ρ,γ)

Iϕ(X).

This formulation yields an optimal coclustering as well as its associated MBI matrix
approximation. The quality of such matrix approximations is a topic for further study.
Note that problem (5.4) requires a combinatorial search, and it is known to be NP-
complete. The most familiar clustering formulation, namely, the k-means problem, is
the special case of (5.4) obtained from the Euclidean divergence, the choice J = N ,
and the condition of preserving cocluster sums.

As an example, consider the nonnegative matrix

Y =

⎡
⎢⎢⎢⎢⎢⎢⎣

5 5 5 0 0 0
5 5 5 0 0 0
0 0 0 5 5 5
0 0 0 5 5 5
4 4 0 4 4 4
4 4 4 0 4 4

⎤
⎥⎥⎥⎥⎥⎥⎦
.

On using coclustering (three row clusters and two column clusters), preserving row
sums, column sums, and cocluster sums, the MBI principle (with relative entropy as
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the Bregman divergence) yields the matrix approximation

X1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

5.4 5.4 4.2 0 0 0
5.4 5.4 4.2 0 0 0

0 0 0 4.2 5.4 5.4
0 0 0 4.2 5.4 5.4

3.6 3.6 2.8 2.8 3.6 3.6
3.6 3.6 2.8 2.8 3.6 3.6

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Note that this approximation has rank two and preserves nonnegativity as well as
most of the nonzero structure of Y . It can be verified that all the cocluster sums,
row sums, and column sums of X1 match those of Y . In contrast, the rank-two SVD
approximation

X2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

5.09 5.09 4.66 −0.69 0.29 0.29
5.09 5.09 4.66 −0.69 0.29 0.29
0.29 0.29 −0.69 4.66 5.09 5.09
0.29 0.29 −0.69 4.66 5.09 5.09
3.04 3.04 1.98 3.51 4.41 4.41
4.41 4.41 3.51 1.98 3.04 3.04

⎤
⎥⎥⎥⎥⎥⎥⎦

preserves neither the nonnegativity, the nonzero structure, nor the marginals of Y .

5.3. The nearest correlation matrix. A correlation matrix is a (real) positive-
semidefinite matrix with a unit diagonal. Correlation matrices arise in statistics and
applications such as finance, where they display the normalized second-order statis-
tics (i.e., pairwise correlation coefficients) of a collection of random variables. In the
deterministic setting, a correlation matrix may be viewed as the Gram matrix of a
collection of unit vectors.

Higham has recently studied the nearest correlation matrix problem measuring
distances using a type of weighted Frobenius norm [19]. Higham solves the prob-
lem by means of the Dykstra–Han algorithm given in section 6, alternating between
the positive-semidefinite cone and the set of matrices with unit diagonal. We have
observed that the nearest correlation matrix problem can be posed with Bregman
divergences and, in particular, with matrix divergences.

Let us consider the problem of producing the correlation matrix closest to a given
positive-semidefinite matrix with respect to the von Neumann divergence

DvN(X;Y ) = Tr [X(logX − logY ) −X + Y ].

In case Y is singular, we must restrict our attention to the linear space of matrices
whose null space contains the null space of Y . After taking this step, one must
interpret the formulae with care. These remarks signal our reason for employing the
von Neumann divergence to measure the disparity between correlation matrices. A
matrix X has an infinite divergence from Y unless the null space of X contains the
null space of Y . In particular, the rank of the Bregman projection of Y onto the
correlation matrices cannot exceed the rank of Y . See also the examples at the end
of this subsection.

The correlation matrices can be viewed as the intersection of the set of unit-
diagonal matrices with the positive-semidefinite cone. This cone is also the domain
of the von Neumann divergence, so we do not need to explicitly enforce the positive-
semidefinite constraint. In fact, we need only project onto the set C of matrices whose



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1138 INDERJIT S. DHILLON AND JOEL A. TROPP

diagonal entries all equal one. It is natural to view C as the intersection of the affine
constraint sets

Ck = {X : xkk = 1}.

There is no explicit formula for the projection of a matrix Y onto the set Ck, but
the discussion in section 3 shows that we can solve the problem by minimizing the
function (3.4), which, in this example, reads

(5.5) J(ξ) = Tr exp{logY + ξ eke
T
k } − ξ,

where ek is the kth canonical basis vector. Given the minimizer ξ�, the projection of
Y onto Ck is

(5.6) PCk
(Y ) = exp{logY + ξ� eke

T
k }.

Beware that one cannot read these formulae literally when Y is rank deficient! In
any case, the numerical calculations are not trivial to perform. In order to apply the
Newton method, the second derivative of J is needed, which is more involved due to
the noncommutativity of matrix multiplication.

Unfortunately, treating these issues in detail is beyond the scope of this paper.

There is an interesting special case that can be treated without optimization:
the von Neumann projection of a matrix with constant diagonal onto the correlation
matrices can always be obtained by rescaling. In particular, the projection preserves
the zero pattern of the matrix and the eigenvalue distribution. To verify this point,
suppose the diagonal entries of Y equal α, and set X = α−1Y . According to the
Karush–Kuhn–Tucker conditions, X is the Bregman projection of Y onto the set C
provided that ∇XDvN(X;Y ) is diagonal. The latter gradient equals logX−logY +I,
and a short calculation completes the argument. In contrast, the Frobenius norm
projection of a matrix with constant diagonal does not preserve its nonzero structure
or eigenvalue distribution. As an example, let Y be the 4 × 4 symmetric tridiagonal
Toeplitz matrix with 2’s on the diagonal and −1’s on the off-diagonal. The nearest
correlation matrix to it, in the Frobenius norm, equals (to the figures shown)

⎡
⎢⎢⎣

1.0000 −0.8084 0.1916 0.1068
−0.8084 1.0000 −0.6562 0.1916

0.1916 −0.6562 1.0000 −0.8084
0.1068 0.1916 −0.8084 1.0000

⎤
⎥⎥⎦ .

As a second example, draw a random orthogonal matrix Q and form the rank-
deficient matrix Y = Q diag (1, 10−3, 10−6, 0)QT . For instance,

Y =

⎡
⎢⎢⎣

.18335 −.15180 .08258 −.34620
−.15180 .12606 −.06887 .28655
.08258 −.06887 .03786 −.15582

−.34620 .28655 −.15582 .65373

⎤
⎥⎥⎦ .
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The correlation matrix nearest to Y in the Frobenius norm is obtained by simply
shifting the diagonal:

X1 =

⎡
⎢⎢⎣

1.0000 −.15180 .08258 −.34620
−.15180 1.0000 −.06887 .28655
.08258 −.06887 1.0000 −.15582

−.34620 .28655 −.15582 1.0000

⎤
⎥⎥⎦ .

Meanwhile, the nearest correlation matrix with respect to the von Neumann diver-
gence has the same range space as Y and thus is also of rank 3:

X2 =

⎡
⎢⎢⎣

1.0000 −.77271 .59020 −.99995
−.77271 1.0000 −.96847 .77080
.59020 −.96847 1.0000 −.58778

−.99995 .77080 −.58778 1.0000

⎤
⎥⎥⎦ .

Note that due to space limitations, all of the above matrices are shown only to five
digits of accuracy. The eigenvalues of X1 are 0.611, 0.851, 0.951, and 1.588, while
the nonzero eigenvalues of X2 are 0.457× 10−6, 0.650× 10−2, and 3.350. Thus we see
that the Frobenius norm solution does not preserve the small eigenvalues, while the
von Neumann divergence solution preserves the rank and also tries to preserve the
eigenvalue distribution.

The recent literature contains a substantial amount of work on numerical meth-
ods for calculating nearest correlation matrices with respect to the Frobenius norm.
Higham describes an alternating projection method, as well as an approach via
semidefinite programming [19]. Malick [28] and Boyd and Xiao [7] study efficient
algorithms for solving the dual of a more general projection problem, while Qi and
Sun [34] develop a generalized Newton method for the nearest correlation matrix
problem.

In contrast, the problem of finding nearest correlation matrices with respect
to a Bregman divergence is virtually unstudied. The main motivation for study-
ing this problem is that it leads to correlation matrices that have a very different
character, which may be more appropriate in applications. For example, as shown
above, the method for solving the von Neumann nearness problem may yield low-
rank correlation matrices. This type of solution has immense practical value be-
cause it explains the data using a small number of factors [17]. In contrast, the
Frobenius norm solution may increase the rank of the matrix. Unfortunately, to
apply our technique, the initial matrix must lie in the domain of the von Neu-
mann divergence, i.e., the positive-semidefinite cone. One remedy is to prepro-
cess the matrix by performing a Frobenius projection onto the positive-semidefinite
cone.

The broad scope of the present article limits the amount of detail we can provide,
so we have been only able to sketch one algorithm for solving the nearest correlation
matrix problem. It would be valuable to devise more powerful algorithms by invoking
ideas from the papers cited above.

6. The successive projection–correction algorithm for convex con-
straints. This section describes an algorithm for solving the Bregman nearness prob-
lem (1.1) in the case where the constraints are closed, convex sets. In the succeeding
section, we will present some nearness problems to which this algorithm applies. We
frame the following hypotheses:
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Assumption B

The divergence: ϕ is a convex function of Legendre type

ϕ is cofinite, i.e., domϕ∗ = X

The constraints: C1, . . . , CK are closed, convex sets with intersection C

Constraint qualification: ri(C1) ∩ · · · ∩ ri(CK) ∩ ri(domϕ) is nonempty

The control mapping: r : N → {1, 2, . . . ,K} is a sequence that takes each
output value at least once during each T consecutive
input values

Given an input y0 from ri(domϕ), we seek the Bregman projection of y0 onto
C with respect to the divergence Dϕ. As before, the algorithm projects successively
onto each constraint set. Since the sets are no longer affine, it is also necessary to
introduce a correction term to guide the algorithm toward the Bregman projection.
This algorithm generalizes a method for the Euclidean divergence that was developed
independently by Dykstra [16] and Han [18].

Algorithm B (successive projection–correction). Suppose that Assumption B
is in force, and let y0 ∈ ri(domϕ). The algorithm performs the following steps:

1. Initialize the correction variables: qk = 0 for each k = 1, . . . ,K.
2. Construct the next iterate via the rule

yt+1 ← PCr(t)

(
∇ϕ∗

(
∇ϕ(yt) + qr(t)

))
.

3. Update the correction term

qr(t) ← qr(t) + ∇ϕ(yt) −∇ϕ(yt+1).

4. Return to step 2.
Then the sequence of iterates converges in norm to the Bregman projection of y0 onto
C with respect to Dϕ,

PC(y0) = lim
t→∞

yt.

The proof that this algorithm succeeds is quite burdensome, and none of the
arguments in the literature are especially intuitive. The correctness of the algorithm
that we have presented here follows from Tseng’s general framework [37]. His paper
contains only the development for the Euclidean divergence; see [6, 9] for comments on
the extension. The literature contains several other proofs with somewhat different
hypotheses [6, 9]. We feel that the above version offers the best tradeoff between
applicability and accessibility.

The following connections may help the reader understand the algorithm some-
what better. It is possible to identify this procedure as a generalization of Bregman’s
algorithm for minimizing strictly convex functions [10, 9]. Bregman’s algorithm is a
primal-dual method that maximizes with respect to one dual variable (the qk) at a
time, while maintaining the Karush–Kuhn–Tucker conditions on the primal problem.
It is also possible to view the algorithm as a coordinate ascent algorithm for an op-
timization problem that is dual to the projection problem [37]. It is for this reason
that the update in step 2 closely resembles the dual function J obtained in section 3.
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6.1. Comparing the algorithms. Let us take a moment to weigh the succes-
sive projection–correction algorithm (Algorithm B) against the successive projection
algorithm (Algorithm A). It is most important to note that Algorithm A applies only
to the case where the constraints are affine, while Algorithm B succeeds for general
closed, convex constraints. It can be shown that the corrections in Algorithm B are
unnecessary when the constraints are affine, so it reduces to Algorithm A [9].

Although it may appear that Algorithm A has a weaker constraint qualification,
the difference here is purely formal. We remark that the constraint qualification in
Algorithm B can be weakened when some of the constraint sets are polyhedral, i.e.,
can be written as a finite intersection of halfspaces. In that case, we may remove the
relative interior from the polyhedral constraint sets in the constraint qualification.

The methods also place different hypotheses on the divergence; Algorithm B
asks more from the seed function ϕ than Algorithm A. The former requires that
domϕ∗ = X while the latter needs only domϕ∗ to be open. For example, the Burg
entropy ϕ(x) = − log(x) is admissible for Algorithm A but not for Algorithm B.

Finally, the control mapping for Algorithm B is more restrictive than the control
mapping for Algorithm A. The former requires that the projections be performed
in almost cyclic order, while the latter requires only that each constraint set should
appear an infinite number of times.

7. Examples with convex constraints. This section discusses two matrix
nearness problems that involve nonaffine constraints. First, we discuss the metric
nearness problem, which elicits the closest metric graph to a given weighted graph.
We have already studied this problem with respect to norms in [15]. Here, we expand
our treatment to Bregman divergences.

Second, we study an important problem in data analysis, namely learning a so-
called “kernel” or similarity matrix that satisfies constraints that arise from knowledge
of the underlying application domain.

7.1. The metric nearness problem. We recently encountered a striking new
matrix nearness problem [15] while studying an application in computational biology.
In this article, we extend the problem to Bregman divergences and show that it can
be solved using the successive projection–correction algorithm (Algorithm B).

Suppose that X is the adjacency matrix of an undirected, weighted graph on N
vertices. That is, xmn registers the weight of the edge between vertices m and n.
Since the graph is undirected, X is a symmetric matrix. We will also assume that
X is hollow (i.e., has a zero diagonal). If one interprets the weights as distances, it
is natural to ask whether the graph can be embedded in a metric space. Indeed, the
embedding is possible if and only if the triangle inequalities hold, i.e.,

(7.1) xmn ≤ xm� + x�n for each triple of distinct vertices (�,m, n).

Note that the condition (7.1) implies that the weights are nonnegative, provided that
X is symmetric. We will refer to any hollow, symmetric matrix that satisfies (7.1) as
a metric adjacency matrix.

The metric nearness problem is to find the metric adjacency matrix closest to
a given adjacency matrix. We view this nearness problem as an agnostic method
for learning a metric from noisy distance measurements. It is entirely distinct from
multidimensional scaling, which requests an ensemble of points in a specified metric
space (usually Euclidean) that realizes a given set of distances. In our first report on
this problem [15], we used weighted matrix norms to measure the distance between
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adjacency matrices. In this article, we will use Bregman divergences. Note that the
divergence is unrelated to the metric encoded in the entries of the adjacency matrix;
the divergence is used to determine how much one adjacency matrix (i.e., graph)
differs from another.

By this point, it should be clear how we propose to solve the metric nearness
problem. We will work in the space of hollow, symmetric matrices. It is evident
that the metric adjacency matrices from a closed, convex cone C. Clearly, C is the
intersection of

(
N
3

)
halfspaces:

C�mn = {X : xmn − xm� − x�n ≤ 0},

where �, m, and n index distinct vertices. Therefore, we may apply Algorithm B.
To be concrete, we will consider Bregman projections with respect to the relative

entropy. For reference, the seed function is

ϕ(X) =
∑

mn
[xmn log xmn − xmn] ,

which has Fenchel conjugate

ϕ∗(Y ) =
∑

mn
exp ymn.

The divergence is

Dϕ(X;Y ) =
∑

mn

[
xmn log

xmn

ymn
− xmn + ymn

]
.

This divergence has an interesting advantage over the Frobenius norm. If the original
adjacency matrix does not contain zero distances, then the projection on the metric
adjacency matrices will not contain any zero distances. This fact ensures that the
final matrix defines a genuine metric, rather than a pseudometric.

Algorithm B requires that we compute the Bregman projection of a matrix that
has the form X = ∇ϕ∗(∇ϕ(Yt) + Q�mn), where Q�mn is a dual variable. It is easy
to check that this expression reduces to

X = Yt · exp ·(Q�mn),

where · is the Hadamard (i.e., componentwise) product and exp · is the Hadamard
exponential. We will see that the dual variable Q�mn has at most six nonzero entries.
Therefore, the matrix X differs from Yt in at most six places.

It is straightforward to calculate the Bregman projection Yt+1 of the matrix X
onto the constraint C�mn. If X already falls in the constraint set, then the projection
Yt+1 = X. Otherwise, set δ =

√
(xm� + x�n)/xmn. The entries of the projection

Yt+1 are identical to those of X except for the following six:

ymn = δ xmn ynm = ymn

ym� = xm�/δ y�m = ym�

y�n = x�n/δ yn� = y�n.

In words, the projection determines how much the triangle inequality is violated, and
it distributes the deficit multiplicatively among the three edges.
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Finally, the algorithm updates the dual variable Q�mn associated with the con-
straint using the formula

Q�mn ← Q�mn + log ·(Yt) − log ·(Yt+1)

where log · is the Hadamard logarithm. This update affects only six entries of Q�mn.
In practice, we would store only the upper triangle of the adjacency matrices, so the
update touches only three entries.

Consider the following adjacency matrix, which fails to be a metric graph,

Y =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 1 1
1 0 10000 1 1 1
1 10000 0 1 1 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

The nearest metric adjacency matrix in relative entropy is found to be

X1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 5.49 5.49 1.00 1.00 1.00
5.49 0 10.99 5.49 5.49 5.49
5.49 10.99 0 5.49 5.49 5.49
1.00 5.49 5.49 0 1.00 1.00
1.00 5.49 5.49 1.00 0 1.00
1.00 5.49 5.49 1.00 1.00 0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Note that the effect of the outlier edge has dissipated, and the resulting metric graph
does not have very large edge weights. On the other hand, the outlier edge leads to
a significant change in edge weights when the Euclidean divergence is used:

X2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1667.33 1667.33 1.00 1.00 1.00
1667.33 0 3334.67 1667.33 1667.33 1667.33
1667.33 3334.67 0 1667.33 1667.33 1667.33

1.00 1667.33 1667.33 0 1.00 1.00
1.00 1667.33 1667.33 1.00 0 1.00
1.00 1667.33 1667.33 1.00 1.00 0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

7.2. Learning a kernel matrix. In data mining and machine learning appli-
cations, linear separators or hyperplanes are often used to cluster or classify data.
However, linear separators are inadequate when the data is not linearly separable.
To overcome this problem, the data can first be mapped (nonlinearly) to a higher-
dimensional feature space, after which linear separators can be used in the transformed
feature space.

Suppose the data belong to the set Ω, and f : Ω → X maps the data to an inner-
product space X , called the feature space. Given data objects {u1, u2, . . . , uN} ⊂ Ω,
the Gram matrix X is the N × N matrix of inner products in the feature space,
xmn = 〈f(um), f(un)〉 = g(um, un). This Gram matrix is also called the kernel matrix,
and it captures the similarity between the objects um and un. When the data space Ω
is an inner-product space, common kernels include the polynomial kernel g(um,un) =

〈um,un〉d and the Gaussian kernel g(um,un) = exp
{
− 1

2 ‖um − un‖2
2 /σ

2
}

. These

kernels are both positive definite. Conversely, any positive-definite matrix can be
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thought of as a kernel matrix [38]. In general, the set Ω can be arbitrary. For
example, Ω might contain nucleotide sequences of varying lengths or phylogenetic
trees or arbitrary graphs.

In many such situations, the choice of the kernel matrix is unclear. There is often
an approximate kernel matrix Y0 that we wish to modify based on our information
about the underlying data objects. This information may take various forms:

• known values for kernel entries (xmn = α),
• known distances between objects in the feature space (xmm+xnn−2xmn = β),

or
• known bounds on kernel entries (xmn ≤ xrs) or distances (xmm + xnn −

2xmn ≤ γ).
Such constraints are typically obtained from the application domain, such as infor-
mation about whether a pair of genes or proteins is functionally more similar than
another pair.

Suppose that we are given an approximate kernel matrix Y0. Our problem is
to find the nearest positive-definite matrix to Y0 that satisfies linear equality and
inequality constraints. The von Neumann divergence can be used as the nearness
measure:

DvN(X;Y ) = Tr [X(logX − logY ) −X + Y ].

Using the von Neumann divergence appears to be advantageous when the initial kernel
matrix Y0 is of low rank and it is desired that its null space be preserved [25]. Recall
that, in the low-rank case, the von Neumann divergence DvN(X;Y0) is finite only
when the null space of X contains the null space of Y0. Hence, both the null space
constraint and positive semidefiniteness are automatically enforced by the successive
projection–correction algorithm.

8. Open problems and conclusions. The Bregman nearness problem is rel-
atively unstudied, so it opens a rich vein of new questions. Here are some specific
challenges that deserve attention.

1. The matrix divergences described in subsection 2.6 offer an intriguing way
to compute distances between Hermitian matrices. It would be valuable to
characterize different types of projections onto important sets of matrices,
such as the positive-semidefinite cone, the nonnegative cone, or the set of
diagonal matrices. This could lead to more efficient numerical methods for
key problems.

2. The algorithms described in this paper apply only to projections onto poly-
hedral convex sets. Some important constraint sets—such as the positive-
semidefinite cone—are not so simple. In this work, we avoided trouble by in-
corporating the positive-semidefinite constraint into the divergence, but this
approach is not always warranted. For more general problems, a different
approach is necessary.

3. A more serious problem with the successive projection approach is that it
offers only linear convergence. For applications, it may be critical to develop
algorithms with superlinear convergence.

4. The matrix functions that arise from the study of matrix divergences lead to
another challenge. We are not aware of a sophisticated approach to calcu-
lating a function such as exp(logY + A) other than to work with the cor-
responding eigendecompositions. Expressions of this form frequently arise
in Bregman nearness problems, and we would like to have more robust,
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efficient techniques for their computation. Moreover, the numerical stabil-
ity of various techniques needs to be studied.

5. In applications, it is most important to determine what divergence is appro-
priate. This choice is likely to depend on domain expertise, coupled with a
nuanced understanding of the properties of different divergences.

6. One can also imagine the problem of learning a divergence from data. This
method would be the ultimate way to match the distance measure with the
application. The connection between divergences and exponential families
even provides a theoretical justification for this approach.

In conclusion, we have offered evidence that Bregman divergences provide a pow-
erful way to measure the distance between matrices. They can react to structure in
the matrix in a way that the Frobenius norm does not. This property makes them
extremely valuable for applications, although it may take some effort to determine
what divergence is appropriate. Moreover, the numerical methods for computing
Bregman projections are still in their infancy. These challenges must be faced before
divergences can occupy their potential role in data analysis.
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