
Adaptive Website Design using Caching

Algorithms

Justin Brickell1, Inderjit S. Dhillon1, and Dharmendra S. Modha2

1 The University of Texas at Austin, Austin, TX, USA
2 IBM Almaden Research Center, San Jose, CA, USA

Abstract. Visitors enter a website through a variety of means, includ-
ing web searches, links from other sites, and personal bookmarks. In
some cases the first page loaded satisfies the visitor’s needs and no ad-
ditional navigation is necessary. In other cases, however, the visitor is
better served by content located elsewhere on the site found by navigat-
ing links. If the path between a user’s current location and his eventual
goal is circuitous, then the user may never reach that goal or will have to
exert considerable effort to reach it. By mining site access logs, we can
draw conclusions of the form “users who load page p are likely to later
load page q.” If there is no direct link from p to q, then it is advantageous
to provide one. The process of providing links to users’ eventual goals
while skipping over the in-between pages is called shortcutting. Exist-
ing algorithms for shortcutting require substantial offline training, which
make them unable to adapt when access patterns change between train-
ing sessions. We present improved online algorithms for shortcut link
selection that are based on a novel analogy drawn between shortcutting
and caching. In the same way that cache algorithms predict which mem-
ory pages will be accessed in the future, our algorithms predict which
web pages will be accessed in the future. Our algorithms are very effi-
cient and are able to consider accesses over a long period of time, but
give extra weight to recent accesses. Our experiments show significant
improvement in the utility of shortcut links selected by our algorithm as
compared to those selected by existing algorithms.

1 Introduction

As websites increase in complexity, they run headfirst into a fundamental trade-
off: the more information that is available on the website, the more difficult
it is for visitors to pinpoint the specific information that they are looking for.
A well-designed website limits the impact of this tradeoff, so that even if the
amount of information is increased significantly, locating that information be-
comes only marginally more difficult. Typically, site designers ease information
overload by organizing the site content into a hierarchy of topics, and then pro-
viding a navigational tree that allows visitors to descend into the hierarchy and
find the information they are looking for. In their paper on adaptive website de-
sign [12], Perkowitz and Etzioni describe these static, master-designed websites

as “fossils cast in HTML.” They claim that a site designer’s a priori expecta-
tions for how a site will be used and navigated are likely to inaccurately reflect
actual usage patterns, especially as the site adds new content over time. As it
is infeasible for even the most dedicated site designer to understand the goals
and access patterns of all site visitors, Perkowitz and Etzioni proposed building
websites that mine their own access logs in order to automatically determine
helpful self-modifications.

One example of a helpful modification is shortcutting, in which links are
added between unlinked pages in order to allow visitors to reach their intended
destinations with fewer clicks. Typically a limit N is imposed on the maximum
number of outgoing shortcuts on any one particular page. The shortcutting prob-
lem can then be thought of as an optimization problem to choose the N shortcuts
per page that minimize the number of clicks needed for future visitors to reach
their goal pages. These shortcuts may be modified at any time based on past
accesses in order to account for anticipated changes in the access patterns of
future visitors. Finding an optimal solution to this problem would require an
exact knowledge of the future and a precise way of determining each user’s goal.
However, shortcutting algorithms must provide shortcuts in an on-line frame-
work, so the shortcuts must be chosen without knowledge of future accesses.
Rather than solving the optimization problem exactly, shortcutting algorithms
use heuristics and analyze past accesses in order to provide good shortcuts.

In this paper, we draw a novel analogy between shortcutting algorithms,
which maintain an active set of shortcuts on each page, and caching algorithms,
which maintain an active set of items in cache. The goal of caching algorithms—
maximizing the fraction of future memory accesses for items in the cache—
is analogous to the goal of shortcutting algorithms. The main contribution of
this paper is the CacheCut algorithm for shortcutting. By using replacement
policies developed for caching applications, CacheCut is able to run with less
memory than other shortcutting algorithms, while producing better results. A
second contribution is the FrontCache algorithm, which uses similar caching
techniques in order to select pages for promotion on the front page.

The remainder of this paper is organized as follows. In Section 2 we discuss
related work in adaptive website problems. In Section 3 we give definitions for
terms that are used throughout the paper. Section 4 gives a formulation of the
shortcutting problem and presents two shortcutting algorithms from existing
literature. In Section 5 we detail our CacheCut algorithm for shortcutting,
and in section 6 we describe the FrontCache algorithm for promoting pages
with links on the front page. Section 7 describes our experimental setup and
the results of our experiments. Finally, in Section 8, we offer some concluding
thoughts and suggest directions for future work.

2 Related Work

Perkowitz and Etzioni [11] issued the original challenge to the AI community
to build adaptive web sites that learn visitor access patterns from the access

log in order to automatically improve their organization and presentation. Their
follow-up paper [12] presented several global adaptations that affect the presen-
tation of the website to all users. One adaptation from their paper is “index
page synthesis,” in which new pages are created containing collections of links
to related but currently unlinked pages. In his thesis [10], Perkowitz presents
the shortcutting problem as a global adaptive problem, in which links are added
to each page to ease the browsing experience of all site visitors. Ramakrishnan
et al. [13] have also done work in global adaptation; they observe that frus-
trated users who cannot find the content they are looking for are apt to use the
“back” button. The authors scan the access log looking for these “backtracks”
to identify documents that are misclassified in the site hierarchy, and correct
these misclassifications.

Other work has explored adaptations that are individual, rather than global;
sometimes this is referred to as personalization. It is increasingly common for
portals to allow users to manually customize portions of their front pages [14].
For instance, a box with local weather information can be provided based on zip
code information stored in a client cookie. The Newsjunkie system [7] provides
personalized newsfeeds to users based on their news preferences. Personalization
is easy when users provide both their identity and their desired customizations,
but more difficult when the personalization must take place automatically with-
out explicit management on the part of the user. The research community has
made some stabs at the more difficult problem. Anderson and Horvitz [2] auto-
matically generate a personal web page that contains all of the content that the
target user visits during a typical day of surfing. Frayling et al. [9] improve the
“back” button so that it jumps to key pages in the navigation session. Eirinaki
and Vazirgiannis [6] give a survey of the use of web mining for personalization.

Operating at a level between global adaptations and individual adaptations
are group adaptations. The mixture-model variants of the MinPath algorithm [1]
are examples of group-based shortcutting algorithms. When suggesting shortcuts
to a website visitor, they first classify that visitor based on browsing behavior,
and then provide shortcuts that are thought to be useful to that class of visitors.
Classifying users requires examining the “trails” or “clickstreams” in the access
log, which are the sequences of pages accessed by individual visitors. Other
researchers have investigated trails without the intention of adapting a website.
Banerjee and Ghosh [3] use trails to cluster users. Cooley et al. [5] discover
association rules to find correlations such as “60% of clients who accessed page
A also accessed page B.” Yang et al. [15] conduct temporal event prediction, in
which they also estimate when the client is likely to access B.

Our work follows the global model of shortcutting [10], in which shortcutting
is viewed as a global adaptation that adds links to each page that are the same
for every visitor. Like Perkowitz’ algorithm, when choosing shortcuts for a page
p we pay close attention to the number of times other pages q are accessed after

p within a trail; however, our algorithm provides improvements in the form of
reduced memory requirements and higher-quality shortcuts. A related work by
Yang and Zhang [16] sought to create an improved replacement policy for website

caching by analyzing the access log. In contrast, our work uses existing caching
policies to create an improved website.

3 Definitions

Before describing CacheCut and other shortcutting algorithms from the liter-
ature, we provide some definitions that we will use throughout the paper.

Site Graph. The site graph of a website with n unique pages is a directed
n-node graph G = (V,E) where epq ∈ E if and only if there is a link from page
p to page q.

Shortcut. A shortcut is a directed connection between web pages p and q

that were not linked in the original site graph, i.e., epq 6∈ E.

Shortcut Set. The shortcut set Sp of a page p is a set of pages {q1, ..., qN}
such that there is a shortcut from p to each qi ∈ Sp.

Access Log. The access log records all requests for content on the website.
Common webservers like Apache produce an access log automatically. In its raw
form, the access log contains information that is not needed by shortcutting
algorithms. We strip away this unnecessary information and formally consider
the access log to be a sequence of tuples of the form

〈client, page, time, referrer〉,

where client is the identity of the client accessing the website, page is the page
requested by the client, and time is the time of access. Some shortcutting algo-
rithms also use the referrer field, which is the last page the client loaded before
loading the current page. This information is self-reported by the client and
tends to be unreliable, so we prefer not to use it.

Trail. A trail is a sequence of pages {p1, p2, ..., pk}; we also assume there
is a function Time such that Time(pi) returns the time at which page pi was
accessed within the trail. A trail represents a single visit to the website by a
single client, starting at page p1 at time Time(p1)and ending at page pk at time
Time(pk). In order to determine which sequences of page requests constitute
a single visit, we require that Time(pk) − Time(p1) < 10min. Of course, it is
possible to change the 10 minute value.

Note that there need not necessarily be a link in the original site graph
between page pi and page pi+1. This is in contrast to other definitions of trails,
which use the referrer field in order to require that the trail be a sequence of
clicks. We adapt the more inclusive definition because there are many ways for
a user to navigate from pi to pi+1 without following a direct link. For instance,
the user could have navigated to an external site with a link to pi+1, typed in
the address for pi+1 manually, or followed a link on pi−1 after using the “back”
button. If visitors to page p often visit q later in the session, this is good evidence
that a shortcut from p to q would be useful, regardless of how those visitors found
their way from p to q.

Trail-Edge. The set of trail-edges ET of a trail T is the set of forward edges
spanned by T . If T = {p1, p2, ..., pk}, then ET =

⋃k−1
i=1

⋃k

j=i+1 eij ; note that

|ET | =
(

|T |
2

)

.
In a sense, ET is the set of edges that could be useful to the client in moving

from page p1 to page pk. Some of these edges are in E, the edge set of the site
graph G, while others may become available as shortcuts. A user does not need
to have all trail-edges available to successfully navigate a trail, but each edge
that is available increases the number of ways to navigate from p1 to pk.

4 Shortcutting

Shortcutting adds links to the site graph that allow users to quickly navigate
from their current location to their goal page. If a user on page A wishes to visit
page E, he may find that there is no way to navigate to E without first loading
intermediate pages B, C, and D. Providing a direct link from A to E would
save him 3 clicks. If we transformed the site graph G into a complete graph
by adding every possible link, then any user could reach any page in a single
click. However, this is an impractical transformation because a human visitor
cannot make sense of a webpage with hundreds of thousands of links. This is
representative of a general tradeoff that we encounter whenever adding links to
pages: pages become more accessible when they have more inlinks, but become
more confusing when they have more outlinks. We typically address this tradeoff
by limiting the number of shortcut links per page to N , a small value such as 5
or 10.

With the restriction of N shortcuts per page in place, an optimal shortcutting
algorithm is one that chooses the N shortcuts for each page p that minimize the
number of clicks required for site visitors to navigate to their goal page. If we
could look into the future and read the minds of site visitors, then each time a
visitor loaded a page p, we could choose the shortcuts on p based on that visitor’s
goal. In this case, only a single shortcut is needed for page p—a shortcut to the
visitor’s goal page. Since it is not possible to look into the future, algorithms for
shortcut selection must instead mine the web access log for access patterns of
past visitors, and then provide shortcuts that would have been helpful to past
visitors with the assumption that they will also be useful to visitors in the future.

4.1 Evaluating the quality of a shortcutting algorithm

The goal of shortcutting is to reduce the number of clicks that a visitor must
make in order to reach his goal page. The shortcutting algorithm must provide
shortcuts to the visitor on-line, without any knowledge of where the visitor will
go in the future; at the time of suggestion it is impossible to determine whether
any of the provided shortcuts will be useful to the visitor. Once a visitor’s trail is
complete, however, it is possible to examine the trail in its entirety and evaluate
the quality of the shortcuts provided at each page in the trail.

Ideally we could evaluate the quality of shortcuts by comparing the number
of clicks needed to reach the goal page both before and after shortcutting. Un-
fortunately, knowledge of an entire trail is not enough to determine which page
was the goal. It is possible that the last page of the trail is the goal page, as is
the case when visitors leave the web site after reaching their goals. However, it
is also possible for visitors to deliberately load several distinct goal pages during
their sessions, or to reach their goals midway through their sessions and then
browse aimlessly, or to never reach their goals at all.

The shortcut evaluation used by Anderson et al. [1] makes the assumption
that the last page in a trail is the goal page, even though this assumption may
be incorrect for many trails. Rather than make any such assumption about
goal pages, we will simply assume that any shortcut that allows a visitor to
jump ahead in his trail is useful. Then we evaluate the quality of a shortcutting
algorithm for a trail T by determining the fraction of trail-edges available to the
visitor as shortcuts or links. Formally, let ET be the set of trail edges of T , let E

be the set of edges of the site graph G, and let Sp be the set of shortcuts on page
p at the time that page p was visited. Then a trail edge epq ∈ ET is available

if either epq ∈ E or q ∈ Sp. We define the trail-edge hit ratio of a shortcutting
algorithm for a trail T as the fraction of trail-edges that are available:

HitRatio(T) =
|available trail-edges of T |

|trail-edges of T |
. (1)

The hit ratio ranges from 0 (if none of the pages in the trail are linked or short-
cutted) to 1 (if every trail-edge is provided as either a link or a shortcut). Note
that the hit ratio will generally increase as we increase the number of shortcuts
per page, N . To evaluate the overall success of a shortcutting algorithm, we
take a suitably large access log with many thousands of trails and compute the
average trail edge hit ratio:

AverageHitRatio(Trails) =

∑

T∈Trails HitRatio(T)

|Trails|
, (2)

where Trails is the set of trails in the access log.

4.2 Perkowitz’ shortcutting algorithm

In [10], Perkowitz gives a simple algorithm that we call PerkowitzShortcut

for selecting shortcuts; this algorithm is shown in Algorithm 1. Perkowitz-

Shortcut is periodically run offline to update all of the shortcuts on the web-
site, and these shortcuts remain in place until the next time that an update is
performed. For every page p, the algorithm counts the number of times other
pages are accessed after p in the same trail, and then it adds shortcuts on p to
the N pages most frequently accessed after p. PerkowitzShortcut is simple
and intuitive; however, it theoretically requires n2 memory, which can be pro-
hibitive. In practice, the memory requirements of Perkowitz are closer to O(n)
when a sparse representation of the count array C is used.

Because the shortcuts are updated offline and no information is retained
from the previous time the update was run, there is a tradeoff when choosing
how frequently to update. If the updates are too frequent, then there is inade-
quate time for the probability distribution to settle. In particular, pages p that
are infrequently accessed may have poorly chosen shortcuts (or no shortcuts at
all, if the algorithm never sees a session that loads p). If the updates are too in-
frequent, then the algorithm will be unable to adapt to changes in visitor access
patterns. Our algorithm CacheCut presented in Section 5 improves on Perko-

witzShortcut by using less memory and providing higher-quality shortcuts.

Inputs:

G = (V, E) The n × n site graph
L The access log (divided into trails)
N The number of shortcuts per page
Output:

A shortcut set Sp for each page p

PerkowitzShortcut(G, L, N)

1: Initialize an n × n array of counters C. Cpq represents how often users who visit
page p later go on to visit page q.

2: For each trail T in the access log, and for each page p in T , find all pages q that
occur after p in T . If epq 6∈ E, then increment Cpq.

3: For each page p, find the N largest values Cpq, and select these to be the shortcut
set Sp. Output all shortcut sets.

Algorithm 1: A basic shortcutting algorithm for generating shortcuts from the
current page to popular destinations

4.3 The MinPath algorithm

The MinPath [1] algorithm is a shortcutting algorithm developed to aid wire-
less devices in navigating complicated websites. Wireless devices benefit from
shortcuts more than traditional clients because they have small screens and
high latency, so each additional page that must be loaded and scrolled requires
substantial effort on the part of the site visitor. Although designed with wireless
devices in mind, MinPath is a general purpose shortcutting algorithm that can
suggest shortcuts to any type of client.

Unlike PerkowitzShortcut and our algorithm CacheCut, MinPath

does not associate shortcuts with each page on the website. Instead, it examines
the trail prefix 〈p1, ..., pi〉 that has brought a visitor to the current page pi. Based
on the prefix, MinPath returns a set of shortcuts specifically chosen for the
individual visitor. This approach requires significantly more computation each
time that shortcuts are suggested to visitors, but has the potential to provide
shortcuts that are more personalized to the individual visitor.

MinPath works in two stages. In the first stage, which occurs offline, Min-

Path learns a model of web usage. In the second stage, which occurs offline,
MinPath uses its model to estimate the expected savings of web pages, where
the expected savings of a page q is the estimated probability that the user will
visit page q multiplied by the savings in clicks required to navigate from the
current page to q. For example, suppose that a user is currently at page p and
the web usage model calculates that there is a 0.3 chance of that user visiting
page q. If it takes 3 clicks to navigate from p to q (e.g.p → a → b → q), then
the expected savings is 0.3 · (3 − 1) = 0.6 because a shortcut from p to q would
reduce the number of clicks from 3 to 1. After computing the expected savings
for all possible destinations from the current page, MinPath presents the user
with N shortcuts having the highest expected savings.

The web usage models learned by MinPath estimate the quantity

Pr(pi = q|〈p0, p1..., pi−1〉),

which is the probability that a user currently at page pi−1 will click on the link
to page q given that he has arrived at pi−1 by the trail 〈p0, p1..., pi−1〉. This
probability is 0 if there is no direct link from pi−1 to q; otherwise, a probability
estimate is learned from observed traffic. MinPath has poor performance in
practice, because the evaluation routine calls for a depth-first traversal of the
site graph starting at the current page up to a maximum depth d. The MinPath

authors state that during their tests it took MinPath an average of 0.65 seconds
to evaluate the web usage model and return shortcuts each time a visitor loaded
a page; if MinPath were deployed on a web server intended to serve tens of
thousands of requests per second the server would struggle to keep up.

5 The CacheCut Algorithm

In this section we present the CacheCut algorithm, a novel algorithm for the
generation of shortcuts on websites which is the main contribution of this paper.
In the CacheCut algorithm, we associate with each page p a cache Cp of size L

which stores web pages q that have been accessed after p within a trail. It is not
possible to store information about every page accessed after p, so CacheCut

must carefully choose which L pages to store in each cache. Our ultimate goal is
to select the shortcuts on page p from the contents of cache Cp, so we want to
store those pages q which are likely to be accessed after p many times again in
the future. When a page q is accessed after p that is not currently in Cp, we add
it to Cp because it is likely to be accessed again. If Cp is full, then we must select
one of its elements to remove and replace with q. We refer to the methodology
we use to select the element to be replaced as a replacement policy.

The main insight in the CacheCut algorithm is that replacement policies
designed for traditional caching problems are well suited as replacement policies
for shortcut caches. We can draw an analogy between traditional caching and
shortcut caching:

– Users (site visitors) are analogous to processes.

– Web pages are analogous to pages in memory.

– The shortcut set is analogous to a cache.

Replacement policies for traditional caching applications are heuristics that at-
tempt to throw out the item that is least likely to be accessed in the future, so
that the fraction of future accesses that are for objects currently residing in cache
is maximized. If we substitute the traditional caching terms for their shortcut-
ting analogs, we see that the goal for cache replacement heuristics is identical to
the goal for shortcut replacement heuristics, because we want to maximize the
fraction of accesses that come after p that are for pages currently in Cp.

Cache replacement policies are evaluated based on their hit ratio, which is
the fraction of total accesses that are for objects that were in the cache at the
time of access. Put in shortcutting terminology, the hit ratio for a trail T with
trail-edges ET becomes:

HitRatio(T) =
|{epq ∈ ET |q ∈ Cp}|

|ET |
.

If we think of the cache Cp as containing the shortcuts for page p in addition
to a permanent set of the original links on page p, then this is identical to the
evaluation equation for shortcutting algorithms given in equation (1).

5.1 Batched caching

The simplest way of using a caching algorithm to select shortcuts would be to
have the shortcut set for page p directly correspond to the cache Cp for page
p. To implement a shortcutting algorithm in this way we would set the cache
size L equal to the number of shortcuts N , and each time a page q ∈ Cp was
replaced with a page r, we would immediately replace the shortcut from p to
q with a shortcut from p to r. When evaluated based on hit ratio this scheme
performs well, but it is impractical as a deployed shortcutting scheme because
the shortcut set changes too frequently Each visitor who passes through page
p updates the cache Cp with every subsequent page access in the same trail. If
there are thousands of site visitors, then the caches may update very frequently,
which would be confusing to a visitor expecting the shortcuts to remain the same
when he refreshes the page.

Our solution is to not have the shortcut sets and the caches be in direct
correspondence. We update the cache Cp as usual with every in-trail access that
occurs after p. However, instead of immediately updating the shortcuts on p,
they are left alone. Periodically (say, once every 2 hours) the contents of Cp

become the shortcuts on p. This method allows us to continue using unmodified
out-of-the-box cache replacement policies, while relieving site visitors from the
annoyance of having the shortcut set change too frequently.

5.2 Increasing the size of the underlying cache

Once we have decided to not have the cache Cp and the set of shortcuts on p

in direct correspondence, we are freed from the restriction that they need to be
the same size. By allowing the cache size L to be greater than the number of
shortcuts N , we may keep track of data (such as hit count) about more than N

items, which enables a more intelligent choice of shortcuts. If L = N , then any
page accessed immediately before the periodic update of shortcuts will become
a shortcut for the next time period, even if it’s a rarely accessed page. With
L > N , we can exclude such a page in favor of a page that is more frequently
accessed.

Allowing L > N is beneficial, but it adds the additional challenge of choosing
which N of the L pages in Cp will become the shortcuts on page p. A simple
selection policy that performs well in practice is to maintain a hit count for each
item in Cp, and then to choose the N items most frequently accessed during the
previous time period. The hit counts are reset each time period, so this selection
criteria is based entirely on popularity during the previous time period.

In order to expand the selection criteria to consider accesses during all past
time periods, we introduce α-history selection. The α-history selection scheme
has a parameter 0 ≤ α < 1; higher α means that less emphasis is placed on
recent popularity, and more emphasis is placed on total past popularity. The
scheme works as follows: for a page q ∈ Cp, let Ap(q) be the number of times
page q was accessed after page p within a trail during the previous time period.
Let Hp(q) be the historical “score” of page q in the shortcut set Sp. Initially,
Hp(q) = 0 for all q ∈ Sp. At the end of each time period when selecting new
shortcuts, first update the scores as:

Hp(q) =

{

αHp(q) + (1 − α)Ap(q) for q ∈ Cp

0 for q 6∈ Cp
.

Now when choosing the shortcuts for page p, we pick the top N pages from Cp

using the Hp scores. The α-history selection scheme allows us to consider the
popularity of pages in past time periods, but exponentially dampens the influence
of the old hits based on their age. Note that Hp(q) and Ap(q) information is
discarded the moment that a page q is replaced in cache Cp; this ensures that
memory usage is still proportional to the cache size when α-history selection
is used. As an additional enhancement, we can weight the Ai values by the
total number of hits in time period i so that hits that occur during unpopular
times (nighttime) are not dominated by hits that occurred earlier during popular
times (daytime). All of our experiments use this enhancement. Note that the
PerkowitzShortcut algorithm is equivalent to setting L = n, the number of
web pages, and α = 0.

5.3 CacheCut implementation

The CacheCut algorithm, presented in Algorithms 2 and 3 makes use of the
following subroutines:

– Cache(Page p). Returns the cache associated with page p.
– RecordAccess(Cache C, page p, time t). Informs the cache C of a request

for page p at time t. Page p is then placed in the cache C, and it is the
responsibility of C’s replacement policy to remove an item if C is already
at capacity. The time t is used by some replacement policies, such as least
recently used, to determine which item should be replaced.

– SetHits(Cache C, page p, int x). For a page p assumed to be in cache C,
sets the hit count to x.

– GetHits(Cache C, page p). If p is currently in cache C, returns the hit
count of p. Otherwise, returns 0.

– SetScore(Cache C, page p, float x). For a page p assumed to be in cache
C, sets the score to x.

– GetScore(Cache C, page p). If p is currently in cache C, returns the score
of p. Otherwise, returns 0.

When CacheCut is initialized, every page is associated with an empty cache.
As visitors complete trails, the caches of pages along the trails are modified; this
takes place in the UpdateTrailCaches routine given in Algorithm 2. For each
trail-edge epq, two actions are taken. First, the cache Cp is informed of a hit on
page q, and the replacement policy chooses an element of Cp to replace with q.
Second, a hit count for page q in cache Cp is incremented. Some replacement
policies may maintain their own hit counts, but this hit count is used for the
α-selection scoring.

Although the caches update with the completion of every trail, the shortcut
sets are not updated until a call is made to UpdateShortcuts, which is shown
in Algorithm 3. UpdateShortcuts is periodically called in order to choose the
shortcut sets Sp from the caches Cp. This is done using α-selection scoring, as
described in Section 5.2. The hit counts for each page are reset each time that
UpdateShortcuts is called, but some information about prior hit counts is
retained in the score.

6 Promoting Pages on the Front Page

In this section we describe the FrontCache algorithm, which is similar to the
CacheCut algorithm but is specifically designed to select shortcuts for only the
front page of a website.

6.1 Motivation

Imagine the following scenario: Mount Saint Helens has begun to emit gas and
steam, and thousands of worried citizens are anxious for information. They load
the United States Geological Survey (USGS) home page at www.usgs.gov, but
are frustrated to find that information about Mount Saint Helens is buried sev-
eral layers deep within a confusing page hierarchy. As a result, visitors to the site
wind up loading 5 or 10 pages before finding the page they want, which increases

Inputs:

G The site graph
T Observed trail 〈p0, ..., pk〉

UpdateTrailCaches(G, T)

1: for i = 0 to k − 1 do

2: Cpi
← Cache(pi)

3: for j = i to k do

4: if there is no link in G from pi to pj then

5: RecordAccess(Cpi
, pj ,Time(pj))

6: hits = GetHits(Cpi
, pj)

7: SetHits(Cpi
, pj , hits + 1)

8: end if

9: end for

10: end for

Algorithm 2: This routine is called each time a trail completes in the access
log, in order to update the caches with the new information from that trail.

the strain on the server. Of course, this problem would be solved if there were a
direct link to the Mount Saint Helens page from the USGS home page, but the
site designer can be forgiven for not knowing ahead of time that this page would
suddenly become substantially more popular than the thousands of other pages
hosted at USGS.

The CacheCut algorithm may be poorly suited to this problem of promot-
ing a link to the suddenly popular page q on the front page. In the worst case,
the navigation on the website is so difficult that nobody who enters the website
through the front page is able to find q. Instead, page q’s sudden surge of pop-
ularity comes from visitors who find q using a search engine or an external link.
In this situation, CacheCut will never place a shortcut to q on the front page;
however, because of the front page’s special role in providing navigation for the
entire website, it would be advantageous to do so.

6.2 The FrontCache Algorithm

The FrontCache algorithm is well suited to scenario described above. It selects
shortcuts for the front page with the goal of maximizing the fraction of all
page accesses that are for pages linked from the front page. The FrontCache

algorithm works in the same way as the CacheCut algorithm, except that trails
(and client identities) are ignored. Instead, a single cache is maintained which is
updated when any web page in the web site is loaded.

Batched caching and increasing the size of the underlying cache are espe-
cially important for the FrontCache algorithm, because the total traffic on
the web site is much larger than the traffic conditional on first visiting some
page p. Without these techniques, the set of shortcuts on the front page would
be constantly changing, and high quality shortcuts could be wiped out by bursts
of anomalous traffic.

Inputs:

P Set of web pages {p1, .., pn}
N Number of shortcuts per page
α History weighting parameter

UpdateShortcuts(P, N, α)

1: for all pages p in P do

2: Cp ← Cache(p)
3: for all pages q in Cp do

4: newScore ← α · GetScore(Cp, q) + (1 − α) · GetHits(Cp, q)
5: SetScore(Cp, q, newScore)
6: SetHits(Cp, q, 0)
7: end for

8: S ← top N pages in Cp by GetScore(Cp, q)
9: Set shortcuts of page p to be S

10: end for

Algorithm 3: This routine is run periodically to choose the shortcuts for page
pi from the cache Ci. The shortcuts are scored by a combination of their previous
score and their number of recent hits, and the top N are chosen.

7 Experimental Results

Experimental setup and implementation details

For our experiments, we collected web access log data spanning April 17 to May
16, 2005 from the University of Texas Computer Sciences department website,
which has about 120,000 unique web pages. The access log originally included
requests for data such as images, movies, and dynamic scripts (asp, jsp, cgi).
These data are often loaded as a component to a page rather than as an individ-
ual page, which confuses trail analysis because loading a single page can cause
multiple sequential requests (such as for the page itself and its 3 images). To
address this issue, we removed all requests for content other than html pages,
text documents, and Adobe Acrobat documents.

Approximately one-third of the page requests came from automated non-
human visitors. These robots and spiders access the website in a distinctly non-
human way, often attempting to systematically visit large portions of the website
in order to build an index for a search engine or to harvest email addresses for
spammers. Because our shortcutting algorithms are intended to assist human

visitors in navigating the website, we eliminated all requests from robots. This
was done in three steps. First, we compared the clients accessing the website
with a list of known robots, and removed all matches. Second, we scanned the
access files for clients that accessed pages faster than a human normally would,
and removed those clients. Finally, we removed all trails that had length greater
than 50. Humans are unlikely to access this many web pages from a single website
during a 10 minute session, so the majority of remaining trails over length 50
were probably robots that we missed in the previous two passes.

Since trails of length 1 and 2 cannot be improved (assuming that the length 2
trail spans a static link), we restricted our dataset to include only trails of length
3 or greater. Once we performed all the various data cleaning steps, we were left
with 89,086 trails with an average length of 7.81 pages. MinPath requires a
separate training and testing set, and the access transactions in the training set
should logically occur before the transactions in the test set, so when evaluating
MinPath we made the first two-thirds of the log training data and the last
one-third test data. The other algorithms train for their future shortcuts at the
same time that they are evaluating their present shortcuts, so we were able to
use the entire access log as test data.

The MinPath algorithm has several parameters; in order to simplify our
testing we used a fixed configuration, varying only the number of shortcuts
produced. We used the “unconditional model” of web site usage because it was
easy to implement. This model had the worst performance of those presented
in [1], but its performance was within 20% of the best model, so we feel that it
gives a good understanding of the capabilities of MinPath. We did not group
pages together by URL hierarchy (effectively making the URL usage threshold
equal to 0%), but our training data had 900,000 page requests, (more than 7
times larger than in [1]), which increased the number of pages with accurate
usage estimations.

7.1 Choosing the best parameters for CacheCut

The CacheCut algorithm has several different parameters that can affect per-
formance. They are:

– N , the number of shortcuts per page.

– L, the size of the underlying cache.

– alg, the underlying cache replacement policy.

– α, the history preference parameter.

In this section we examine the tradeoffs allowed by each of these parameters,
and investigate how they affect the performance of the CacheCut algorithm as
evaluated by the formula given in equation (2).

The number of shortcuts per page. In terms of AverageHitRatio, it is
always beneficial to add more shortcuts. As discussed in the introduction, if we
allow N to become arbitrarily large, then AverageHitRatio will be 1 since every
trail-edge will either be a link or a shortcut. A site designer who wishes to use
CacheCut for automated shortcutting will need to choose a value for N that
provides a good tradeoff between shortcutting performance, and the link clutter
on each webpage. Figure 1 shows how performance increases with the number
of shortcuts. The relationship appears to be slightly less than logarithmic.

10
0

10
1

10
2

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Number of shortcuts

A
ve

ra
ge

H
itR

at
io

Fig. 1. AverageHitRatio vs. Number of
shortcuts. The more shortcuts that are
added to each page, the more likely it is
that a trail-edge will be available as a link
or shortcut. Here GDF is used with L = 80
and α = 0.9. With no shortcuts (original
links only) the hit ratio is 0.23.

0 50 100 150 200 250 300 350

0.58

0.59

0.6

0.61

0.62

0.63

0.64

0.65

Size of underlying cache

A
ve

ra
ge

H
itR

at
io

5 shortcuts
10 shortcuts

Fig. 2. AverageHitRatio vs. Size of cache.
Increasing the cache size beyond the size
of the shortcut set increases the fraction of
trail-edges available as shortcuts. Here GDF

is used with α = 0.9.

The size of the underlying cache. As the size of the underlying cache L

increases from N to 2N , the performance increases substantially. This is because
the algorithm is able to retain information about more good pages; when L = N

if the algorithm has N good pages in the cache Cp, it is forced to replace one
of them with a bad page q when q is accessed after p, and then it loses all of
its accumulated data about the good page. The gain as L continues to increase
beyond 2N is marginal, and it appears that there is little reason to increase L

beyond 5N . Figure 2 shows how performance varies with the size of the cache.

Underlying cache replacement policies. We testted our algorithm on four
cache replacement policies: Least Recently Used (LRU), Least Frequently Used
(LFU), Adaptive Replacement Cache [8] (ARC), and Greedy Dual Size Fre-
quency [4] (GDF). The latter two policies combine recency and frequency in-
formation.

As seen in Figure 3, the greatest variation in performance between cache
replacement policies occurs when L is equal to N , or only slightly larger than N .
GDF has the best performance, and LRU has the worst. The poor performance
of LRU is explained by its lack of consideration of frequency. Because traffic
patterns are fairly consistent over time, it’s important not to throw out pages
that were accessed very often in the past in favor of pages that have been accessed
recently, but only infrequently.

The differences between the other three replacement policies are very slight,
and become negligible as L increases. Regardless of what replacement policy is
used for the cache, the same scoring system is used to choose which N cache

5 10 15 20 25 30 35 40
0.49

0.5

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

Size of underlying cache

A
ve

ra
ge

H
itR

at
io

lru
lfu
arc
gdf

Fig. 3. AverageHitRatio vs. Replacement
policy. GDF is the best replacement policy,
but for large values of L all four policies
perform nearly identically. Here α = 0.9.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.35

0.4

0.45

0.5

0.55

0.6

0.65

alpha

A
ve

ra
ge

H
itR

at
io

Fig. 4. AverageHitRatio vs. α. Increasing
α to nearly 1 increases performance, but
performance drops off precipitously when α

is too close to 1. Here GDF is used with
L = 20 and N = 5.

elements become shortcuts. As L becomes large, it grows increasingly likely
that the N top-scoring pages will be present in all caches, no matter which
replacement policy is used. If enough memory is available to support a large
L, it would probably be best to use LFU because it is extremely efficient and
performs just as well as the more elaborate GDF and ARC policies.

The history preference parameter. When choosing the shortcuts on a page
p, the history preference parameter α allows us to choose what weight will be
given to recent accesses Ap and historic popularity Hp. For a detailed discus-
sion, see Section 5.2. If α = 0, then the score is entirely determined by the recent
popularity Hp(q). In this case CacheCut behaves in the same way as Perko-

witzShortcut, except that it keeps track of counts for a subset of pages rather
than for all pages. If α = 1 then the algorithm fails to work properly, because
the scores will always be equal to 0 since the history, which is initialized to 0,
will never be updated. Figure 4 shows how the value of α affects the quality of
shortcuts. Values of α very close to 1 do very well, which suggests that usage
patterns on the website are somewhat consistent over time.

7.2 Comparing CacheCut to other shortcutting algorithms

We ran several tests to compare CacheCut to PerkowitzShortcut, Min-

Path, and a baseline algorithm that selects N shortcuts for each page entirely at
random. In the comparisons we chose the best parameters for CacheCut that
we found in the previous experiments. They were L = 80, the GDF replacement
policy, and α = 0.9. For PerkowitzShortcut we allowed the time between
updates to be quite large, 72 hrs, because doing so produced the best results.

Since MinPath requires separate training and testing phases, we partitioned
the data as two-thirds training set and one-third test set.

We evaluate the performance of the 4 shortcutting algorithms using three
different criteria:

– Fraction of trails with at least one useful shortcut. If a site visitor
encounters a single shortcut to a desired destination, then the the short-
cutting algorithm was useful to that visitor. Among all trails of length 3 or
greater, we find the fraction that have at least one trail-edge available as a
shortcut. This comparison is presented in figure 5, and CacheCut clearly
outperforms the other algorithms. Adding random shortcuts is barely more
useful than having no shortcuts at all, which is not surprising for a website
with 120,000 nodes. It is also noteworthy that with only 5 shortcuts per page,
about 75% of visitors that can have their trail enhanced (i.e., those with trail
lengths of 3 or greater) are provided a useful shortcut by the CacheCut

algorithm.
– Average fraction of trail-edges available as shortcuts or links. This

is the AverageHitRatio criteria motivated in this paper. The results are given
in figure 6, and once again CacheCut shows the best performance.

– Average trail length after shortcutting. In [1] when introducing Min-

Path, the authors state that the goal of their algorithm is to reduce the
number of clicks required for a visitor to get from their initial page to their
goal page. Because there is no accurate way of determining which page in
a trail is the goal page, they assume that the last page in the trail is the
goal because after loading it the visitor left the site. Suppose that a visitor’s
access to the web site is a trail of length t ≥ 3 pages. By applying short-
cutting, we could reduce this length to as few as 2 pages (if there was a
direct shortcut from the first page to the last). To determine the length of
trails after shortcutting, we assume that at each page, users choose whatever
available shortcut leads furthest along their trail; if there are no trail-edges
available as shortcuts then the user goes to the next page in their original
trail.
If a trail has a loop, then evaluating with this scheme may inappropriately
attribute a decrease in trail length to the shortcuts. For instance, if a trail
of length 7 has page p as both its second page and its seventh page, then
regardless of the shortcutting algorithm used we would report the length
after shortcutting as 2 for a “savings” of 5 pages. To get around this problem,
we removed from consideration all trails with loops. The average trail lengths
for the different shortcutting algorithms are shown in figure 7. Even though
MinPath was designed to minimize this value, it is still outperformed by
CacheCut.

Timing tests The amount of time that shortcutting algorithms require is just
as important as the quality of shortcuts, because a shortcutting algorithm that
requires too much time will be impractical to deploy. In order to compare run-
times, we used each algorithm to generate 5 shortcuts per page on the portion

Random Perkowitz MinPath CacheCut
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Shortcutting algorithm

F
ra

ct
io

n
of

 tr
ai

ls
 w

ith
 a

 u
se

fu
l s

ho
rt

cu
t

5 shortcuts
10 shortcuts

Fig. 5. Trails aided by shortcutting. The
fraction of trails that have at least one trail-
edge available as a shortcut.

Unmodified Random Perkowitz MinPath CacheCut
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Shortcutting algorithm

A
ve

ra
ge

H
itR

at
io

5 shortcuts
10 shortcuts

Fig. 6. Edges available as shortcuts. The
fraction of trail edges available as shortcuts,
averaged over all trails.

of the access log used to test MinPath; this portion of the log had 29,249 trails
and 1,267,921 trail-edges. To complete this task, MinPath took 8.15 hours,
CacheCut took 32 seconds, and PerkowitzShortcut took 17 seconds.

PerkowitzShortcut requires less time than CacheCut, which is under-
standable because CacheCut must perform a cache replacement for each trail-
edge, whereas PerkowitzShortcut needs only to increment a count in its ar-
ray. MinPath required substantially more time than the other two algorithms,
because it must evaluate its web-usage model each time a visitor loads a page
in order to determine what shortcuts to suggest. The amount of time required
to evaluate the model is related to the out-degree of the current page and its
offspring, and is very long compared to the constant-time lookup the other al-
gorithms need to suggest shortcuts.

7.3 FrontCache Performance

Our experiments with the FrontCache algorithm were extremely encouraging.
By adding only 10 links to the University of Texas at Austin front page, we
were able to provide links to nearly 40% of those pages accessed on the web site
(including the front page itself). By contrast, the 21 static links provided by the
designers represented only 3% of page requests.

We wish to draw attention to the relationship between the FrontCache hit
ratio and the α parameter, as it differs from the relationship in the CacheCut

algorithm. As is shown in figure 8, intermediate values of α around 0.6 give the
best performance. This is in contrast to CacheCut, where α nearly equal to
1 gives the best performance. We speculate that this is because of the “bursty
popularity” scenarios for which FrontCache is designed. If α becomes too close
to 1, then pages which have a sudden surge in popularity will be excluded in
favor of shorcuts for pages that have had consistent historical popularity. Lower

Unmodified Random Perkowitz MinPath CacheCut
0

1

2

3

4

5

6

7

8

Shortcutting algorithm

A
ve

ra
ge

 n
um

be
r

of
 p

ag
es

 in
 a

 tr
ai

l

5 shortcuts
10 shortcuts

Fig. 7. Length of trails after shortcutting.
The average length from the first node in a
trail to the last, when the visitor is assumed
to take the available shortcut at each node
that leads furthest along the trail.

 0.377

 0.3775

 0.378

 0.3785

 0.379

 0.3795

 0.38

 0.3805

 0.381

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

hi
t r

at
io

weight

ARC
GDF
LRU
LFU

Fig. 8. Hit Ratio of FrontCache vs. α. Val-
ues of α around 0.6 give the best perfor-
mance.

values of α allow these pages to have shortcuts on the front page for the duration
of their popularity surge.

8 Conclusions and Future Work

Shortcutting algorithms add direct links between pages in order to reduce the
effort necessary for site visitors to find their desired content. If there was some
way to know with absolute certainty what each user’s goal page was, then it
would be easy to provide a link to that page. Since this is not possible, we
instead add a handful of links to each page p that a user is likely to find useful.

In this paper, we introduced the CacheCut shortcutting algorithm, which
uses the predictive power of cache replacement policies to provide website short-
cuts that are likely to be useful to site visitors. Compared to other shortcutting
algorithms in the literature, CacheCut is fast and resource efficient. Cache-

Cut can process a month’s worth of access logs in a few seconds, so it is suitable
for real-time deployment without straining the webserver.

The CacheCut algorithm is seen to be very effective despite its simplicity.
Most visitor trails that can be improved by shortcutting are improved by Cache-

Cut, and in fact a significant fraction of trail-edges are available as shortcuts
for the average trail. More complicated shortcutting algorithms such as Min-

Path consider a visitor’s entire trail rather than only the current page, but this
added complexity does not improve the quality of shortcuts provided, and the
additional computation needed makes them impractical to deploy. Compared to
PerkowitzShortcut, our algorithm produces higher-quality shortcuts and is
guaranteed to need only O(n) memory. In some applications this guarantee may
be desirable, even though PerkowitzShortcut uses O(n) memory in practice.

In the future, it would be useful to deploy a shortcutting algorithm on an
active website, and observe how it influences the browsing behavior of visitors.
Analyzing the performance of shortcutting algorithms offline as done in this
paper means that we must ignore the possibility that visitors’ browsing trails
would be different in the presence of shortcutting links. A deployed version would
also need to keep track of how often the presented shortcuts are used, and
retain the most utilized shortcuts rather than replace them with new shortcuts.
Deploying a shortcutting algorithm requires determining exactly how shortcuts
will be added to webpages as links. One possibility is to modify the web server
so that when it serves a web page to a visitor, HTML code for the shortcuts are
automatically added to the page. The downside of this approach is that it may
be difficult to find an appropriate place within the page to add the shortcuts so
as to not ruin the page formatting.

Acknowledgments

We would like to thank Albert Chen for his contribution to a preliminary version
of this work. This research was supported by NSF grant CCF-0431257, NSF
Career Award ACI-0093404, and NSF-ITR award IIS-0325116.

References

1. C. R. Anderson, P. Domingos, and D. S. Weld. Adaptive web navigation for wireless devices.
In Proceedings of the 17th International Joint Conference on Artificial Intelligence, 2001.

2. C. R. Anderson and E. Horvitz. Web montage: A dynamic personalized start page. In WWW
’02: Proceedings of the eleventh international conference on World Wide Web, pages 704–712.
ACM Press, 2002.

3. A. Banerjee and J. Ghosh. Clickstream clustering using weighted longest common subsequences.
In Proc. of the Workshop on Web Mining, SIAM Conference on Data Mining, pages 33–40,
2001.

4. L. Cherkasova. Improving www proxies performance with greedy-dual-size-frequency caching
policy. HP Laboratories Report No. HPL-98-69R1, 1998.

5. R. Cooley, B. Mobasher, and J. Srivastava. Web mining: Information and pattern discovery on
the world wide web. In Proceedings of the 9th IEEE International Conference on Tools with
Artificial Intelligence (ICTAI’97). IEEE, November 1997.

6. M. Eirinaki and M. Vazirgiannis. Web mining for web personalization. ACM Trans. Inter.
Tech., 3(1):1–27, 2003.

7. E. Gabrilovich, S. Dumais, and E. Horvitz. Newsjunkie: Providing personalized newsfeeds via
analysis of information novelty. In WWW ’04: Proceedings of the 13th international conference
on World Wide Web, pages 482–490. ACM Press, 2004.

8. N. Megiddo and D. S. Modha. Outperforming LRU with an adaptive replacement cache algo-
rithm. Computer, 37(4):58–65, 2004.

9. N. Milic-Frayling, R. Jones, K. Rodden, G. Smyth, A. Blackwell, and R. Sommerer. Smartback:
Supporting users in back navigation. In WWW ’04: Proceedings of the 13th international
conference on World Wide Web, pages 63–71. ACM Press, 2004.

10. M. Perkowitz. Adaptive Web Sites: Cluster Mining and Conceptual Clustering for Index Page
Synthesis. PhD thesis, University of Washington, 2001.

11. M. Perkowitz and O. Etzioni. Adaptive web sites: an ai challenge. In Proceedings of the 15th
International Joint Conference on Artificial Intelligence, 1997.

12. M. Perkowitz and O. Etzioni. Towards adaptive web sites: Conceptual framework and case
study. Artificial Intelligence, 118([1-2]):245–275, 2000.

13. R. Srikant and Y. Yang. Mining web logs to improve website organization. In WWW ’01:
Proceedings of the tenth international conference on World Wide Web, pages 430–437. ACM
Press, 2001.

14. Yahoo!, Inc. My Yahoo! http://my.yahoo.com.
15. Q. Yang, H. Wang, and W. Zhang. Web-log mining for quantitative temporal-event prediction.

IEEE Computational Intelligence Bulletin, 1(1):10–18, 2002.
16. Q. Yang and H. H. Zhang. Web-log mining for predictive web caching. IEEE Transactions on

Knowledge and Data Engineering, 15(4):1050–1053, 2003.

