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Abstract
In this paper we present a fast and accurate procedure called
clustered low rank matrix approximation for massive graphs.
The procedure involves a fast clustering of the graph and
then approximates each cluster separately using existing
methods, e.g. the singular value decomposition, or stochas-
tic algorithms. The cluster-wise approximations are then
extended to approximate the entire graph. This approach
has several benefits: (1) important community structure of
the graph is preserved due to the clustering; (2) highly accu-
rate low rank approximations are achieved; (3) the procedure
is efficient both in terms of computational speed and mem-
ory usage; (4) better performance in problems from various
applications compared to standard low rank approximation.
Further, we generalize stochastic algorithms to the clustered
low rank approximation framework and present theoretical
bounds for the approximation error. Finally, a set of exper-
iments, using large scale and real-world graphs, show that
our methods outperform standard low rank matrix approx-
imation algorithms.

Keywords: Graph mining; low rank matrix approximation;
clustering; stochastic algorithms; dimension reduction.

1 Introduction

Graphs are important modeling objects in many modern
applications. Examples include: (1) analysis of online
social networks such as Facebook, MySpace, LiveJour-
nal, YouTube; (2) analysis and search on the Internet;
(3) analysis of complex networks from biological sys-
tems; (4) image segmentation, etc. In all of these ap-
plications the edges of the graphs represent connections
or relations or links between the vertices. The vertices
could be interacting users, internet webpages, genes or
pixels in a image. There are various problems of in-
terest in these applications. A few examples are graph
clustering [24, 3, 8], computation of different proximity
measures (e.g. the Katz measure, escape probability,
rooted page rank), link prediction [17, 20, 29, 28, 26],
and modeling behavior in cellular networks [2, 22]. It
is often the case that these graphs are massive in size
involving over hundreds of millions of vertices. An im-
portant tool for analysis and interpretation of the data
is the low rank approximation of the adjacency matrices
or graph Laplacians related to the graphs at hand.
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In this paper we make three distinct contributions.
We introduce a novel framework called clustered low
rank matrix approximation for massive graphs. By first
partitioning the vertices into a set of disjoint clusters
with a fast procedure we are able to preserve important
structural information of the original graph. Then we
compute a low rank approximation of each cluster inde-
pendently. Finally the different cluster-wise approxima-
tions are combined using an optimal projection step to
obtain a low rank approximation of the entire graph,
thus including connections or edges between vertices
from different clusters. Recently, stochastic algorithms
have been developed that use randomness to obtain low
rank approximations of a given matrix [16, 10, 23]. The
resulting approximations are not optimal, but the algo-
rithms are fast and simple to implement. In addition,
the approximation errors can be bounded due to their
stochastic nature. As a second contribution of this pa-
per, we extend stochastic methods to the clustered low
rank approximation framework and prove corresponding
theoretical bounds for the approximation errors. As a
third contribution, we show that the proposed methods
perform very well in practice.

The combination of clustering and low rank approx-
imation gives a much better approximation of the origi-
nal graph. In particular, information from every cluster
is extracted regardless of their relative sizes. Differ-
ent clusters of graphs have distinct meanings and are
usually of varying sizes, and so it is beneficial to have
information on all of them. A standard low rank com-
putation is likely to only extract information from the
largest or a few dominant clusters, thus filtering out
smaller ones completely. In a specific web graph ex-
ample, with over 400,000 vertices, the truncated singu-
lar value decomposition [14] (SVD) of the entire matrix
gives an approximation with relative error as high as
95%, whereas our clustered algorithms result in a rel-
ative error of only 68%, see Figure 1. The ranks for
the two low rank approximation are different but both
approximations use the same amount of memory. In ad-
dition to this drastic improvement in accuracy, the pro-
posed methods have usually faster execution time than
state-of-the-art methods for low rank matrix approxi-



mation. The improvement in time is credited to the sev-
eral but much smaller cluster-wise computations. Since
the clusters are disjoint, the cluster-wise computations
are independent and can be performed easily in parallel
on modern architectures, such as multi-core machines.
Note that the above mentioned relative errors could be
considered high. But sparse matrices from information
science applications, e.g. web link matrices, adjacency
matrices for social networks and term-document matri-
ces, do not have a clear low rank structure, thus can
not be approximated with very low relative error, say
10−3 or 10−6. Nonetheless, low rank approximations in
these applications are extremely useful for many differ-
ent reasons.

The structure of the paper is as follows. In Sec-
tion 2 we introduce clustering and stochastic algorithms
for low rank approximation. In Section 3 we present the
framework for clustered low rank matrix approximation.
We further state and prove bounds for stochastic al-
gorithms within the clustered low rank approximation
framework. Section 4 contains a set of experiments that
highlight the advantages and differences of the proposed
methods in comparison to existing methods. Finally in
Section 5 we state our conclusion based on the proposed
methods and presented experiments.

2 Preliminaries: graph clustering and
stochastic algorithms

2.1 Graph clustering. A graph G = (V, E) is char-
acterized by a set of vertices V = {1, · · · ,m} and a set
of edges E = {eij |i, j ∈ V}. Let A = [aij ] be the corre-
sponding m×m adjacency matrix such that aij repre-
sents the weight of edge eij . If there is no edge between
vertices i and j then aij = 0. In modern applications,
it is common that the number of vertices is large giv-
ing rise to massive adjacency matrices. An important
problem in applications involving graphs is clustering of
the vertices V into c disjoint sets Vi, i = 1, · · · , c, i.e.
V = ∪c

i=1Vi and Vi ∩ Vj = ∅ when i 6= j. There are
objective functions, based on various graph cuts, e.g.
ratio cut [15], and normalized cut [24], that measure
the quality of a given clustering. It has been shown
that these objective functions are np-hard [31]. A com-
mon approach to tackle this difficulty is based on spec-
tral relaxation [24, 21]. Solutions of the relaxed prob-
lem require calculation of a number of eigenvectors of
the graph Laplacian. The unnormalized graph Lapla-
cian is defined as L = D−A and the normalized graph
Laplacian as L̄ = I − D−1/2AD−1/2, where the diago-
nal degree matrix D is given by dii =

∑m
i=1 aij . Due to

the high computational complexity of finding eigenvec-
tors of large matrices, research has been done in finding
scalable and often more accurate alternatives to spec-

tral graph clustering algorithms. Examples include now
widely used software packages graclus [8], and metis
[1], which directly minimize various graph partition ob-
jectives using multilevel approaches without computing
eigenvectors. Graph clustering is also closely related to
k-means clustering. In fact the two different approaches
can be viewed in a single unified framework [8]. For fur-
ther details on clustering the reader may consider the
survey [12].

Graph clustering in itself is not addressed in this
paper, but we rely on fast and multilevel clustering
algorithms for massive graphs, e.g. graclus and
metis. For the remainder of the paper we assume that
for a given adjacency matrix A we have a partitioning
of the vertices V into c disjoint sets V1, · · · ,Vc, with
mi = |Vi|. Without loss of generality, we can assume
that the vertices in V1, . . . ,Vc are sorted in strictly
increasing order. Then the adjacency matrix will have
the following form

(2.1) A =

A11 · · · A1c

...
. . .

...
Ac1 · · · Acc

 ,
where each diagonal block Aii, i = 1, . . . , c, is an mi×mi

matrix that can be considered as a local adjacency
matrix for cluster i. The off-diagonal mi × mj blocks
Aij with i 6= j, contain the set of edges between vertices
belonging to different clusters.

In perfectly clusterable graphs, the off-diagonal
blocks will not contain any edges, thus yielding Aij = 0,
and the graph will consist of c disconnected components.
In a realistic scenario with a graph forming good clusters
most of the edges will be contained within the diagonal
blocks Aii, while the off-diagonal blocks Aij will contain
only a few edges. We would like to remark that not all
graphs contain natural clusters, but many graphs are
clusterable to some extent [18, 19]. This is the case
for graphs arising in many real-world applications, for
example, see Table 1.

We will give a comparison with other methods
that involving clustering in Section 3.4 after we have
presented our work.

2.2 Stochastic algorithms for low rank matrix
approximation. In recent years, stochastic algorithms
have been employed for computing low rank matrix ap-
proximations [16, 10, 5, 23]. The benefits of these algo-
rithms is their simple implementation, applicability on
large scale problems, and existence of theoretical bounds
for the approximation errors. The stochastic algorithms
use randomness to construct a matrix Y that approxi-



Algorithm 1 Stochastic algorithm for low rank approx-
imation [16].
Input: An m × m matrix A, target rank k, oversam-

pling parameter p ≥ 1.
Output: An orthonormal m × (k + p) matrix Q that

approximates the k + p dimensional dominant sub-
space of the range of A.

1: Generate an m× (k + p) random matrix Ω.
2: Compute Y = AΩ.
3: Compute an orthonormal matrix Q whose columns

form a basis for the range of Y .

mates the dominant subspace of the range1 of a given
matrix A. In general, A may be rectangular but we will
focus on square (but possibly non-symmetric) matrices
in this paper. For a given m×m matrix A and a target
rank k in the approximation, stochastic methods gener-
ate an m× (k+ p) standard Gaussian matrix2 Ω, where
p is a small oversampling parameter (typically set to
5–10). Multiplying A with the random matrix Ω we ob-
tain Y = AΩ. An orthonormal matrix Q is constructed
from Y (e.g. using the qr decomposition) as a basis
for the range of Y . These steps are presented in Al-
gorithm 1. The corresponding low rank approximation
is given by A ≈ Â = QQTA. By computing the SVD
of QTA = W̄ Σ̄V̄ T we get Â = (QW̄ )Σ̄V̄ T ≡ Ū Σ̄V̄ T,
which approximates the truncated SVD of A. We will
now present a few theorems that bound the norm of
the approximation error ‖A− Â‖ = ‖(I −QQT)A‖ de-
terministically and in expectation due to the stochastic
nature of the algorithm. In Section 3.2 we will present
generalizations of these theorems within our clustered
low rank approximation framework (to be presented in
Section 3).

Let the full svd of A be given by

(2.2) A = UΣV T = [U1 U2]
[
Σ1 0
0 Σ2

] [
V T

1

V T
2

]
,

where the singular values of A are partitioned into
Σ1 = diag(σ1, · · · , σk) and Σ2 = diag(σk+1, · · · , σm).
The matrices U and V are partitioned accordingly and
contain the left and right singular vectors, respectively.
Introduce also

(2.3) Ω1 = V T
1 Ω, and Ω2 = V T

2 Ω,

for a given m× (k+p) matrix Ω. We have the following
deterministic and probabilistic bounds.

1The range of A is the subspace {y | y = Ax, x ∈ Rm}.
2Standard Gaussian matrix refers to a matrix with entries that

are iid and normally distributed with zero mean and standard
deviation of one.

Theorem 2.1. ([5, Lem. 4.2] ) Let us be given an
m × m matrix A, a target rank k, and oversampling
parameter p > 1. For a given m × (k + p) matrix Ω
compute Y = AΩ. Let PY be the orthogonal projec-
tor on the range space of Y . Let the SVD of A be as
in (2.2) and Ω1, Ω2 as in (2.3). Assume that Ω1 has
full rank. Then the approximation error is bounded as
‖(I − PY )A‖2∗ ≤ ‖Σ2‖2∗ + ‖Σ2Ω2Ω†1‖2∗, where ‖ · ‖∗ de-
notes either the spectral norm or the Frobenius norm,
and Ω†1 is the pseudo inverse of Ω1.

Theorem 2.2. ([16, Thm. 10.5 and Thm. 10.6])
Let Ω be an m × (k + p) standard Gaussian matrix.
With the notation as in Theorem 2.1 we have

E‖(I − PY )A‖F ≤
(

1 +
k

p+ 1

)1/2

‖Σ2‖F ,

E‖(I − PY )A‖2 ≤(
1 +

√
k√

p− 1

)
‖Σ2‖2 +

e
√
k + p

p
‖Σ2‖F .

A simple but important modification, namely to
compute Y = (AAT)qAΩ with q > 0, to step 2 in
Algorithm 1 gives a considerable improvement in the
low rank approximation, in particular when the decay
of the singular values of A is slow. The introduced
power parameter q is small and usually q . 3. This
modification, with powers of AAT, is closely related to
block Krylov methods [27, Chp. 4, Sec. 3.3].

3 Contributions

3.1 Clustered low rank matrix approximation.
We are interested in a low rank approximation of a
given matrix A arising from a graph. It is important
to observe that we are not interested in the best
approximation of specified rank, which is given by
the truncated SVD, but rather an approximation that
has comparable memory requirements, is efficient to
compute and that preserves important structure of
the matrix. We will motivate the clustered low rank
approximation by considering a special case. Let A be
the adjacency matrix of a graph that consists of two
perfect clusters (two connected components). Then we
can write

A =
[
A11 0
0 A22

]
,

where A11 and A22 are (informally) the two clusters.
The best rank-k approximation of A is given by UkΣkV

T
k

where Uk and Vk contain the first k left and right
singular vectors, and Σk contains the top k singular
values [11, 14]. Given the block structure of A, it is



clear that many elements of Uk and Vk will be zero3.
For example, if σ1(A22) < σk(A11), then the best low
rank approximation of A has the form

UkΣkV
T
k =

[
Ūk

0

]
Σ̄k[V̄ T

k 0],

where ŪkΣ̄kV̄
T
k is the truncated svd of A11. No

information from A22 is extracted. Of course, in the
general case, the top k singular values might originate
both from A11 and A22. But, there will still be a non-
zero pattern in both Uk and Vk, depending on which
cluster the corresponding singular value belongs to.

In clustered low rank approximation we first extract
the clusters and then compute low rank approximations
of each cluster. In this example we may compute two
rank-k truncated svd approximations; A11 ≈ ŪkΣ̄kV̄

T
k

and A22 ≈ ŨkΣ̃kṼ
T
k . We could also use the stochastic

algorithms on each block separately to obtain different
(than the truncated svd) low rank approximations.
Combining the two approximations we get

(3.4) A ≈
[
Ūk 0
0 Ũk

] [
Σ̄k 0
0 Σ̃k

] [
V̄k 0
0 Ṽk

]T

.

Clearly, this is no longer a rank-k approximation of A
but rather a rank-(2k) approximation. A key obser-
vation is that the storage requirements is basically the
same as for a rank-k approximation, since the zero off-
diagonal blocks in the matrices of singular vectors of the
right hand side of (3.4) are not stored.

In the general case we do not have a perfect
clustering, resulting in non-zero off-diagonal blocks in
A. It turns out that, for many matrices originating from
real-world applications, in particular social networks
and graphs from web and image data, the off-diagonal
blocks are relatively small (e.g. in norm or number of
non-zeros) compared to the diagonal blocks due to the
clusterability of the data. Thus we can use the same
principle as above to obtain a low rank approximation.
Formally, we have

A =
[
A11 A12

A21 A22

]
≈ Ū S̄V̄ T

≡
[
U1 0
0 U2

] [
S11 S12

S21 S22

] [
V1 0
0 V2

]T

,

(3.5)

where U1 and V1 are obtained from a low rank approx-
imation of A11, and similarly, U2 and V2 are obtained
from a low rank approximation of A22. Since U1, V1,

3Unless we are in a degenerate situation where some singular

values of A11 and A22 are equal, in which case a sparse basis of
the corresponding invariant subspace can be chosen.

U2 and V2 are orthonormal, it follows that Ū and V̄ are
orthonormal as well. Then it is easy to show that the
optimal S̄ (in a least squares sense) to approximate A
is given by S̄ = ŪTAV̄ or Sij = UT

i AijVj for i, j = 1, 2.
Another motivation to have block diagonal Ū and

V̄ matrices in a low rank approximation is given by
the following observation. Assume we have a low rank
approximation A ≈ UΣV T, e.g. the truncated SVD,
split U and V in two parts:

U =
[
U1

U2

]
, V =

[
V1

V2

]
.

It follows that

A ≈ UΣV T =
[
U1 0
0 U2

] [
Σ Σ
Σ Σ

] [
V1 0
0 V2

]T

= Ū Σ̄V̄ T

Clearly, this is not the best low rank approximation
of A in terms of the subspaces of Ū and V̄ . The
approximation can be improved by replacing Σ̄ with
S̄ = ŪTAV̄ .

3.2 Stochastic algorithms for clustered low
rank approximation. In this section will formally
state and prove our main theorem for clustered low rank
approximation using the stochastic algorithm presented
in Section 2.2.

Theorem 3.1. Let A be an m × m matrix that is
partitioned in c×c blocks as in (2.1). Further let Y (i) be
given mi×ki matrices and denote by PY (i) the (unique)
orthogonal projector on the range space of Y (i). Let

Y = diag
(
Y (1), · · · , Y (c)

)
=

Y
(1) 0 0

0
. . . 0

0 0 Y (c)


and denote PY to be the orthogonal projector on the
range space of Y . Then we have

‖(I − PY )A‖2F =
c∑

i,j=1

‖(I − PY (i))Aij‖2F ,

‖(I − PY )A‖22 ≤
c∑

i,j=1

‖(I − PY (i))Aij‖22.

Proof. We will give the proof for the spectral norm
bound. The equality for the Frobenius norm bound
is straightforward. First, observe that PY is block
diagonal, i.e.

PY = diag(PY (1) , · · · , PY (c)) =

PY (1)

. . .
PY (c)

 .



Then ‖(I − PY )A‖22 = ‖AT(I − PY )A‖2. Introduce
B = AT(I − PY )A and consider its block structure,

B11 · · · B1c

...
. . .

...
BT

1c · · · Bcc

 ≡
A11 · · · A1c

...
. . .

...
Ac1 · · · Acc


T

·

I − PY (1)

. . .
I − PY (c)


A11 · · · A1c

...
. . .

...
Ac1 · · · Acc

 .
Since B clearly is symmetric and positive semidefinite,
using Proposition 8.3 in [16] and Theorem 4.2.1 in [14]
it follows that

(3.6) ‖B‖2 ≤
c∑

j=1

‖Bjj‖2.

Further, it is easy to show that the diagonal blocks4 are
given by Bjj =

∑c
i=1A

T
ij(I − PY (i))Aij . We then use

the triangle inequality on ‖Bjj‖2 to obtain

‖Bjj‖2 ≤
c∑

i=1

‖AT
ij(I − PY (i))Aij‖2

=
c∑

i=1

‖(I − PY (i))Aij‖22.

Combining this bound with (3.6) completes the proof.

Theorem 3.1 is valid for any partitioning of A and
any matrices Y (i). We will now use the stochastic al-
gorithms from Section 2.2 to obtain low rank approx-
imations of each diagonal block Aii. Recall that after
clustering most of the weight of A is within the diag-
onal blocks/clusters. Let each diagonal block Aii have
the full SVD

Aii = U (i)Σ(i)(V (i))T

= [U (i)
1 U

(i)
2 ]

[
Σ(i)

1 0
0 Σ(i)

2

]
[V (i)

1 V
(i)
2 ]T,

(3.7)

for i = 1, · · · , c. We assume that each Σ(i)
1 is a

ki × ki diagonal matrix with the top ki singular values.
Introduce mi × (ki + pi) matrices Ω(i) and set Y (i) =
AiiΩ(i). Let also

(3.8) Ω(i)
1 = (V (i)

1 )TΩ(i), Ω(i)
2 = (V (i)

2 )TΩ(i),

for i = 1, · · · , c.

4Expressions for the off-diagonal blocks Bij are omitted since
they are not used in the analysis.

Theorem 3.2. (clustered error bound) Let A be
a given m×m matrix with the block partitioning given
in (2.1). Introduce the SVD of Aii and a partitioning
of the corresponding Σ(i) as in (3.7). Let ki be a
target rank for Aii and pi a corresponding oversampling
parameter such that ki + pi ≤ mi. Introduce matrices
Ω(i) ∈ Rmi×(ki+pi), form Y (i) = AiiΩ(i) and Y =
diag(Y (1), · · · , Y (c)). Form also Ω(i)

1 and Ω(i)
2 according

to (3.8) and assume each Ω(i)
1 has full rank. Then the

approximation error is bounded by

‖(I − PY )A‖2∗ ≤
c∑

i,j=1

‖(I − PY (i))Aij‖2∗

≤
c∑

i=1

(
‖Σ(i)

2 Ω(i)
2 (Ω(i)

1 )†‖2∗ + ‖Σ(i)
2 ‖2∗

)
+(3.9)

c∑
i,j=1, i 6=j

‖Aij‖2∗,

where the norm ‖ · ‖∗ denotes either the spectral or the
Frobenius norm.

Proof. This bound follows trivially from the previously
established results. The first inequality is the result of
Theorem 3.1. In (3.9) we have used Theorem 2.1 on each
term in the summation that involves a diagonal block
Aii. For off-diagonal blocks ‖(I−PY (i))Aij‖2∗ ≤ ‖Aij‖2∗,
since I − PY (i) are orthogonal projectors.

It is now straightforward to bound the expectation of
the approximation error, which we state without proof.

Theorem 3.3. Let Ω(i) be mi × (ki + pi) standard
Gaussian matrices. Using the notation introduced in
Theorem 3.2 we have

E‖(I − PY )A‖F ≤“X
i

“
1 +

ki

pi + 1

”
‖Σ(i)

2 ‖
2
F +

X
i 6=j

‖Aij‖2F
”1/2

,

E‖(I − PY )A‖2 ≤
X
i 6=j

‖Aij‖2 +

X
i

““
1 +

√
ki√

pi − 1

”
‖Σ(i)

2 ‖2 +
e
√

ki + pi

pi
‖Σ(i)

2 ‖F
”
.

Our randomized clustered low rank approximation
framework is summarized in Algorithm 2.

Observe that we can compute a deterministic clus-
tered low rank approximation by taking Ui and Vi as
the truncated left and right singular matrices of Aii. In
this case the approximation of the diagonal blocks is op-
timal, but the resulting approximation on the entire A
is not optimal. In our experimental results, e.g., in Fig-
ure 2, we occasionally observed that randomized meth-
ods resulted in a slightly better approximation than the



Algorithm 2 Clustered and randomized low rank
matrix approximation.
Input: An m ×m matrix A, clustering of the vertices
V1, · · · ,Vc, target ranks ki, oversampling parame-
ters pi ≥ 1 for each cluster Aii, and optionally a
small power parameter q > 0.

Output: Orthonormalmi×(ki+pi) matrices Ui and Vi,
and (ki+pi)×(kj+pj) matrices Sij for i, j = 1, · · · , c
to approximate A as in (a generalized expression
of) (3.5).

1: for i = 1 to c do
2: Generate Ω(i), an mi×(ki+pi) standard Gaussian

matrix.
3: Compute Y (i) = AiiΩ(i) or

Y (i) = (AiiA
T
ii)

qAiiΩ(i).
4: Compute Ui as an orthonormal basis for the range

of Y (i).
5: Compute Vi as an orthonormal basis for the range

of AT
iiUi.

6: end for
7: Compute Sij = UT

i AijVj for i, j = 1, · · · , c.

one obtained from truncated SVDs of Aii. In addition
we also observed that randomized algorithms tended to
capture slightly more information from the off-diagonal
blocks.

The bounds in the randomized approach of Theo-
rem 2.2 clearly depend on the singular values of A. If
there is a gap between the singular values σk and σk+1

or the singular values have fast decay then the error
bounds will be close to the optimal error bound for a
rank-k approximation. One can observe that in the case
of A having rank-k, then Y = AΩ will yield a subspace
that spans the range space of A. On the other hand,
if the singular values of A have slow decay, then the
bounds due to the randomized approach will be practi-
cally useless. Nonetheless, these randomized algorithms
perform well, in particular when used with the power
approach described at the end of Section 2.2. See the
experimental results in Section 4. The same is true for
the clustered randomized approach. The bounds de-
pend on the singular values of each cluster Aii, but also
on the amount of information that is in the off-diagonal
blocks Aij , i 6= j. We can make two observations in
the clustered approach: (1) we get many more singular
values, ck in total5 compared to k singular values in the
non-clustered case, (2) the bounds are increased by the
presence of the off-diagonal blocks in (3.9). If we have

5Here we assume for simplicity that each cluster Aii is approxi-
mated with a rank-k approximation and we have c clusters. Using

different ranks ki for the different clusters ck would be replaced
with k1 + · · ·+ kc.

a matrix A that forms “good” clusters, then the impact
of the off-diagonal part will be smaller than the reduc-
tion that is obtained due to the inclusion of many more
singular values of the diagonal blocks and ultimately
give lower bounds. Also for the clustered case we ob-
serve very good performance, in particular when using
a power method, i.e. Yi = (AiiA

T
ii)

qΩi as in step 3 in
Algorithm 2.

3.3 A few comparisons, observations and ex-
tensions. In this section we will discuss some of
the properties of the clustered approach and differ-
ences compared to traditional approaches. Assume
we have a rank-k approximation of an m × m ma-
trix A ≈ USV T and rank-k approximation of each
Aii ≈ U (i)S(i)V (i) that results in a rank-(ck) approx-
imation of A ≈ Ū S̄V̄ T where Ū = diag(U (1), · · · , U (c)),
V̄ = diag(V (1), · · · , V (c))T and c is the number of clus-
ters. Observe that there is a big difference in the ranks
(k verses ck) for the two approximations. Here we fo-
cus on the memory usage in terms of number of entries
to represent the approximation. Assuming the middle
matrices S and Sii are not diagonal, the non-clustered
case uses 2mk+ k2 entries while the clustered case uses
2mk + c2k2 entries. For large scale problems the dom-
inant part is the first term, which is the same in both
expressions. But clearly when the number of clusters is
large then the c2k2 term may become a concern.

Depending on the data set at hand, there are
two obvious modifications we can make to save stor-
age. First alternative is to omit all off-diagonal blocks
Aij with i 6= j and only approximate the diagonal
blocks Aii. The size of the storage then becomes 2mk+
ck2. Although this is a viable alternative, no interac-
tion between the clusters can be captured. In our ex-
periments, we have observed that the contribution from
the off-diagonal blocks ranges from 3–25%, depending
on how good clusters the graph forms. The second al-
ternative is to simply store/save Aij instead of comput-
ing and storing the corresponding Sij = (U (i))TAijV

(j),
which are dense. If the graph forms clusters with little
interaction in between, and k is relatively large then the
storage space for Sij may be larger than for Aij .

An important step in this framework is the existence
of fast clustering algorithms. We have used both
graclus and metis [8, 1] for clustering. They minimize
different objective functions, and thus result in slightly
different clusterings, in particular with respect to cluster
sizes. However we have seen only small differences
in the goodness of the resulting approximations. An
interesting problem would be to formulate the clustering
objective with the goal of achieving better low rank
approximations.



The time complexity of the clustered low rank
approximation is lower (or comparable) to non-clustered
approaches. The core algorithms (truncated SVD or
stochastic methods) for the low rank computation are
the same in both cases. The difference is that in the
proposed method with c clusters we compute c much
smaller low rank approximations. In addition, since the
clusters are disjoint the computations on each block are
independent and can easily be performed in parallel on
modern multicore machines.

3.4 Related work. There are a few publications
that are similar in spirit to our proposed methods in the
sense of using clustering in low rank approximations.

In Dhillon and Modha [9] spherical k-means clus-
tering is applied to an m× n term document matrix A
so that the columns (documents) of A are clustered into
k clusters. Permuting the columns, according to cluster
belongings, yields AP = [A1 · · · Ak], where Ai denote
the associated block-wise clusters. From each cluster a
concept vector is derived that is the centroid of the col-
umn vectors from that cluster. The concept vectors are
later used as a basis to obtain a low rank approximation
of the term document matrix A.

In [7, 13] clustering is used to partition either the
rows or columns of an m× n matrix A. Similarly as in
[9] the data matrix is arranged into block-rows or block-
columns according to cluster belongings. Then each
cluster is approximated with a rank-1 or rank-ki approx-
imation using the truncated SVD. The vectors from the
cluster-wise approximations are later used to compute
an approximation for the entire data matrix A. These
methods are used in information retrieval applications
in high dimensional spaces, e.g. similarity search of
patterns, content based retrieval from databases. Gal-
lopoulos and Zeimpekis [13] also extend this clustered
low rank approximation into clustered latent semantic
indexing.

In a similar setting, Zhang and Zha [33] consider
structural and perturbation analysis of truncated SVDs
for column partitioned matrices. Necessary and suffi-
cient conditions are given in order to reconstruct the
truncated SVD of the original data matrix A from the
truncated SVDs of its block-column-wise partitioning.

Boutsidis et al. [6] use clustering in the setting of
column subset selection problem. Column subset selec-
tion problems are important in large scale computations
when the data matrix A is streaming in a way that it
is impossible or impractical to store it entirely. An ap-
proach to deal with this issue is to select certain number
of columns of A and use them to compute the factors of
a low rank approximation. In clustered subset selection
the columns of A are clustered into l clusters, and then

a certain number of columns from each cluster are se-
lected as representatives. All selected columns are then
used to obtain a low rank approximation of A.

Zhang and Kwok [32] present a procedure called
clustered Nyström method. In the Nytröm method
approximations of the eigenfunctions to a kernel for
an integral equation are sought. As in the column
subset selection problem, the approach here is to chose
a subset6 of samples (called landmark points) and
compute the eigenvectors of the sampled kernel matrix.
The clustering of the sample points is based on the
closest landmark point and an error analysis is presented
for the sub-kernel matrices. The error analysis is then
extended to the entire kernel. The applications in [32]
are large scale manifold learning and dimensionality
reduction.

There are important differences in our clustered
low rank approximation with respect to the methods
mentioned above. In our approach we have a clustering
of the columns and rows simultaneously. This has the
effect that the low rank approximations of each cluster,
UiΣiV

T
i ≈ Aii, can be combined to approximate the

entire m × m matrix A with U = diag(U1, · · · , Uc)
and V = diag(V1, · · · , Vc), which are orthonormal by
construction, i.e. UTU = I and V TV = I. In the block-
column-wise approximations used in [9, 7, 13, 33, 6] the
left singular vectors Ui are obtained by approximating
the block-columns Ai, then the approximation of A
is obtained in terms of Ũ = [U1, · · · , Uc], which is
not orthonormal and has to be dealt with explicitly in
order to compute the core matrix in the approximation.
A difference compared to the column subset selection
methods, which use only part of the data to compute the
low rank approximation, is that we use the entire matrix
A to compute the clustered low rank approximation.
We use the diagonal blocks Aii to compute the Ui

and Vi, but at the next step the core matrix S is
generated using the off-diagonal blocks as well. A
very important consequence of the block structure of
U = diag(U1, · · · , Uc) is that we save in storage since
only the non-zero parts are stored. On the other hand,
in the related methods described above, there is no
zero structure in the resulting basis matrices that allows
memory storage savings, i.e. Ũ = [U1, · · · , Uc] is dense.
A difference to the Nytröm method is that, there it is
assumed that the entire matrix is not accessible, and
the kernel matrix is symmetric and positive definite. In
our case the matrix A is square, sparse, not necessarily
symmetric and in general indefinite. In addition we are
not attempting to compute eigenvectors of A but rather
to have a structured low rank approximation.

6The subset of samples is usually chosen randomly.



Table 1: Basic statistics of the three data sets. We also include clustering related information for a few cases.
Data set # of vertices # of edges # of clusters clustering method edges within clusters
Image graph 10,000 1,091,910 10 graclus 70.4%
Google web graph 434,818 3,419,124 40 graclus 97.7%
LiveJournal graph 3,828,682 65,825,429 61 metis 68.9%
LiveJournal graph 3,828,682 65,825,429 117 graclus 66.3%

Table 2: We used three methods to compute low rank
approximations. Each method has a non-clustered
version and a clustered version, indicated with the
additional “-C”.

Name Method
svds truncated SVD of A
randAlg Y = AΩ
randAlgPow Y = (AAT)qAΩ
svds-C truncated SVDs of Aii

randAlg-C Yi = AiiΩi

randAlgPow-C Yi = (AiiA
T
ii)

qAiiΩi

4 Experimental results

4.1 Data set, algorithms and experimental
setup. We have conducted a large set of experiments
on graph data from numerous and diverse applications.
The presented experiments are based on: (1) Google
web graph representing links between internet pages
[18]; (2) a social network graph representing relation-
ships among LiveJournal users [4, 18]; and (3) a graph
obtained from an image segmentation problem. In all
experiments we used only the largest connected compo-
nent of each graph. Some basic statistics of the largest
components of each data set are presented in Table 1.
Note the large size of the LiveJournal graph.

Three different methods were used to compare the
clustered verses the non-clustered approaches. These
methods are: (1) truncated SVD; (2) stochastic method
based on Algorithm 1; and (3) stochastic method with
power, also based on Algorithm 1 but with step 2
replaced with Y = (AAT)qAΩ. See Table 2 for a
description. In the bottom second half of Table 2 we
use the same set of algorithms but on each cluster Aii

separately. The outputs Yi are orthonormalized and
combined as described in Section 3.1 to obtain a low
rank approximation of A.

Given a low rank approximation Â = USV T of an
adjacency or normalized adjacency matrix A, obtained
by any of the methods in Table 2, we present the relative
error based on the Frobenius norm (in %),

‖A− Â‖F /‖A‖F =
(
‖A‖2F − ‖S‖2F

)1/2
/‖A‖F .

since it can be computed without explicitly forming the
approximation Â. This is not the case for the relative
error in the spectral norm. In each experiment (both
clustered and unclustered) we used the target ranks
k = 20, 50, 100, 150, 200. Each rank corresponds to
a point on a given curve in the plots. The oversampling
and power parameters (where applicable) were set to
p = 10 and q = 2. Observe that the effective rank of
the approximation in the stochastic methods is k + p
for the non-clustered methods and c(k + p) for the
clustered methods. We will now present and discuss a
few but highly representative plots illustrating that the
clustered approaches drastically improve the quality of
the low rank approximations compared to non-clustered
methods.

4.2 Performance with respect to number of
clusters. In Figure 1 we present the relative errors for
the Google web graph and LiveJournal graph, when the
low rank approximations are computed with truncated
SVD (svds and svds-C). Clearly clustering and increas-
ing the number of clusters substantially improves the
quality of the approximation. Note that, in all relative
error plots, the x-axis represents the memory usage (in
terms of number of double precision numbers) and not
the rank of the approximation. We can further observe
that for a given target rank, increasing the number of
clusters also increases the memory usage.

One may remark that the relative errors are not
very small, but this is expected of sparse matrices from
information retrieval applications, these approximations
and dimensionality reduction schemes are still very
useful. What we emphasize is the improvement of the
clustered algorithms compared to the truncated SVD,
which is optimal with respect to rank. But in our
clustered case we obtain substantial improvements when
comparing with respect to memory usage.

4.3 Comparison between different randomized
algorithms. In Figure 2 we show performance of all
six algorithms from Table 2 for a specific number of
clusters. A first observation again is that all clustered
methods, including the stochastic ones, give a much bet-
ter performance than non-clustered methods. A second
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Figure 1: Relative error for the Google web graph (left) and the LiveJournal graph (right) when varying the
number of clusters, indicated in the legend of corresponding graph. Clearly, for a specific target rank, increasing
the number or clusters substantially improves the approximation. Note also that the proposed clustered methods
significantly outperform the SVD in terms of the relative error presented with respect to memory consumption
(in contrast the SVD is optimal with respect to the rank of the approximation). In the legend of the plots svds
denotes a truncated SVD computation.
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Figure 2: Relative error for the image graph (left) and the LiveJournal graph (right). In the left plot we
approximated the normalized adjacency matrix D−1/2AD−1/2. The number of clusters are 10 for the image
graph and 117 for the LiveJournal graph—both were obtained using graclus. See Table 2 for a description of
the different abbreviations.

observation is that the randAlgPow and svds methods
perform similarly. The same conclusion can be drawn
for the corresponding clustered versions, randAlgPow-C
and svds-C. In addition, we see that the stochastic algo-
rithm with power occasionally gives better result than
the truncated SVD. Lastly, we see that the randAlg and

randAlg-C methods do not perform as well as the other
methods, indicating the importance of using powers, at
the expense of additional computational time.

4.4 Timing comparisons. In Figure 3 we present
two timing plots. The left plot of Figure 3 presents CPU
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Figure 3: Left panel shows CPU run times for experiments with the Google web graph, when varying the number
of clusters. Right panel shows CPU times for the LiveJournal experiments with 117 clusters and across all six
methods. In all curves a dot corresponds to one target rank of k = 20, 50, 100, 150, 200. See Table 2 for a
description of the different abbreviations.

times for the experiments in the left plot in Figure 1.
Here we see that (roughly) increasing the number of
clusters reduces the computational time. The is not
strange since it is to be expected that the aggregated
time for computing SVDs of many small matrices is
smaller than computing the SVD of a single big matrix.
The right plot of Figure 3 corresponds to timings for the
LiveJournal experiments in Figure 2 (right plot). Also
in this plot we can observe that the clustered methods
are faster than the non-clustered ones. This is the case
for the SVD based methods as well as the stochastic
methods. Note that our timings include the time taken
by the fast clustering procedures (graclus or metis).

4.5 Effect of different clusterings. Optimal clus-
tering of a graph into c clusters is an np-hard problem.
One usually deals with this by relaxing the combinato-
rial problem. As a result various sub-optimal and ap-
proximate solutions are obtained. In addition, running
a clustering algorithm several times yields slightly dif-
ferent clusters. One may ask if the clustered low rank
approximations are sensitive to this kind of instabilities
in the clustering step. In our experimental results, we
observed minimal sensitivity to the clustering step. Al-
though we may get different clusterings (from different
runs), the changes are small and in particular the frac-
tion of non-zeros that fall within the clusters are very
similar. For example, in five different runs to partition
the Google web graph into 20 clusters the mean and
variance of the number of links within the clusters was

97.9% and 0.016, respectively. The corresponding rel-
ative errors in a rank-100 approximation with svds-C
had mean 80.35% and variance 0.003. The variance was
similar for the relative errors in the other low rank ap-
proximations. Thus, the quality of the low rank approx-
imations appears to change only slightly with different
clusterings.

4.6 Effect of clusterability. Many graphs arising
in real-world applications are clusterable. From Table 1
we see that the Google web graph forms very good clus-
ters, with only a small fraction, less than 3%, of the
non-zeros in the off-diagonal blocks. For the LiveJour-
nal graph, more than 30% of the non-zeros are contained
outside the clusters (diagonal blocks). Thus, the Live-
Journal graph is not as clusterable as the Google graph.
Nonetheless, we still see substantial improvements by
introducing clustering in the low rank approximation.
The achieved relative errors in the LiveJournal exper-
iments are higher than the Google graph experiments.
The main reason for this is that the LiveJournal graph
is much bigger, see Table 1. The off-diagonal blocks
Aij , i.e. i 6= j, of A are not involved when computing
the cluster-wise low rank approximations. But they are
involved in forming the approximation, see (3.5). The
additional information obtained from the off-diagonal
block in the approximation, ranged from about 3% to
25% depending on the data set, number of clusters used
and the rank in the approximation.
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Figure 4: Information captured in a regular and clus-
tered low rank approximations from the different clus-
ters. The cluster-wise relative error in the y-axis is
‖Aii − Âii‖F /‖Aii‖F .

4.7 Information content in SVD from clusters.
One of the motivations to the clustered approach for
low rank approximation was that the optimal (with
respect to rank) truncated SVD captures information
mostly from a few dominating clusters. Of course
this is not desirable if one values information from all
clusters. In Figure 4 we present an experiment that
validates this motivation. We computed the truncated
SVD of the Google web graph and calculated how much
information this approximation captures from cluster
Aii. The number of clusters was c = 30 and the rank
in the approximation was k = 20. For comparison we
present a similar calculation for a clustered low rank
approximation. Each data point in the plot represents
the cluster-wise relative error ‖Aii − Âii‖F /‖Aii‖F ,
where Âii is an approximation of cluster Aii obtained
either with svds or svds-C. Clearly there are quite a
few clusters in A from which almost no information
is captured in the truncated SVD of A, for example,
as seen in Figure 4, no information at all is captured
for clusters 15 to 23, whereas the clustered low rank
approximation has a certain level of information from
each cluster. In addition, the clustered low rank
approximations captures more informations from the
dominant cluster compared to the truncated SVD.

4.8 Applications. We have used our proposed clus-
tered low rank approach in two different applications.
One is link prediction in large scale dynamic social net-
works, e.g. LiveJournal and MySpace, with several mil-
lions vertices and up to about hundred million edges,

see [25] for more details. The second application is af-
filiation recommendation. Here we have an affiliation
network, denoted A, between a set of users and a set of
groups. The task is to give users group recommenda-
tions that they would be interested in joining. In addi-
tion to the affiliation network there is a social network
S between the users themselves. In [30] the clustering
is employed in the task of group recommendation using
both the affiliation network and the social network. The
point we want to emphasize is that for both of these ap-
plications, using the clustered low rank application im-
proves the link prediction and recommendation perfor-
mance compared to methods that do not use clustering.
A clear advantage of our proposed approach is that it
allows us to easily handle social networks that are very
large—millions of vertices and hundreds of millions of
edges. On the other hand, traditional link prediction
and affiliation recommendation algorithms do not scale
to such large data sets.

5 Summary and future work

In this paper we presented a method called clustered
low rank approximation of graphs. The procedure is to
cluster a graph into c clusters and then compute a low
rank approximation each cluster independently. The
cluster-wise approximations are combined to obtain a
low rank approximation of the entire adjacency matrix
of the graph. We also introduced a stochastic algorithm
for computing clustered low rank approximations and
derived deterministic error bounds as well as expected
error bounds due to the randomness. A set of experi-
ments highlight the benefits of the clustering approach.
In particular, when we consider the relative error versus
the memory usage, then our clustered low rank approx-
imation algorithms outperform the traditional ones by
a large margin.

In the future we plan to develop software on par-
allel architectures, such as multicore machines, where
we expect our parallelizable algorithms to yield signif-
icantly faster computational speeds on massive graphs
with 10–100 millions of vertices. We also plan on ex-
tending the clustered low rank approach to rectangular
sparse matrices.
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