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Abstract—In graph-based learning models, entities are often
represented as vertices in an undirected graph with weighted
edges describing the relationships between entities. In many
real-world applications, however, entities are often associated
with relations of different types and/or from different sources,
which can be well captured by multiple undirected graphs over
the same set of vertices. How to exploit such multiple sources
of information to make better inferences on entities remains
an interesting open problem. In this paper, we focus on the
problem of clustering the vertices based on multiple graphs
in both unsupervised and semi-supervised settings. As one of
our contributions, we propose Linked Matrix Factorization
(LMF) as a novel way of fusing information from multiple
graph sources. In LMF, each graph is approximated by matrix
factorization with a graph-specific factor and a factor common
to all graphs, where the common factor provides features for all
vertices. Experiments on SIAM journal data show that (1) we
can improve the clustering accuracy through fusing multiple
sources of information with several models, and (2) LMF yields
superior or competitive results compared to other graph-based
clustering methods.
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I. INTRODUCTION

Relational data are ubiquitous, and the associated model-
ing and inference tasks have become important topics in both
machine learning and data mining. The common tools mod-
eling relational data often represent them as an undirected
graph with vertices representing entities and (weighted or
unweighted) edges describing the “relationships” between
entities. In many application domains, these relationships are
of different types and/or are obtained from different sources,
which can be well represented by multiple undirected graphs
over the same set of vertices with edges from different
graphs capturing the heterogeneous relations. As one exam-
ple of such multiple graphs, let us consider the proximity
between researchers. Two researchers are considered to be
similar if they have co-authored some papers, while it is also
reasonable to assume two authors to have similar interest
(probably to a lower level) if they both cited the same
papers in their published work or they published in the
same venues. These different type of relationships between
authors naturally form multiple undirected graphs over the
same set of authors. How to exploit the multiple sources

of information to make better inferences about entities and
relationships is an interesting open problem.

In this paper, we consider the particular graph mining task
of clustering vertices into several groups in the presence of
multiple types of proximity relations. We give an extensive
comparison of several graph-based clustering algorithms,
as well as their semi-supervised extensions. One major
contribution of this paper is a novel method for extracting
common factors from multiple graphs, called Linked Matrix
Factorization (LMF), based on which various clustering
methods can naturally apply. Experiments on both synthetic
and real-world data show the efficacy of the proposed meth-
ods in combining the information from multiple sources. In
particular, LMF yields superior results compared to other
graph-based clustering methods in both unsupervised and
semi-supervised settings.
Road Map The remainder of this paper is organized as
follows. Section II discusses the characteristics of the data
and the inadequacy of clustering with individual graphs. Sec-
tion III discusses the extension of unsupervised clustering
methods to multiple graphs. Section IV is devoted to the for-
mulation and optimization of Linked Matrix Factorization.
Section V extends the unsupervised model in Section III to
semi-supervised scenarios where constraints on the cluster
assignments are known. Section VI reports the experimental
results in both unsupervised and semi-supervised scenarios.
Finally Section VII summarizes the paper and discusses
related work and directions for future research.

II. DATA CHARACTERISTICS

We first motivate our work by discussing the clustering
problem on some real-world data. In many scientific publi-
cation domains such as CiteSeer or arXiv, the relationships
between documents can often be described as multiple
graphs with different link types.

A. SIAM Journal Data Set

In this paper, we consider the data from eleven journals
and proceedings for the period 1999-2004 published by the
Society for Industrial and Applied Mathematics (SIAM).
There are a total of 5022 articles in the data set, from which
we generated two subsets:



abstract title keywords author citation

Figure 1. Spy plots of SIAM-similar data set (upper row) and SIAM-different data set (lower row). SIAM-different data set can be seen to be easier to
cluster.

• SIAM-different: containing 1260 articles published in
SIAM J DISCRETE MATH, SIAM J OPTIMIZ and SIAM
J SCI COMPUT;

• SIAM-similar: containing 1690 articles published in
SIAM J MATRIX ANAL A, SIAM J NUMER ANAL and
SIAM J SCI COMPUT.

Our task is to discover the natural cluster structure of
journals based on the document similarities extracted from
different sources. Note that SIAM-different is composed
of three journals from different research areas and hence
is easier to cluster, whereas SIAM-similar contains three
journals on highly related research topics and is more
difficult to cluster.

In both subsets, we consider document similarities from
five different sources. The first three are obtained from
document-term matrices; in particular, each document can
be represented as a vector of non-trivial words from different
parts of the articles, namely abstract, title or keywords.
We calculate the cosine similarity between each pair of
documents within these different contexts to form the first
three similarity matrices. The last two similarity matrices are
obtained via the author and citation relations, respectively.
Details about the five link types are described below:
• The abstract similarity matrix A(1) is constructed from

the document-abstract matrix. A(1)
ij is the cosine simi-

larity between the abstracts of documents i and j.
• The title similarity matrix A(2) is formed from the

document-title matrix. A(2)
ij is the cosine similarity

between the titles of documents i and j.
• The keyword similarity matrix A(3) is computed from

the document-keyword matrix. A(3)
ij is the cosine sim-

ilarity between the keywords of documents i and j.
• The author similarity matrix A(4) represents the number

of common authors for each pair of documents.

• The citation similarity matrix A(5) has the citation rela-
tion between each pair of documents. A(5)

ij = A
(5)
ji = 1

if there is citation between documents i and j, and 0
otherwise.

Figure 1 shows the“adjacency” matrices for documents
composed from the five different sources, where we plot
the presence of (non-zero) edges (called spy plot) with
documents listed according to the intended clusters. Clearly,
information from different sources show very different char-
acteristics. For example, the co-authorship graph is usually
much sparser than the proximity based on abstracts, but
intuitively each co-authorship edge is more informative.
Due to the extreme sparsity, some graphs alone do not
contain complete information of the structure. Indeed, the
co-author relationship shown in Figure 1 contains over 100
disconnected components, and is therefore unable to reveal
the 3-cluster structure inherent in the data. It is useful
but challenging to combine the distinct characteristics of
different graphs–for example, the sparse but informative
relations as well as abundant but less informative ones.

B. Clustering with Individual Graphs

We adopt Normalized Mutual Information (NMI) to mea-
sure the clustering performance. Figure 1 shows spy plots
for all the five adjacency matrices belonging to the SIAM-
different and SIAM-similar data sets, with documents being
aligned to their published journals. Clearly each graph
contains certain information about the relationships between
documents. If we apply spectral clustering [1] on each
individual graph, we get the clustering results shown in
Table I in terms of NMI. It is clear from Figure 1 and
Table I that although the edges in the last two graphs are
highly consistent with the cluster structure of journals, they
do not contain enough information to recover the clusters



alone. As we will show in later sections, combining all the
graphs, especially with our proposed LMF model, can yield
significantly improved clustering results.

Table I
CLUSTERING PERFORMANCE MEASURED BY NMI ON SIAM DATA.

SIAM-different SIAM-similar
abstract 0.5893 0.2037

title 0.0324 0.2021
keywords 0.3731 0.2502

author 0.0042 0.0017
citation 0.0211 0.0078

III. UNSUPERVISED CLUSTERING MODELS

Let us take one step back and consider the more general
problem of clustering with multiple graphs. Suppose we are
given M undirected graphs whose adjacency matrices are
A(m),m = 1, 2, · · · ,M , each of size N ×N , with vertices
in all graphs corresponding to the same entities. We intend
to find a clustering of the vertices based on the information
from multiple sources.

Besides clustering each graph individually, we also have
the following baseline models for combining the information
from multiple graphs.
Summation of Graphs We find a combined adjacency
matrix A =

∑M
m=1A

(m). With this new adjacency matrix
A, we can perform spectral partitioning which can be
achieved by computing the smallest eigenvectors of the
graph Laplacian L = D−A, where D is the diagonal degree
matrix with Dii =

∑
j Aij . The use of eigenvectors can

also be motivated as minimizing the “roughness” of vector
f = [f1, · · · , fN ]T over all the graphs:

G =
M∑

m=1

fTL(m)f =
M∑

m=1

N∑
i,j=1

A
(m)
ij (fi − fj)2, (1)

where L(m) is the graph Laplacian for the mth graph.
Alternatively, we can use the normalized adjacency matrix,
Ã(m) = (D(m))−1/2A(m)(D(m))−1/2.
Summation of Spectral Kernels We first construct spectral
kernels for each graph, i.e., kernel K(m) based on the eigen-
spectrum of the graph Laplacian L(m), and then use the
summation K =

∑M
m=1K

(m). as the kernel summarizing
all graphs. One particular example (called step-function
kernel in [2]) is the model

K(m) =
d∑

k=1

v(m)
k (v(m)

k )T

where v(m)
k is the kth smallest eigenvector of graph Lapla-

cian L(m) and d � N is the number of eigenvectors used
per individual graph. Clustering can then be obtained by
performing kernel K-means on kernel K. Other choices
of K(m) include the heat diffusion kernel and regularized
inverse of graph Laplacian[2], but the discussion of them is
omitted here due to their inferior performance on our task.

Consensus Clustering Consensus clustering reconciles clus-
tering results about the same data set coming from different
sources. In this paper we follow the models in [3], where
three consensus clustering algorithms are proposed: Cluster-
based Similarity Partitioning Algorithm, HyperGraph Par-
titioning Algorithm, and Meta-Clustering Algorithm. In our
experiments (Section VI), we only report the best result from
these three methods.

IV. LINKED MATRIX FACTORIZATION

One major limitation of the baseline models is that they
treat all graphs on an equal basis, and therefore cannot
discriminate the informative sources and uninformative or
noisy ones. A more sensible alternative is to extract the
structure information shared by all the sources, and hence
filter out irrelevant information or noise. Here we present
Linked Matrix Factorization (LMF), a novel model for
finding the common factor for all graphs .

A. Model

One natural model for unsupervised graph clustering is
to approximate the given graph through a low-rank matrix
factorization A ≈ PΛPT , where P is an N × d matrix and
Λ is an d×d symmetric matrix. Since we are given multiple
graphs and the underlying entities are shared among graphs,
a common factor matrix is desirable to link the multiple
matrix factorizations together. Therefore, the objective of
clustering over multiple graphs by matrix factorization can
be formulated as minimizing

G=
1

2

MX
i=1

‖A(m)−PΛ(m)PT‖2F +
α

2

( MX
m=1

‖Λ(m)‖2F +‖P‖2F

)
, (2)

where matrix P is the common factor shared among graphs,
Λ(m) captures the characteristics of each graph (note that
we do not constrain Λ(m) to be diagonal), ‖ · ‖F denotes
the Frobenius norm and α is the regularization parameter.
Matrix P can be regarded as a low dimensional embedding
of entities characterized by multiple graphs, the differences
being captured by Λ(m). The regularization terms on both
P and Λ(m) are added to improve numerical stability and
to avoid overfitting. In addition to the generic form given in
(2), there are several possible alternative modeling choices.
For example, instead of using the squared Frobenius norm,
we could choose the relative entropy or other divergence
measures for comparing A(m) and PΛ(m)PT . If the graphs
were not symmetric, we could instead model each graph as
PΛ(m)QT . One could also enforce the columns of P to be
orthonormal and drop the regularization term. However, in
this paper, we will only focus on the case where each A(m) is
an undirected symmetric graph and the approximation error
is measured by the squared Frobenius norm.
B. Optimization

Note that the solutions to LMF are not unique. For
instance, let matrices P ∗ and Λ(m)∗ (i = 1, . . . ,M) be



the solutions to the optimization problem (2), then for any
orthogonal matrix R ∈ Rd×d (R only needs to be non-
singular if there is no regularization term), the matrices P ∗R
and R−1Λ(m)∗R−1 will also be solutions. Moreover, the ob-
jective function is not jointly convex in P and Λ(m). Hence,
we adopt an effective alternating minimization algorithm to
find a locally optimal solution to LMF. First, matrix P is
optimized while fixing each Λ(m); then, each matrix Λ(m) is
optimized while fixing matrix P . This procedure is repeated
until convergence. In optimizing matrix P and each Λ(m),
we apply a quasi-Newton method, Limited memory BFGS
(L-BFGS) [4], to optimize each factor in the inner loop.

The bottleneck in the L-BFGS algorithm is the evaluation
of the objective in (2) and its gradient with respect to P and
each Λ(m), respectively. Taking the derivative of (2) with
respect to P and Λ(m) yields

∂G
∂P

= −2
M∑
i=1

(A(m)−PΛ(m)PT )PΛ(m)+αP, (3)

∂G
∂Λ(m)

= −PT (A(m) − PΛ(m)PT )P + αΛ(m). (4)

One can gain computational efficiency by taking advantage
of the sparsity of A(m). In particular, the first term of the
objective in (2) can be rewritten as:

G′ =
1
2

M∑
m=1

‖A(m)‖2F − 2 Tr(Λ(m)PTA(m)P )

+ Tr(PTPΛ(m)PTPΛ(m)), (5)

which can be evaluated in O(d(nnz + Nd)) time for
each graph (nnz represents the number of nonzero entries
averaged over all graphs). Similarly, computing the gradient
in (3) and (4) takes O(d(nnz + Nd)) time for each graph
by utilizing the sparsity of A(m). Since the evaluation of the
objective and its gradient share some computational steps,
we can actually compute them at the same time within one
loop over the multiple graphs. The total time complexity is
O(Md(nnz +Nd)).

V. SEMI-SUPERVISED CLUSTERING MODELS

In many real-world applications, we often do not realis-
tically expect the clustering to discover intended structure
in a total unsupervised fashion. In those situations, we can
often benefit from various types of weak supervision or side
information. Here we consider the following two types of
instance-level constraints on cluster assignments, which can
naturally emerge in various situations [5]: must-link, which
constrains entity i and entity j in the same cluster and
cannot-link, which constrains entity i and entity j in different
clusters.

There is a large body of work on using these pairwise
constraints to boost the performance of clustering algorithms
(see [5] for more details), but it has never been previously
used in the context of combining multiple graph relations.

We consider two ways to incorporate these pairwise con-
straints into the clustering algorithm, both of which require
viewing the unsupervised learning methods described in
Sections III and IV as means of feature extraction for
vertices. This applies explicitly for LMF ( the features for
vertex i are given by the ith row of P ), and implicitly
for spectral kernel cases where the obtained kernel can be
viewed as the inner product of feature vectors. The first
semi-supervised method is metric learning, which directly
adapts the distance metric in the corresponding feature space
to fit the given pairwise constraints. The second method is
to express the pairwise constraints as a penalty term in the
unsupervised learning objective function, based on which
the feature vectors for clustering are learned.
Metric Learning Metric learning seeks a distance metric
in feature space that fits our clustering or classification
preference [6], [7]. The problem can be formulated as
learning a squared Mahalanobis distance or equivalently the
positive definite matrix, which satisfies the must-link and
cannot-link constraints. Among the metric learning models,
we consider Information-Theoretic Metric Learning (ITML)
[6] due to its scalability to handle millions of pairwise
constraints. Due to the space limit, we omit the description
of ITML. ITML can serve as a post-processing step for
the unsupervised learning in Section III to incorporate the
pairwise constraints.
Semi-supervised Feature Extraction One limitation of the
metric learning as a post-processing step is that it is often
futile to correct the learned bad feature. One can often
alleviate this by learning more “discriminative” features
with the semi-supervision from the pairwise constraints.
We consider the following objective function for feature
F ≡ {f1, · · · , fN},

L(F ) = e(F, {A(1), · · · , A(M)}) + γs(F ;M, C), (6)

where e(F, {A(1), · · · , A(M)}) stands for the “empirical
error” term from unsupervised learning described in Section
III (called unsupervised term), s(F ;M, C) stands for the
extra penalty term from given pairwise constraints (called
supervised term), and the parameter γ controls the balance
between the two terms. The unsupervised term could ei-
ther be the objective function for LMF as in (2), or the
measurement of roughness associated with the (combined)
graph Laplacian as in (1). The supervised term is designed
to ensure that the features of must-linked pairs are close and
the features of cannot-linked pairs are far away from each
other,

s(F ;M, C) =
∑

(i,j)∈M

‖fi − fj‖2 −
∑

(i,j)∈C

‖fi−fj‖2.

For the LMF model, the optimization for the semi-supervised
objective can be performed using the same optimization
routine with minimal change. For the graph spectral methods
based on a graph Laplacian, much like the unsupervised



case, the combined objective function can be recast into a
eigenvalue problem.

VI. EXPERIMENTS

In this section, we present results of clustering with
multiple graphs on both synthetic and SIAM journal data. As
we will show in the results, 1) we can improve the clustering
performance by simultaneously modeling multiple sources
of information, and 2) the pairwise constraints help in the
semi-supervised learning scenario.

To evaluate the performance of LMF in the unsupervised
setting, we compare it with several baseline methods in-
troduced in Section III: 1)SpecC: spectral clustering algo-
rithm [1] on single graph; 2)mSpC-A: spectral clustering
algorithm on the sum of adjacency matrices; 3) mSpC-B:
spectral clustering algorithm on the sum of normalized adja-
cency matrices; 4)SpecK: sum of spectral kernels from each
graph; 5)Consensus: consensus clustering with SpecC as
the base component.

A. SIAM Data: Unsupervised Clustering

The results of unsupervised clustering on SIAM-similar
and SIAM-different are presented in Table II, with each
column representing a different combination of individual
graphs. The results are consistent with our observation
that SIAM-similar is a much harder problem than SIAM-
different. We observe that LMF is the only method that can
consistently benefit from including more graphs. LMF leads
with 7 out of 8 graph combinations on both SIAM-different
and SIAM-similar. Most importantly, the best performance
from all models (NMI = 0.714) is achieved by LMF with
all five graphs.

In the above experiments, we set the parameters for LMF
rather arbitrarily. Nevertheless it is meaningful to examine
the impact of rank and regularization on the clustering
performance based on LMF. The result is omitted due to
space limit.

B. SIAM: Semi-supervised Clustering

In this section, we discuss semi-supervised clustering
results on both SIAM data sets with pairwise constraints. As
we will show, metric learning and semi-supervised feature
extraction demonstrate different behavior, while both of
them help in improving the clustering performance.
Metric Learning We considered kernelized metric learning
with the following choices of initial kernel K0: 1) SpC-
ML: spectral kernel based on the sum of adjacency matrices,
2) SpK-ML: sum of spectral kernels based on individual
graphs, 3) LMF-ML(L): linear kernel PPT based on LMF
feature P , and 4) LMF-ML(G): Gaussian kernel with rows of
P as feature vectors: K0(i, j) = exp(−‖pi−pj‖2/σ2). Fig-
ure 3 (upper row) presents the results of metric learning on
four different kernels with the number of randomly selected
constraints varying from 0 to 3000. As seen from the figure,

Table II
RESULTS OF UNSUPERVISED CLUSTERING ON SIAM-DIFFERENT AND

SIAM-SIMILAR DATA SETS, MEASURED IN NMI. EACH COLUMN
REPRESENTS A DIFFERENT COMBINATION OF INDIVIDUAL GRAPHS. THE

RESULTS ARE AVERAGED OVER TEN TRIALS.

SIAM-different
{1, 2, 3} {1, 2, 3, 4} {1, 2, 3, 5} {1–5}

mSpC-A 0.657 0.649 0.621 0.630
mSpC-B 0.626 0.683 0.684 0.701
SpecK 0.636 0.455 0.637 0.638
Consensus 0.587 0.597 0.559 0.444
LMF 0.611 0.698 0.689 0.714

SIAM-similar
{1, 2, 3} {1, 2, 3, 4} {1, 2, 3, 5} {1–5}

mSpC-A 0.226 0.238 0.229 0.238
mSpC-B 0.244 0.235 0.238 0.234
SpecK 0.237 0.240 0.237 0.237
Consensus 0.212 0.202 0.186 0.151
LMF 0.246 0.249 0.251 0.253

SIAM-different
mSpC–A mSpC–B SpecK

245 8 7
30 593 33
57 6 281

242 7 11
17 603 36
19 6 319

0 231 29
0 606 50

22 23 299

Consensus LMF
17 11 232
6 442 208

18 4 322

241 8 11
13 614 29
21 8 315

SIAM-similar
mSpC–A mSpC–B SpecK

268 69 274
3 405 15

176 249 231

289 74 248
7 405 11

211 224 221

319 74 218
14 404 5
239 206 211

Consensus LMF
262 68 281
50 354 19

257 164 235

399 39 173
2 366 55

219 176 261

Figure 2. The confusion matrices of competing methods on the SIAM
data set, where rows represent the actual classes and columns the clusters.

the three linear kernels (SpC-ML, SpK-ML, and LMF-
ML(L) ) do not respond well to the pairwise constraints,
while the Gaussian kernel based on LMF feature (LMF-
ML(G))(interestingly, the Gaussian kernel gives a much
poorer result in the unsupervised case, as seen in the figure),
can lead to superior performance after 2000 constraints. This
behavior can be explained by the fact that the linear kernels,
although informative by themselves have low rank and hence
do not provide enough modeling flexibility for ITML, while
the Gaussian kernel gives enough room for ITML to improve
performance.
Semi-supervised Feature Extraction In this section, we
report experimental results conducted to investigate the
effectiveness of Semi-supervised Feature Extraction. As
discussed in Section V, we can have two semi-supervised
feature extraction algorithms based on their unsupervised
counterparts: 1)LMF-SSFE: feature extraction based on
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Figure 3. Semi-supervised clustering result on SIAM data. Upper row:
metric learning. Lower row: feature extraction

LMF, and 2)Eig-SSFE: based on the eigenvectors of graph
Laplacian, as in (1). Figure 3 (lower row) plots the clustering
performance, measured in NMI, as a function of the number
of constraints on SIAM-different and SIAM-similar data
sets. As indicated by Figure 3 (lower row), both algorithms
can benefit from pairwise constraints, but LMF-SSFE does
significantly better on SIAM-different and performs compa-
rably to Eig-SSFE on SIAM-similar.

VII. CONCLUSION AND DISCUSSION

In this paper, we discussed the general problem of cluster-
ing based on multiple similarity graphs in both unsupervised
and semi-supervised settings. We extend several graph-based
clustering methods to handle multiple graphs. As one of our
major contribution, we proposed Linked Matrix Factoriza-
tion (LMF) as a novel method for learning the characteristics
common to all given graphs. Experiments show that: 1)
in an unsupervised setting, LMF can effectively extract
informative and reliable features for vertices, and yield better
clustering performance than single graph methods and other
graph-based models for combining multiple graphs, and 2)
LMF, as a feature extraction model, responds fairly well to
pairwise constraints.

Our work is interestingly related to multiple-view learn-
ing, where each object is described from more than one from
multiple aspects (“views”). Most models in multiple-view
learning are for supervised or semi-supervised classification
[8], [9], where a combined view is achieved through forcing
the classification function on different views to be close.
Another direction is proposed by Chaudhuri et al [10] where
multi-view clustering is performed on features extracted with
canonical correlation analysis (CCA) between views. In both
cases, it is required that each view already contain complete
information for classification. Other related work includes
extension of normalized cut to multiple graphs [11].

Despite the encouraging results of proposed model, sev-
eral questions remained unanswered. One of the questions is
how to incorporate the reliability of different sources into the
clustering model. Another direction, as suggested in [10], is
to explicitly model the common characteristics of all sources
through canonical correlation analysis of the feature vectors,
which is in the same spirit as LMF. It will be interesting and
useful to suitably extend these methods to the problem of
multiple graphs, which will be one of the directions of our
future research.
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