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Abstract

Performance metrics for binary classification are designed to capture tradeoffs be-
tween four fundamental population quantities: true positives, false positives, true
negatives and false negatives. Despite significant interest from theoretical and
applied communities, little is known about either optimal classifiers or consis-
tent algorithms for optimizing binary classification performance metrics beyond
a few special cases. We consider a fairly large family of performance metrics
given by ratios of linear combinations of the four fundamental population quanti-
ties. This family includes many well known binary classification metrics such as
classification accuracy, AM measure, F-measure and the Jaccard similarity coeffi-
cient as special cases. Our analysis identifies the optimal classifiers as the sign of
the thresholded conditional probability of the positive class, with a performance
metric-dependent threshold. The optimal threshold can be constructed using sim-
ple plug-in estimators when the performance metric is a linear combination of
the population quantities, but alternative techniques are required for the general
case. We propose two algorithms for estimating the optimal classifiers, and prove
their statistical consistency. Both algorithms are straightforward modifications of
standard approaches to address the key challenge of optimal threshold selection,
thus are simple to implement in practice. The first algorithm combines a plug-in
estimate of the conditional probability of the positive class with optimal threshold
selection. The second algorithm leverages recent work on calibrated asymmetric
surrogate losses to construct candidate classifiers. We present empirical compar-
isons between these algorithms on benchmark datasets.

1 Introduction

Binary classification performance is often measured using metrics designed to address the short-
comings of classification accuracy. For instance, it is well known that classification accuracy is an
inappropriate metric for rare event classification problems such as medical diagnosis, fraud detec-
tion, click rate prediction and text retrieval applications [1, 2, 3, 4]. Instead, alternative metrics better
tuned to imbalanced classification (such as the F; measure) are employed. Similarly, cost-sensitive
metrics may useful for addressing asymmetry in real-world costs associated with specific classes. An
important theoretical question concerning metrics employed in binary classification is the characteri-
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zation of the optimal decision functions. For example, the decision function that maximizes the accu-
racy metric (or equivalently minimizes the “0-1 loss”) is well-known to be sign(P(Y = 1|x)—1/2).
A similar result holds for cost-sensitive classification [5]. Recently, [6] showed that the optimal de-
cision function for the F; measure, can also be characterized as sign(P(Y = 1|z) — §*) for some
d* € (0,1). As we show in the paper, it is not a coincidence that the optimal decision function
for these different metrics has a similar simple characterization. We make the observation that the
different metrics used in practice belong to a fairly general family of performance metrics given by
ratios of linear combinations of the four population quantities associated with the confusion matrix.

We consider a family of performance metrics given by ratios of linear combinations of the four
population quantities. Measures in this family include classification accuracy, false positive rate,
false discovery rate, precision, the AM measure and the F-measure, among others. Our analysis
shows that the optimal classifiers for all such metrics can be characterized as the sign of the thresh-
olded conditional probability of the positive class, with a threshold that depends on the specific
metric. This result unifies and generalizes known special cases including the AM measure analysis
by Menon et al. [7], and the Fzg measure analysis by Ye et al. [6]. It is known that minimizing (con-
vex) surrogate losses, such as the hinge and the logistic loss, provably also minimizes the underlying
0-1 loss or equivalently maximizes the classification accuracy [8]. This motivates the next question
we address in the paper: can one obtain algorithms that (a) can be used in practice for maximizing
metrics from our family, and (b) are consistent with respect to the metric? To this end, we propose
two algorithms for consistent empirical estimation of decision functions. The first algorithm com-
bines a plug-in estimate of the conditional probability of the positive class with optimal threshold
selection. The second leverages the asymmetric surrogate approach of Scott [9] to construct candi-
date classifiers. Both algorithms are simple modifications of standard approaches that address the
key challenge of optimal threshold selection. Our analysis identifies why simple heuristics such
as classification using class-weighted loss functions and logistic regression with threshold search
are effective practical algorithms for many generalized performance metrics, and furthermore, that
when implemented correctly, such apparent heuristics are in fact asymptotically consistent.

Related Work. Binary classification accuracy and its cost-sensitive variants have been studied
extensively. Here we highlight a few of the key results. The seminal work of [8] showed that mini-
mizing certain surrogate loss functions enables us to control the probability of misclassification (the
expected 0-1 loss). An appealing corollary of the result is that convex loss functions such as the
hinge and logistic losses satisfy the surrogacy conditions, which establishes the statistical consis-
tency of the resulting algorithms. Steinwart [10] extended this work to derive surrogates losses for
other scenarios including asymmetric classification accuracy. More recently, Scott [9] characterized
the optimal decision function for weighted 0-1 loss in cost-sensitive learning and extended the risk
bounds of [8] to weighted surrogate loss functions. A similar result regarding the use of a threshold
different than 1/2, and appropriately rebalancing the training data in cost-sensitive learning, was
shown by [5]. Surrogate regret bounds for proper losses applied to class probability estimation
were analyzed by Reid and Williamson [11] for differentiable loss functions. Extensions to the
multi-class setting have also been studied (for example, Zhang [12] and Tewari and Bartlett [13]).
Analysis of performance metrics beyond classification accuracy is limited. The optimal classifier
remains unknown for many binary classification performance metrics of interest, and few results
exist for identifying consistent algorithms for optimizing these metrics [7, 6, 14, 15]. Of particular
relevance to our work are the AM measure maximization by Menon et al. [7], and the F3 measure
maximization by Ye et al. [6].

2 Generalized Performance Metrics

Let X be either a countable set, or a complete separable metric space equipped with the standard
Borel o-algebra of measurable sets. Let X € X and Y € {0, 1} represent input and output random
variables respectively. Further, let © represent the set of all classifiers © = {6 : X — [0,1]}.
We assume the existence of a fixed unknown distribution P, and data is generated as iid. samples
(X,Y) ~ P. Define the quantities: 7 = P(Y = 1) and v(0) = P(0 = 1).

The components of the confusion matrix are the fundamental population quantities for binary classi-
fication. They are the true positives (TP), false positives (FP), true negatives (TN) and false negatives



(FN), given by:

TP(Y,P) =P(Y = 1,0 = 1), FP(0,P) = P(Y = 0,60 = 1), (1)
FN(§,P) = P(Y = 1,0 = 0), TN(0,P) = P(Y = 0,0 =

These quantities may be further decomposed as:

FP(6,P) = v(6) — TP(§), FN(6,P) == —TP(6), TN(0,P) =1—~(f) —w+TP(6). (2)

Let £ : © x P — R be a performance metric of interest. Without loss of generality, we assume
that £ is a utility metric, so that larger values are better. The Bayes utility L* is the optimal value
of the performance metric, i.e., £* = supycg L£(6,P). The Bayes classifier 8* is the classifier that
optimizes the performance metric, so £* = £(6*), where:

0" = argmax L(0,P).
0co

We consider a family of classification metrics computed as the ratio of linear combinations of these
fundamental population quantities (1). In particular, given constants (representing costs or weights)
{a11, a10, ao1, aoo, ao } and {b11, b1o, bo1, boo, bo }, we consider the measure:
TP FP FN TN
ﬁ(@,IP) _ aop + a11 1P + a10FP + ap1 + apo 3)
bo + 011 TP + b1oFP + bg1FN + bgp TN
where, for clarity, we have suppressed dependence of the population quantities on # and P. Examples
of performance metrics in this family include the AM measure [7], the Fjzg measure [6], the Jaccard
similarity coefficient (JAC) [16] and Weighted Accuracy (WA):

amo L(TP L TN (1 — 7)TP + 7 TN B (1+ B*)TP ~ (1+pHTP
T2 1-7)  2n(1—-n) P I+B)TP+B2FN+FP  Brtq
IAC TP TP TP B w TP + wy TN

TP+FN+FP «7+FP ~+FN’ w1 TP + wo TN + w3FP + w4FN

Note that we allow the constants to depend on P. Other examples in this class include commonly
used ratios such as the true positive rate (also known as recall) (TPR), true negative rate (TNR),
precision (Prec), false negative rate (FNR) and negative predictive value (NPV):

TP TN TP FN TN
=——  TNR=—— Prec=———— FNR=—— NPV=-—
TP + FN FP + TN TP + FP EN + TP TN + FN

Interested readers are referred to [17] for a list of additional metrics in this class.

TPR

By decomposing the population measures (1) using (2) we see that any performance metric in the
family (3) has the equivalent representation:
co + 1 TP(9) + coy(60)

£0) = do + di TP(0) + day(0) @

with the constants:
Co = ap1T + Goo — @po™T + Ao, €1 = a11 — a0 — Go1 + Qoo ¢z = ajg —agy and
do = borm + boo — boom + bo, dy = b11 — b1o — bo1 + boo, do = b1g — boo.

Thus, it is clear from (4) that the family of performance metrics depends on the classifier 6 only
through the quantities TP(#) and ().

Optimal Classifier

We now characterize the optimal classifier for the family of performance metrics defined in (4). Let
v represent the dominating measure on X'. For the rest of this manuscript, we make the following
assumption:

Assumption 1. The marginal distribution P(X) is absolutely continuous with respect to the domi-
nating measure v on X so there exists a density yu that satisfies dP = pdv.



To simplify notation, we use the standard dv(z) = dz. We also define the conditional proba-
bility n, = P(Y = 1|X = z). Applying Assumption 1, we can expand the terms TP(f) =
Jocxe 10(@)p(x)dz and v(0) = [, _, 0(x)p(z)dz, so the performance metric (4) may be repre-
sented as:

co + fmeX 1Mz + ¢2)0(z)p(z)dx

L(0,P) = do + Jep(date + do)0(z)pu(z)

Our first main result identifies the Bayes classifier for all utility functions in the family (3), showing
that they take the form 6*(x) = sign(n, — 6*), where §* is a metric-dependent threshold, and the
sign function is given by sign : R — {0, 1} as sign(¢) = 1 if ¢ > 0 and sign(¢) = 0 otherwise.

Theorem 2. Let P be a distribution on X x [0, 1] that satisfies Assumption 1, and let L be a perfor-
mance metric in the family (3). Given the constants {cg, c1, c2} and {dy, d1, dz}, define:
- dgﬁ* — C9

e —d LY

*

(&)

1. When ¢i > di L*, the Bayes classifier 0* takes the form 0* (x) = sign(n, — §*)

2. When ¢y < dyL*, the Bayes classifier takes the form 0*(x) = sign(6* — n,)

The proof of the theorem involves examining the first-order optimality condition (see Appendix B).

Remark 3. The specific form of the optimal classifier depends on the sign of ¢y — diL*, and L* is
often unknown. In practice, one can often estimate loose upper and lower bounds of L* to determine
the classifier.

A number of useful results can be evaluated directly as instances of Theorem 2. For the Fﬁ measure,
we have that ¢; = 1 + 2 and dy = 1 with all other constants as zero. Thus, §* By = Th 52 This
matches the optimal threshold for F} metric specified by Zhao et al. [14]. For precision, we have that
c1 = 1,d2 = 1 and all other constants are zero, so dp,.. = L*. This clarifies the observation that in
practice, precision can be maximized by predicting only high confidence positives. For true positive
rate (recall), we have that ¢; = 1,dy = 7 and other constants are zero, so é7pg = 0 recovering the
known result that in practice, recall is maximized by predicting all examples as positives. For the

Jaccard similarity coefficient c; = 1,d; = —1,d2 = 1,dy = 7 and other constants are zero, so
_rr
Ofac = T+L~ "

When d; = dy = 0, the generalized metric is simply a linear combination of the four fundamental
quantities. With this form, we can then recover the optimal classifier outlined by Elkan [5] for cost
sensitive classification.

Corollary 4. Let P be a distribution on X X [0,1] that satisfies Assumption 1, and let L be a
performance metric in the family (3). Given the constants {cg, c1, ca} and {dg, dy = 0,dy = 0}, the
optimal threshold (5) is 0* = —<

Cl

Classification accuracy is in this family, with ¢; = 2, ¢y = —1, and it is well-known that 5Acc = 1.
Another case of interest is the AM metric, where ¢; = 1, ¢y = —, 50 d4); = 7, as shown in Menon
etal. [7].

3 Algorithms

The characterization of the Bayes classifier for the family of performance metrics (4) given in The-
orem 2 enables the design of practical classification algorithms with strong theoretical properties.
In particular, the algorithms that we propose are intuitive and easy to implement. Despite their
simplicity, we show that the proposed algorithms are consistent with respect to the measure of
interest; a desirable property for a classification algorithm. We begin with a description of the
algorithms, followed by a detailed analysis of consistency. Let {X;,Y;}" ; denote iid. training
instances drawn from a fixed unknown distribution P. For a given 6 : X — {0, 1}, we define the
following empirical quantities based on their population analogues: TP, () = 13" | 0(X;)Y;,

and 7, (0) = 13" 0(X;). Itis clear that TP, () “—» TP(¢;P) and ,,(¢ ) 27 ~(6;P).



Consider the empirical measure:

o ClTPn(G) + C27n(9) +¢co
En®) = G 0) T o (0) T do ©

corresponding to the population measure £(6;P) in (4). It is expected that £,,(0) will be close to

the £(6;P) when the sample is sufficiently large (see Proposition 8). For the rest of this manuscript,

we assume that £* < L so 0% (x) = sign(n, — ¢*). The case where £* > & is solved identically.

Our first approach (Two-Step Expected Utility Maximization) is quite intuitive (Algorithm 1): Ob-
tain an estimator 7),, for 7, = P(Y = 1|z) by performing ERM on the sample using a proper loss
function [11]. Then, maximize £,, defined in (6) with respect to the threshold 6 € (0,1). The
optimization required in the third step is one dimensional, thus a global minimizer can be computed
efficiently in many cases [18]. In experiments, we use (regularized) logistic regression on a training
sample to obtain 7).

Algorithm 1: Two-Step EUM
Input: Training examples S = {X;,Y;}7 ; and the utility measure L.
1. Split the training data S into two sets S and Ss.
2. Estimate 7),, using Sy, define 05 = sign(7, — 9)
3. Compute 6 =arg maXse(o,1) Cn(ég) on Ss.

Return: 0;

Our second approach (Weighted Empirical Risk Minimization) is based on the observation that
empirical risk minimization (ERM) with suitably weighted loss functions yields a classifier that
thresholds 7, appropriately (Algorithm 2). Given a convex surrogate (¢, y) of the 0-1 loss, where ¢
is a real-valued prediction and y € {0, 1}, the 6-weighted loss is given by [9]:

Ls(t,y) = (1= 0)1y=1y£(t, 1) + 01 y=0}£(2, 0).

Denote the set of real valued functions as ®; we then define ég as:
. 1 <&
= in — Y4 X:),Y; 7
¢s = argimin ;:1 s(0(Xi),Yi) (7)

then set O (z) = sign(ég(ax)). Scott [9] showed that such an estimated 5 is consistent with 65 =
sign(n, — J). With the classifier defined, maximize £,, defined in (6) with respect to the threshold
d€(0,1).

Algorithm 2: Weighted ERM
Input: Training examples S = {X;,Y;}" ;, and the utility measure L.
1. Split the training data S into two sets S and Sa.
2. Compute § = arg maxse(o,1) Ln(fs) on Sa.

Sub-algorithm: Define 05(z) = sign(¢s(x)) where ¢5(x) is computed using (7) on Sy.
Return: 0;

Remark 5. When di = dy = 0, the optimal threshold does not depend on L* (Corollary 4). We
may then employ simple sample-based plugin estimates .

A benefit of using such plugin estimates is that the classification algorithms can be simplified while
maintaining consistency. Given such a sample-based plugin estimate ds, Algorithm 1 then reduces
to estimating 7),,, and then setting éSs = sign(7,; — 55) Algorithm 2 reduces to a single ERM (7) to
estimate q38s (x), and then setting 933 () = sign(czggs (2)). In the case of AM measure, the threshold
is given by 6* = 7. A consistent estimator for 7 is all that is required (see [7]).



3.1 Consistency of the proposed algorithms

An algorithm is said to be L-consistent if the learned classifier 0 satisfies £* — £(é) 2 0i.e., for
every e > 0, P(|£L* — L(0)] < €) > 1,as n— oo.

We begin the analysis from the simplest case when 0* is independent of £* (Corollary 4). The
following proposition, which generalizes Lemma 1 of [7], shows that maximizing £ is equivalent to

minimizing §*-weighted risk. As a consequence, it suffices to minimize a suitable surrogate loss £+
on the training data to guarantee £-consistency.

Proposition 6. Assume §* € (0,1) and 6* is independent of L*, but may depend on the distribution
P. Define 0*-weighted risk of a classifier 0 as

Rs+(0) = E(zy)~p[(1 = 0")Lgy=1) Lo()=0) + 0" Liy=0y Lo)=1} ]
1
then, Ry (6) = min Ry (6) = —(L" = £(9)).
1

The proof is simple, and we defer it to Appendix B. Note that the key consequence of Proposition 6
is that if we know §*, then simply optimizing a weighted surrogate loss as detailed in the proposition
suffices to obtain a consistent classifier. In the more practical setting where §* is not known exactly,

we can then compute a sample based estimate ds. We briefly mentioned in the previous section
how the proposed Algorithms 1 and 2 simplify in this case. Using the plug-in estimate dg such

that 45 > 6* in the algorithms directly guarantees consistency, under mild assumptions on P (see
Appendix A for details). The proof for this setting essentially follows the arguments in [7], given
Proposition 6.

Now, we turn to the general case, i.e. when L is an arbitrary measure in the class (4) such that §*
is difficult to estimate directly. In this case, both the proposed algorithms estimate § to optimize the
empirical measure £,,. We employ the following proposition which establishes bounds on L.

Proposition 7. Let the constants a;j,b;; for i,j € {0,1}, ao, and by be non-negative and, without
loss of generality, take values from [0, 1]. Then, we have:

1. —2<c¢i,dy <2,—1<cy,ds Sl,andOSco,dOSQ(l—i—w).

2. L is bounded, i.e. for any 0, 0 < £(0) < L := QoA MAX; jef0.1} Gij

b0+minij€{0Y1} bi,j

The proofs of the main results in Theorem 10 and 11 rely on the following Lemmas 8 and 9 on how
the empirical measure converges to the population measure at a steady rate. We defer the proofs to
Appendix B.

Lemma 8. Forany € > 0, lim,, _, o P(|£,,(0) — L(0)| < €) = 1. Furthermore, with probability at
least 1 — p,|L,(0) — L(0)] < %, where r(n, p) = /5 In %, L is an upper bound on
L(9), B>0,C > 0,D > 0 are constants that depend on L (i.e. ¢y, c1,ca,dg, d1 and ds).

Now, we show a uniform convergence result for £,, with respect to maximization over the threshold
d€(0,1).

Lemma 9. Consider the function class of all thresholded decisions © = {1;4z)>5y V6 € (0,1)}
for a [0,1]-valued function ¢ : X — [0, 1]. Define #(n, p) = \/% [In(en) + In %]. Iff(n,p) < £

(C+LD)7(n,p)
B—Dr(n.p)

sup |L£,(0) — L(8)] <.
6co

(where B and D are defined as in Lemma 8) and € = , then with prob. at least 1 — p,

We are now ready to state our main results concerning the consistency of the two proposed algo-
rithms.

Theorem 10. (Main Result 2) If the estimate 7, satisfies iy <> 1), Algorithm 1 is L-consistent.

Note that we can obtain an estimate 7, with the guarantee that 7}, — 1, by using a strongly proper
loss function [19] (e.g. logistic loss) (see Appendix B).



Theorem 11. (Main Result 3) Let £ : R : [0, 00) be a classification-calibrated convex (margin) loss
(i.e. ¢'(0) < 0) and let L5 be the corresponding weighted loss for a given § used in the weighted
ERM (7). Then, Algorithm 2 is L-consistent.

Note that loss functions used in practice such as hinge and logistic are classification-calibrated [8].

4 Experiments

We present experiments on synthetic data where we observe that measures from our family indeed
are maximized by thresholding 7n,. We also compare the two proposed algorithms on benchmark
datasets on two specific measures from the family.

4.1 Synthetic data: Optimal decisions

We evaluate the Bayes optimal classifiers for common performance metrics to empirically verify the
results of Theorem 2. We fix a domain X = {1,2,...10}, then we set u(z) by drawing random
values uniformly in (0, 1), and then normalizing these. We set the conditional probability using a
sigmoid function as 7, = m, where w is a random value drawn from a standard Gaussian.
As the optimal threshold depends on the Bayes risk £*, the Bayes classifier cannot be evaluated
using plug-in estimates. Instead, the Bayes classifier 8* was obtained using an exhaustive search
over all 29 possible classifiers. The results are presented in Fig. 1. For different metrics, we plot 1,,,
the predicted optimal threshold * (which depends on IP) and the Bayes classifier 8*. The results can
be seen to be consistent with Theorem 2 i.e. the (exhaustively computed) Bayes optimal classifier
matches the thresholded classifier detailed in the theorem.

T—= @ = @ = @) M= @)
" — §" =0.89 " e— §° =034 4,_,—’7 " e— 6 =050 M e— 6" =0.39

— 0* ol | —a §* ——h L2 pe—E
|
7P 2TP 2TP+2TN TP
TPYFP 2VTP+FP+FN 2! : EP +FN+2TN . TP+FP+FN
(a) Precision (b) F1 (c) Weighted Accuracy (d) Jaccard

Figure 1: Simulated results showing 7., optimal threshold §* and Bayes classifier 6*.

4.2 Benchmark data: Performance of the proposed algorithms

We evaluate the two algorithms on several benchmark datasets for classification. We consider two

measures, F; defined as in Section 2 and Weighted Accuracy defined as 5 T Pi(;ﬁ )++T}i\;3)+F ~- We

split the training data S into two sets Sy and Sa: S is used for estimating 7, and Ss for selecting d.
For Algorithm 1, we use logistic loss on the samples (with Lo regularization) to obtain estimate 7,,.
Once we have the estimate, we use the model to obtain 7, for x € S, and then use the values 7}, as
candidate § choices to select the optimal threshold (note that the empirical best lies in the choices).
Similarly, for Algorithm 2, we use a weighted logistic regression, where the weights depend on the
threshold as detailed in our algorithm description. Here, we grid the space [0, 1] to find the best
threshold on S2. Notice that this step is embarrassingly parallelizable. The granularity of the grid
depends primarily on class imbalance in the data, and varies with datasets. We also compare the two
algorithms with the standard empirical risk minimization (ERM) - regularized logistic regression
with threshold 1/2.

First, we optimize for the F} measure on four benchmark datasets: (1) REUTERS, consisting of
news 8293 articles categorized into 65 topics (obtained the processed dataset from [20]). For each
topic, we obtain a highly imbalanced binary classification dataset with the topic as the positive
class and the rest as negative. We report the average I measure over all the topics (also known
as macro-Fj score). Following the analysis in [6], we present results for averaging over topics that
had at least C positives in the training (5946 articles) as well as the test (2347 articles) data. (2)
LETTERS dataset consisting of 20000 handwritten letters (16000 training and 4000 test instances)




from the English alphabet (26 classes, with each class consisting of at least 100 positive training
instances). (3) SCENE dataset (UCI benchmark) consisting of 2230 images (1137 training and 1093
test instances) categorized into 6 scene types (with each class consisting of at least 100 positive
instances). (4) WEBPAGE binary text categorization dataset obtained from [21], consisting of 34780
web pages (6956 train and 27824 test), with only about 182 positive instances in the train. All the
datasets, except SCENE, have a high class imbalance. We use our algorithms to optimize for the
F} measure on these datasets. The results are presented in Table 1. We see that both algorithms
perform similarly in many cases. A noticeable exception is the SCENE dataset, where Algorithm 1
is better by a large margin. In REUTERS dataset, we observe that as the number of positive instances
C in the training data increases, the methods perform significantly better, and our results align with
those in [6] on this dataset. We also find, albeit surprisingly, that using a threshold 1/2 performs
competitively on this dataset.

| DATASET | C | ERM | Algorithm I [ Algorithm 2 |

1 0.5151 0.4980 0.4855

REUTERS 10 | 0.7624 0.7600 0.7449
(65 classes) 50 | 0.8428 0.8510 0.8560
100 | 0.9675 0.9670 0.9670

LETTERS (26 classes) 1 0.4827 0.5742 0.5686
SCENE (6 classes) 1 0.3953 0.6891 0.5916
WEB PAGE (binary) 1 0.6254 0.6269 0.6267

Table 1: Comparison of methods: F1 measure. First three are multi-class datasets: F1 is computed
individually for each class that has at least C' positive instances (in both the train and the test sets)
and then averaged over classes (macro-F1).

Next we optimize for the Weighted Accuracy measure on datasets with less class imbalance. In this
case, we can see that 6* = 1/2 from Theorem 2. We use four benchmark datasets: SCENE (same as
earlier), IMAGE (2068 images: 1300 train, 1010 test) [22], BREAST CANCER (683 instances: 463
train, 220 test) and SPAMBASE (4601 instances: 3071 train, 1530 test) [23]. Note that the last three
are binary datasets. The results are presented in Table 2. Here, we observe that all the methods
perform similarly, which conforms to our theoretical guarantees of consistency.

| DATASET | ERM [ Algorithm 1 | Algorithm 2 |
SCENE 0.9000 0.9000 0.9105
IMAGE 0.9060 0.9063 0.9025
BREAST CANCER 0.9860 0.9910 0.9910
SPAMBASE 0.9463 0.9550 0.9430

Table 2: Comparison of methods: Weighted Accuracy defined as T Pjgﬁ;f ;V P) 7N - Here, &* =

1/2. We observe that the two algorithms are consistent (ERM thresholds at 1/2).

5 Conclusions and Future Work

Despite the importance of binary classification, theoretical results identifying optimal classifiers
and consistent algorithms for many performance metrics used in practice remain as open questions.
Our goal in this paper is to begin to answer these questions. We have considered a large family
of generalized performance measures that includes many measures used in practice. Our analysis
shows that the optimal classifiers for such measures can be characterized as the sign of the thresh-
olded conditional probability of the positive class, with a threshold that depends on the specific
metric. This result unifies and generalizes known special cases. We have proposed two algorithms
for consistent estimation of the optimal classifiers. While the results presented are an important first
step, many open questions remain. It would be interesting to characterize the convergence rates of

L£(0) 2 £(0%) as 6 2 0%, using surrogate losses similar in spirit to how excess 0-1 risk is controlled
through excess surrogate risk in [8]. Another important direction is to characterize the entire family
of measures for which the optimal is given by thresholded P(Y = 1|z). We would like to extend
our analysis to the multi-class and multi-label domains as well.
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Appendix A

Lemma 12. Let F = {f : X — R}, the constraint set C C F, and the functional G : F — R,
consider the optimization problem:

ff=argmax G(f) st feC
feFr

If the Fréchet derivative V G(f) exists, then [* is locally optimal iff. f* € C and:
(VG(f*). f*=f =0 v fec,
— [ OGN @da [ VGULfe)ds Y ec,
reX B

x
Lemma 12 is a generalization of the well known first order condition for optimality of finite dimen-
sional optimization problems [24, Section 4.2.3] to optimization of smooth functionals.

Proposition 13. Let L be a measure of the form (4), and s be some estimator of its optimal

threshold 6*. Assume b5 € (0,1) and ds -2 6*. Also assume the cumulative distribution of 1,
conditionedonY = landonY =0, F, y—1(2) =P(n, < 2|Y =1)and F, |y—o(2) = P(n, <
z|Y = 0) are continuous at z = 6*. Let the classifier be given by one of the following:

(a) the classifier égs (z) = sign(fi, — b8s), where 1) is a class probability estimate that satisfies
B[z — 12|12 0 for some v > 1,

(b) the classifier éSs = sign(g?)ss), the empirical minimizer of the ERM (7) using a suitably
calibrated convex loss ¢ is [9],

then éSs is L-consistent.

Proof. Given Proposition 6, the proofs for parts (a) and (b) essentially follow from the arguments in
[7] for consistency with respect to the AM measure. Under the stated assumptions, the decomposi-

tion Lemma (Lemma 2) of [7] holds: For a classifier é, if
R;_(0) - min R;_(0) 20 then, £*—L(H)B0

This allows us to directly invoke Theorems 5 and Theorems 6 of [7] giving us the desired L-
consistency in parts (a) and (b) respectively. O

Appendix B: Proofs

Proof of Theorem 2

Proof. Let F = {f : X — R}, and note that © C F. We consider a continuous extension of (4) by
extending the domain of £ from © to F. This results in the following optimization:

ff=argmax L(f) st [fe€©O (8)
fer

It is clear that (4) is equivalent to (8), and the minima coincide i.e. f* = 6*. The Fréchet derivative
of L evaluated at x is given by:
1 |: _ dgﬁ(f) — C2

L))z =
VL) (c1 = diL(f)) D (f) c1 — diL(f) #(e)
where D,.(f) is denominator of L(f). A function f* € © optimizes L if f* € © and (Lemma 12):

/ VLS > / VL )af (@)dz ¥ f €O,

zeX
Thus, when ¢; > d;L*, a necessary condition for local optimality is that the sign of f* and the
sign of [VL(f*)] agree pointwise wrt. x. This is equivalent to the condition that sign(f*) =
sign(n, — 0*). Combining this result with the constraint set f € ©, we have that f* = sign(f*),
thus f* = sign(n, — §*) is locally optimal. Finally, we note that f* = sign(n, — §*) is unique for
f € O, thus f* is globally optimal. The proof for ¢; < dyL* follows using similar arguments. [




Proof of Proposition 6

Proof. From Corollary 4 we know §* = —i—f. Since 0 < 6* < 1, and ¢; < 1 from Proposition 7,

we have 1 > ¢; > 0. We can rewrite £(6) as £(0) = ¢1[(1 — 6*)TP + 6*TN] + A, where A is a
constant. We have:

Rs:(0) = Egye|((1=0)1y=1) + 0 1y=0}) - Lo(e) 4}
(1= 8")P(y = 1,6(z) = 0) + 6" Py = 0,6(x) = 1)
= (1-0")FN + 6°FP
= (1-6%)(r —TP)+6*(1 — 7 —TN)
= (1-6)7+6"(1—m)— ((1-6*)TP+5*TN)
~ (- rai-m+ 2 Lro)
C1 C1

Observing that (1 —6*)7 4 6*(1 — ) + £ is a constant independent of 6, the proof is complete. [

Cc1
Proof of Lemma 8

Proof. For a given 0,¢; > 0,p > 0, there exists an N such that for any n > N, P(|TP,(0) —
TP(0)| < e1) > 1 — p/2 and P(|,(0) — v(0)| < €1) > 1 — p/2. By union bound, the two events
simultaneously hold with probability at least 1 — p. Let ¢; = 1/|¢q| if ¢; # 0 else é& = 0. Define
¢a,dy, do similarly. Now define C' = max(¢éy, é2) and D = max(dy, d2). Observe that either C' > 0
or D > 0 otherwise L is a constant. Now for a given € > 0, after some simple algebra, we need

(diTP(0) + day(0) + do)e
D(L@O)+e)+C

Choosing some ¢; satisfying the upper bound above guarantees £(0) —e < L£,,(0) < L(0)+e. Thus
for all n > N implied by this €; and p, P(|£,,(0) — L(0)| < €) > 1 — p holds.

€1 >

Now, for the rate of convergence, Hoeffding’s inequality with p = 4e—2net (or €1 = 4 /ﬁ In %)
gives us P(|TP,(0) — TP(0)| < €1) > 1 — p/2 and P(|7,(0) — v(0)| < €1) > 1 — p/2. Choose
€1 > 0 as a function of ¢ such that it is sufficiently small, i.e. ¢ < (lelr;((e [):?'e'fi()?gd”)e. We
know L(#) < L for any 6 (from Proposition 7), therefore D(L(0) +€) + C < D(L +¢€) + C.
Furthermore, d1 TP(6) 4+ dav(0) + do > bo + min(boo, b11, bo1, b10) := B. We can choose ¢; =

B LEE) o < (lePD((a [):z;‘)iil()i)gd“)e ore = %. From the first part of the lemma, we know

P(|L£,(0) — L(F)| < €) > 1 — pholds with probability at least p. This completes the proof. O

Proof of Lemma 9
Proof. Let p = 16e™(em)=n<i/32 then ¢; = #(n, p). Using Lemma 29.1 in [25], we obtain:

P[sup |TP,(0) — TP(0)| < e1] > 1 —p/2.
0ce

By union bound, the inequalities P| supyee | TP, (0)—TP(0)| < €1] and P[supgce [1n (0)—7(0)] <

61} simultaneously hold with probability at least 1 — p. If n is large enough that 7(n, p) < %, then

from Proposition 8 we know that, for any given 6, |£,,(0) — L(0)| < % with probability

at least 1 — p. The lemma follows. ’ O

Proof of Theorem 10

Proof. Using a strongly proper loss function [19] and its corresponding link function ¢, and an
appropriate function class to minimize the empirical loss, we can obtain a class probability estimator
) such that E, [|7); —7|?] — 0 (from Theorem 5 in [26]). Convergence in mean implies convergence



in probability and so we have 7 % 7. Now let 05 = sign(n, — 0). Recall that 4 denotes the empirical
maximizer obtained in Step 3. Now, since Ly, (%) > L, (6;. ), it follows that:

L= L(03) = L= La(03) + Ln(0F) — L(63)

< L= La(05) + La(07) — L(67)
< 2Sl;p|£(9§) — L,(03)]
< 250

where € is defined as in Lemma 9. The last step is true by instantiating Lemma 9 with the thresholded
classifiers corresponding to ¢(z) = n,. O

Proof of Theorem 11

Proof. For a fixed §, E(x y)p [¢5(05(X),Y)] — ming Ex yy~p[ls(0(X),Y)]. With the under-
standing that the surrogate loss ¢; (i.e. the ¢s-risk) satisfies regularity assumptions and the minimizer
is unique, the weighted empirical risk minimizer also converges to the corresponding Bayes classi-
fier [9]; i.e., we have 05 2 g5. In particular, éé LS 0% = sign(n, — 5). Let é denote the empirical
maximizer obtained in Step 2. Now, by using an argument identical to the one in Theorem 10 we
can show that £* — L(67) < 2¢ 0. O



