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Abstract

Multilabel classification is rapidly developing as an important aspect of modern
predictive modeling, motivating study of its theoretical aspects. To this end, we
propose a framework for constructing and analyzing multilabel classification met-
rics which reveals novel results on a parametric form for population optimal clas-
sifiers, and additional insight into the role of label correlations. In particular,
we show that for multilabel metrics constructed as instance-, micro- and macro-
averages, the population optimal classifier can be decomposed into binary classi-
fiers based on the marginal instance-conditional distribution of each label, with a
weak association between labels via the threshold. Thus, our analysis extends the
state of the art from a few known multilabel classification metrics such as Ham-
ming loss, to a general framework applicable to many of the classification metrics
in common use. Based on the population-optimal classifier, we propose a compu-
tationally efficient and general-purpose plug-in classification algorithm, and prove
its consistency with respect to the metric of interest. Empirical results on synthetic
and benchmark datasets are supportive of our theoretical findings.

1 Introduction

Modern classification problems often involve the prediction of multiple labels simultaneously asso-
ciated with a single instance e.g. image tagging by predicting multiple objects in an image. The
growing importance of multilabel classification has motivated the development of several scalable
algorithms [8, 12, 18] and has led to the recent surge in theoretical analysis [1, 3, 7, 16] which helps
guide and understand practical advances. While recent results have advanced our knowledge of
optimal population classifiers and consistent learning algorithms for particular metrics such as the
Hamming loss and multilabel F -measure [3, 4, 5], a general understanding of learning with respect
to multilabel classification metrics has remained an open problem. This is in contrast to the more
traditional settings of binary and multiclass classification where several recently established results
have led to a rich understanding of optimal and consistent classification [9, 10, 11]. This manuscript
constitutes a step towards establishing results for multilabel classification at the level of generality
currently enjoyed only in these traditional settings.

Towards a generalized analysis, we propose a framework for multilabel sample performance metrics
and their corresponding population extensions. A classification metric is constructed to measure the
utility1 of a classifier, as defined by the practitioner or end-user. The utility may be measured using

∗Equal contribution.
1Equivalently, we may define the loss as the negative utility.
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the sample metric given a finite dataset, and further generalized to the population metric with respect
to a given data distribution (i.e. with respect to infinite samples). Two distinct approaches have been
proposed for studying the population performance of classifier in the classical settings of binary
and multiclass classification, described by Ye et al. [17] as decision theoretic analysis (DTA) and
empirical utility maximization (EUM). DTA population utilities measure the expected performance
of a classifier on a fixed-size test set, while EUM population utilities are directly defined as a function
of the population confusion matrix. However, state-of-the-art analysis of multilabel classification
has so-far lacked such a distinction. The proposed framework defines both EUM and DTA multilabel
population utility as generalizations of the aforementioned classic definitions. Using this framework,
we observe that existing work on multilabel classification [1, 3, 7, 16] have exclusively focused on
optimizing the DTA utility of (specific) multilabel metrics.

Averaging of binary classification metrics remains one of the most widely used approaches for defin-
ing multilabel metrics. Given a binary label representation, such metrics are constructed via aver-
aging with respect to labels (instance-averaging), with respect to examples separately for each label
(macro-averaging), or with respect to both labels and examples (micro-averaging). We consider a
large sub-family of such metrics where the underlying binary metric can be constructed as a frac-
tion of linear combinations of true positives, false positives, false negatives and true negatives [9].
Examples in this family include the ubiquitous Hamming loss, the averaged precision, the multil-
abel averaged F -measure, and the averaged Jaccard measure, among others. Our key result is that a
Bayes optimal multilabel classifier for such metrics can be explicitly characterized in a simple form
— the optimal classifier thresholds the label-wise conditional probability marginals, and the label
dependence in the underlying distribution is relevant to the optimal classifier only through the thresh-
old parameter. Further, the threshold is shared by all the labels when the metric is instance-averaged
or micro-averaged. This result is surprising and, to our knowledge, a first result to be shown at this
level of generality for multilabel classification. The result also sheds additional insight into the role
of label correlations in multilabel classification – answering prior conjectures by Dembczyński et al.
[3] and others.

We provide a plug-in estimation based algorithm that is efficient as well as theoretically consistent,
i.e. the true utility of the empirical estimator approaches the optimal (EUM) utility of the Bayes
classifier (Section 4). We also present experimental evaluation on synthetic and real-world bench-
mark multilabel datasets comparing different estimation algorithms (Section 5) for representative
multilabel performance metrics selected from the studied family. The results observed in practice
are supportive of what the theory predicts.

1.1 Related Work

We briefly highlight closely related theoretical results in the multilabel learning literature. Gao and
Zhou [7] consider the consistency of multilabel learning with respect to DTA utility, with a focus
on two specific losses – Hamming and rank loss (the corresponding measures are defined in Section
2). Surrogate losses are devised which result in consistent learning with respect to these metrics.
In contrast, we propose a plug-in estimation based algorithm which directly estimates the Bayes
optimal, without going through surrogate losses. Dembczynski et al. [2] analyze the DTA population
optimal classifier for the multilabel rank loss, showing that the Bayes optimal is independent of label
correlations in the unweighted case, and construct certain weighted univariate losses which are DTA
consistent surrogates in the more general weighted case. Perhaps the work most closely related
to ours is by Dembczynski et al. [4] who propose a novel DTA consistent plug-in rule estimation
based algorithm for multilabel F -measure. Cheng et al. [1] consider optimizing popular losses in
multilabel learning such as Hamming, rank and subset 0/1 loss (which is the multilabel analog of
the classical 0-1 loss). They propose a probabilistic version of classifier chains (first introduced by
Read et al. [13]) for estimating the Bayes optimal with respect to subset 0/1 loss, though without
rigorous theoretical justification.

2 A Framework for Multilabel Classification Metrics

Consider multilabel classification with M labels, where each instance is denoted by x ∈ X . For
convenience, we will focus on the common binary encoding, where the labels are represented by
a vector y ∈ Y = {0, 1}M , so ym = 1 iff the mth label is associated with the instance, and
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ym = 0 otherwise. The goal is to learn a multilabel classifier f : X 7→ Y that optimizes a certain
performance metric with respect to P – a fixed data generating distribution over the domain X ×Y ,
using a training set of instance-label pairs (x(n),y(n)), n = 1, 2, . . . , N drawn (typically assumed
iid.) from P. Let X and Y denote the random variables for instances and labels respectively, and let
Ψ denote the performance (utility) metric of interest.

Most classification metrics can be represented as functions of the entries of the confusion matrix. In
case of binary classification, the confusion matrix is specified by four numbers, i.e., true positives,
true negatives, false positives and false negatives. Similarly, we construct the following primitives
for multilabel classification:

T̂P(f)m,n = [[fm(x(n)) = 1, y(n)
m = 1]]

F̂P(f)m,n = [[fm(x(n)) = 1, y(n)
m = 0]]

T̂N(f)m,n = [[fm(x(n)) = 0, y(n)
m = 0]]

F̂N(f)m,n = [[fm(x(n)) = 0, y(n)
m = 1]]

(1)

where [[Z]] denotes the indicator function that is 1 if the predicate Z is true or 0 otherwise. It is clear
that most multilabel classification metrics considered in the literature can be written as a function of
the MN primitives defined in (1).

In the following, we consider a construction which is of sufficient generality to capture all multilabel
metrics in common use. Let Ak(f) : {T̂P(f)m,n, F̂P(f)m,n, T̂N(f)m,n, F̂N(f)m,n}M,N

m=1,n=1 7→ R,
k = 1, 2, . . . ,K represent a set of K functions. Consider sample multilabel metrics constructed as
functions: Ψ : {Ak(f)}Kk=1 7→ [0,∞). We note that the metric need not decompose over individual
instances. Equipped with this definition of a sample performance metric Ψ, consider the population
utility of a multilabel classifier f defined as:

U(f ; Ψ,P) = Ψ({E [Ak(f) ]}Kk=1), (2)
where the expectation is over iid draws from the joint distribution P. Note that this can be seen as
a multilabel generalization of the so-called Empirical Utility Maximization (EUM) style classifiers
studied in binary [9, 10] and multiclass [11] settings.

Our goal is to learn a multilabel classifier that maximizes U(f ; Ψ,P) for general performance metrics
Ψ. Define the (Bayes) optimal multilabel classifier as:

f∗Ψ = argmax
f :X →{0,1}M

U(f ; Ψ,P). (3)

Let U(f∗Ψ; Ψ,P) = U∗Ψ. We say that f̂Ψ is a consistent estimator of f∗Ψ if U(f̂ ; Ψ,P)
p→U∗Ψ.

Examples. The averaged accuracy (1 - Hamming loss) used in multilabel classification corre-
sponds to simply choosing: A1(f) = 1

MN

∑M
m=1

∑N
n=1 F̂P(f)m,n + F̂N(f)m,n and ΨHam(f) =

1 − A1(f). The measure corresponding to rank loss2 can be obtained by choosing Ak(f) =
1
M2

∑M
m1=1

∑M
m2=1

(
F̂P(f)m1,k

)(
F̂N(f)m2,k

)
, for k = 1, 2, . . . , N and ΨRank = 1 −

1
N

∑N
k=1Ak(f). Note that the choice of {Ak}, and therefore Ψ, is not unique.

Remark 1. Existing results on multilabel classification have focused on decision-theoretic analysis
(DTA) style classifiers, where the utility is defined as:

UDTA(f ; Ψ,P) = E
[

Ψ({Ak(f)}Kk=1)
]
, (4)

and the expectation is over iid samples from P. Furthermore, there are no theoretical results for
consistency with respect to general performance metrics Ψ in this setting (See Appendix B.2).

For the remainder of this manuscript, we refer to U(f ;P) as the utility defined in (2). We will also
drop the argument f (e.g. write T̂P(f) as T̂P) when it is clear from the context.

2.1 A Framework for Averaged Binary Multilabel Classification Metrics

The most popular class of multilabel performance metrics consists of averaged binary performance
metrics, that correspond to particular settings of {Ak(f)} using certain averages as described in the
following. For the remainder of this subsection, the metric Ψ : [0, 1]4→ [0,∞) will refer to a binary
classification metric as is typically applied to a binary confusion matrix.

2A subtle but important aspect of the definition of rank loss in the existing literature, including [2] and [7],
is that the Bayes optimal is allowed to be a real-valued function and may not correspond to a label decision.
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Micro-averaging Ψmicro. Micro-averaged multilabel performance metrics are defined by averag-
ing over both labels and examples. Let:

T̂P(f) =
1

MN

N∑
n=1

M∑
m=1

T̂P(f)m,n, F̂P(f) =
1

MN

N∑
n=1

M∑
m=1

F̂P(f)m,n, (5)

T̂N(f) and F̂N(f) are defined similarly, then the micro-averaged multilabel performance metrics are
given by:

Ψmicro({Ak(f)}Kk=1) := Ψ(T̂P, F̂P, T̂N, F̂N). (6)

In other words, for micro-averaging, one applies a binary performance metric to the confusion matrix
defined by the four (averaged) quantities above. The other averaged binary metrics are defined
similarly.

Macro-averaging Ψmacro. Macro-averaging measures average classification performance across
labels. Define the averaged measures:

T̂Pm(f) =
1

N

N∑
n=1

T̂P(f)m,n, F̂Pm(f) =
1

N

N∑
n=1

F̂P(f)m,n,

T̂Nm(f) and F̂Nm(f) are defined similarly. The macro-averaged performance metric is given by:

Ψmacro({Ak(f)}Kk=1) :=
1

M

M∑
m=1

Ψ(T̂Pm, F̂Pm, T̂Nm, F̂Nm). (7)

Instance-averaging Ψinstance. This measures the average classification performance across exam-
ples. Define the averaged measures:

T̂Pn(f) =
1

M

M∑
m=1

T̂P(f)m,n, F̂Pn(f) =
1

M

M∑
m=1

F̂P(f)m,n,

T̂Nn(f) and F̂Nn(f) are defined similarly. The instance-averaged performance metric is given by:

Ψinstance({Ak(f)}Kk=1) :=
1

N

N∑
n=1

Ψ(T̂Pn, F̂Pn, T̂Nn, F̂Nn). (8)

3 Characterizing the Bayes Optimal Classifier for Multilabel Metrics

We now characterize the optimal multilabel classifier for a large family of multilabel metrics Ψmicro,
Ψmacro and Ψinstance as outlined in Section 2.1 with respect to the EUM utility. We begin by observing
that while micro-averaging and instance-averaging seem quite different when viewed as sample
averages, they are in fact equivalent at the population level. In light of the Proposition, we need only
focus on one definition (Ψmicro), to characterize the Bayes optimal for both cases.

Proposition 1. For a given binary classification metric Ψ, consider the averaged multilabel metrics
Ψmicro defined in (6) and Ψinstance defined in (8). For any f , U(f ; Ψmicro,P) ≡ U(f ; Ψinstance,P). In
particular, f∗Ψ∗micro

≡ f∗Ψ∗instance
.

We further restrict our study to metrics Ψ selected from the linear-fractional metric family, recently
studied in the context of binary classification [9]. Any Ψ in this family can be written as:

Ψ(T̂P, F̂P, F̂N, T̂N) =
a0 + a11T̂P + a10F̂P + a01F̂N + a00T̂N

b0 + b11T̂P + b10F̂P + b01F̂N + b00T̂N
,

where a0, b0, aij , bij , i, j ∈ {0, 1} are fixed constants, and T̂P, F̂P, F̂N, T̂N are defined as in (5) for
Ψmicro. Many popular multilabel metrics can be derived using linear-fractional Ψ. Some examples
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include3:

Fβ : ΨFβ =
(1 + β2)T̂P

(1 + β2)T̂P + β2F̂N + F̂P

Hamming : ΨHam = T̂P + T̂N

Jaccard : ΨJacc =
T̂P

T̂P + F̂P + F̂N

Precision : ΨPrec =
T̂P

T̂P + F̂P

(9)

Define the population quantities: π =
∑M
m=1 P(Ym = 1) and γ(f) =

∑M
m=1 P(fm(x) = 1). Let

TP(f) = E
[

T̂P(f)
]
, where the expectation is over iid draws from P. From (5), it follows that,

FP(f) := E
[

F̂P(f)
]

= γ(f)− TP(f), TN(f) = 1− π− γ(f) + TP(f) and FN(f) = γ(f)− TP(f).

Now, the population utility (2) corresponding to Ψmicro can be written succinctly as:

U(f ; Ψmicro,P) = Ψ(TP(f),FP(f),FN(f),TN(f)) =
c0 + c1TP(f) + c2γ(f)

d0 + d1TP(f) + d2γ(f)
(10)

with the constants:
c0 = a01π + a00 − a00π + a0, c1 = a11 − a10 − a01 + a00, c2 = a10 − a00 and
d0 = b01π + b00 − b00π + b0, d1 = b11 − b10 − b01 + b00, d2 = b10 − b00.

We assume that the joint P has a density µ that satisfies dP = µdx, and define ηm(x) = P(Ym =
1|X = x). Our first main result characterizes the Bayes optimal multilabel classifier f∗Ψmicro

.
Theorem 2. Given the constants {c1, c2, c0} and {d1, d2, d0}, define:

δ∗ =
d2U∗Ψmicro

− c2
c1 − d1U∗Ψmicro

. (11)

The optimal Bayes classifier f∗ := f∗Ψmicro
defined in (3) is given by:

1. When c1 > d1U∗Ψmicro
, f∗ takes the form f∗m(x) = [[ηm(x) > δ∗]], for m ∈ [M ].

2. When c1 < d1U∗Ψmicro
, f∗ takes the form f∗m(x) = [[ηm(x) ≤ δ∗]], for m ∈ [M ].

The proof is provided in Appendix A.2, and applies equivalently to instance-averaging. Theorem 2
recovers existing results in binary [9] settings (See Appendix B.1 for details), and is sufficiently
general to capture many of the multilabel metrics used in practice. Our proof is closely related to
the binary classification case analyzed in Theorem 2 of [9], but differs in the additional averaging
across labels. A key observation from Theorem 2 is that the optimal multilabel classifier can be
obtained by thresholding the marginal instance-conditional probability for each label P(Ym = 1|x)
and, importantly, that the optimal classifiers for all the labels share the same threshold δ∗. Thus,
the effect of the joint distribution is only in the threshold parameter. We emphasize that while the
presented results characterize the optimal population classifier, incorporating label correlations into
the prediction algorithm may have other benefits with finite samples, such as statistical efficiency
when there are known structural similarities between the marginal distributions [3]. Further analysis
is left for future work.

The Bayes optimal for the macro-averaged population metric is straightforward to establish. We
observe that the threshold is not shared in this case.
Proposition 3. For a given linear-fractional metric Ψ, consider the macro-averaged multilabel
metric Ψmacro defined in (7). Let f∗ = f∗Ψ∗macro

(x). We have, for m = 1, 2, . . . ,M :

f∗m = [[ηm(x) > δ∗m]],

where δ∗m ∈ [0, 1] is a constant that depends on the metric Ψ and the label-wise instance-conditional
marginals of P.
Remark 2. It is clear that micro-, macro- and instance- averaging are equivalent at the population
level when the metric Ψ is linear. This is a straightforward consequence of the observation that the
corresponding sample-based utilities are the same. More generally, micro-, macro- and instance-
averaging are equivalent whenever the optimal threshold is a constant independent of P, such as for
linear metrics, where d1 = d2 = 0 so δ∗ = − c2c1 (cf. Corollary 4 of Koyejo et al. [9]). Thus, our
analysis recovers known results for Hamming loss [3, 7].

3Note that Hamming is typically defined as the loss, given by 1 − ΨHam.
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4 Consistent Plug-in Estimation Algorithm

An important consequence of the characterization of Bayes optimal is that it enables a simple plug-in
estimation algorithm that enjoys consistency. The overall procedure to obtain a consistent classifier
for the averaged metrics Ψmicro (equiv. Ψinstance) is as follows. First, we obtain an estimate η̂m(x)
of the marginal instance-conditional probability ηm(x) = P(Ym = 1|x) for each label m using
validation samples assembled for the corresponding labels {(x(n), y

(n)
m )} (see Reid and Williamson

[14]). Then, the given metric Ψmicro(f) is maximized on the sample. Note that it suffices to maximize
over {fδ : fm(x) = [[ηm(x) > δ]] ∀m = 1, 2, . . . ,M} for fixed threshold δ as:

δ̂ = argmax
δ∈(0,1)

Ψmicro(f̂δ), (12)

where Ψmicro is the micro-averaged sample metric defined as in (6) (similarly for Ψinstance). Though
the threshold search is over a continuous space δ ∈ (0, 1) the number of distinct Ψmicro(f̂δ) values
given a training sample of size N is at most NM . Thus (12) can be solved efficiently on a finite
sample.

Algorithm 1: Plugin-Estimator for Ψmicro and Ψinstance

Input: Training examples S = {x(n),y(n)}Nn=1 and metric Ψmicro (or Ψinstance).
for m = 1, 2, . . . ,M do

1. Select the training data for label m: Sm = {x(n), y
(n)
m }Nn=1.

2. Split the training data Sm into two sets Sm1 and Sm2.
3. Estimate η̂m(x) using Sm1, define f̂m(x) = [[η̂m(x) > δ]].

end for
Obtain δ̂ by solving (12) on S2 = ∪Mm=1Sm2.
Return: f̂δ̂ .

Consistency of the proposed algorithm. The following theorem shows that the plug-in procedure
of Algorithm 1 results in a consistent classifier.

Theorem 4. Let Ψmicro be a linear-fractional metric. If the estimates η̂m(x) satisfy η̂m
p→ ηm, ∀m,

then the output multilabel classifier f̂δ̂ of Algorithm 1 is consistent.

The proof is provided in Appendix A.4. From Proposition 1, it follows that consistency holds for
Ψinstance as well. Additionally, in light of Proposition 3, we may apply the learning algorithms
proposed by [9] for binary classification independently for each label to obtain a consistent estimator
for Ψmacro.

5 Experiments

We present two sets of results. The first is an experimental validation on synthetic data with known
ground truth probabilities. The results serve to verify our main result (Theorem 2) characterizing
the Bayes optimal for averaged multilabel metrics. The second is an experimental evaluation of
the plugin estimator algorithms for micro-, instance-, and macro-averaged multilabel metrics on
benchmark datasets.

5.1 Synthetic data: Verification of Bayes optimal

We consider the micro-averaged F1 metric in (9) for multilabel classification with 4 labels. We
sample a set of five 2-dimensional vectors x = {x(1), x(2), . . . , x(5)} from the standard Gaussian.
The conditional probability ηm for label m is modeled using a sigmoid function: ηm(x) = P(Ym =
1|x) = 1

1+exp−wTmx
, using a vector wm sampled from the standard Gaussian. The Bayes optimal

f∗(x) ∈ {0, 1}4 that maximizes the micro-averaged F1 population utility is then obtained by ex-
haustive search over all possible label vectors for each instance. In Figure 1 (a)-(d), we plot the
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Figure 1: Bayes optimal classifier for multilabel F1 measure on synthetic data with 4 labels, and
distribution supported on 5 instances. Plots from left to right show the bayes optimal classifier
prediction for instances, for labels 1 through 4. Note that the optimal δ∗ at which the label-wise
marginal ηm(x) is thresholded is shared, conforming to Theorem 2 (larger plots are included in
Appendix C).

conditional probabilities (wrt. the sample index n) for each label, the corresponding f∗m for each
x, and the optimal threshold δ∗ using (11). We observe that the optimal multilabel classifier indeed
thresholds P(Ym|x) for each label m, and furthermore, that the threshold is same for all the labels,
as stated in Theorem 2.

5.2 Benchmark data: Evaluation of plug-in estimators

We now evaluate the proposed plugin-estimation (Algorithm 1) that is consistent for micro- and
instance-averaged multilabel metrics. We focus on two metrics, F1 and Jaccard, listed in (9). We
compare Algorithm 1, designed to optimize micro-averaged (or instance-averaged) multilabel met-
rics to two related plugin-estimation methods: (i) a separate threshold δ∗m tuned for each label m
individually — this optimizes the utility corresponding to the macro-averaged metric, but is not
consistent for micro-averaged or instance-averaged metrics; we refer to this as Macro-Thres (ii) a
constant threshold 1/2 for all the labels — this is known to be optimal for averaged accuracy (equiv.
Hamming loss), but not for non-decomposable F1 or Jaccard metrics. We refer to this as Binary
Relevance (BR) [15].

We use four benchmark multilabel datasets4 in our experiments: (i) SCENE, an image dataset con-
sisting of 6 labels, with 1211 training and 1196 test instances, (ii) BIRDS, an audio dataset consisting
of 19 labels, with 323 training and 322 test instances, (iii) EMOTIONS, a music dataset consisting of
6 labels, with 393 training and 202 test instances, and (iv) CAL500, a music dataset consisting of
174 labels, with 400 training and 100 test instances5. We perform logistic regression (with L2 reg-
ularization) on a separate validation sample to obtain estimates of η̂m(x) of P(Ym = 1|x), for each
label m (as described in Section 4). All the methods we evaluate rely on obtaining a good estimator
for the conditional probability. So we exclude labels that are associated with very few instances —
in particular, we train and evaluate using labels associated with at least 20 instances, in each dataset,
for all the methods.

In Table 1, we report the micro-averaged F1 and Jaccard metrics on the test set for Algorithm 1,
Macro-Thres and Binary Relevance. We observe that estimating a fixed threshold for all the labels
(Algorithm 1) consistently performs better than estimating thresholds for each label (Macro-Thres)
and than using threshold 1/2 for all labels (BR); this conforms to our main result in Theorem 2 and
the consistency analysis of Algorithm 1 in Theorem 4. A similar trend is observed for the instance-
averaged metrics computed on the test set, shown in Table 2. Proposition 1 shows that maximizing
the population utilities of micro-averaged and instance-averaged metrics are equivalent; the result
holds in practice as presented in Table 2. Finally, we report macro-averaged metrics computed on
test set in Table 3. We observe that Macro-Thres is competitive in 3 out of 4 datasets; this conforms
to Proposition 3 which shows that in the case of macro-averaged metrics, it is optimal to tune a
threshold specific to each label independently. Beyond consistency, we note that by using more

4The datasets were obtained from http://mulan.sourceforge.net/datasets-mlc.html.
5Original CAL500 dataset does not provide splits; we split the data randomly into train and test sets.
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DATASET BR Algorithm 1 Macro-Thres BR Algorithm 1 Macro-Thres
F1 Jaccard

SCENE 0.6559 0.6847 ± 0.0072 0.6631 ± 0.0125 0.4878 0.5151 ± 0.0084 0.5010 ± 0.0122
BIRDS 0.4040 0.4088 ± 0.0130 0.2871 ± 0.0734 0.2495 0.2648 ± 0.0095 0.1942 ± 0.0401
EMOTIONS 0.5815 0.6554 ± 0.0069 0.6419 ± 0.0174 0.3982 0.4908 ± 0.0074 0.4790 ± 0.0077
CAL500 0.3647 0.4891 ± 0.0035 0.4160 ± 0.0078 0.2229 0.3225 ± 0.0024 0.2608 ± 0.0056

Table 1: Comparison of plugin-estimator methods on multilabel F1 and Jaccard metrics. Reported
values correspond to micro-averaged metric (F1 and Jaccard) computed on test data (with standard
deviation, over 10 random validation sets for tuning thresholds). Algorithm 1 is consistent for micro-
averaged metrics, and performs the best consistently across datasets.

DATASET BR Algorithm 1 Macro-Thres BR Algorithm 1 Macro-Thres
F1 Jaccard

SCENE 0.5695 0.6422 ± 0.0206 0.6303 ± 0.0167 0.5466 0.5976 ± 0.0177 0.5902 ± 0.0176
BIRDS 0.1209 0.1390 ± 0.0110 0.1390 ± 0.0259 0.1058 0.1239 ± 0.0077 0.1195 ± 0.0096
EMOTIONS 0.4787 0.6241 ± 0.0204 0.6156 ± 0.0170 0.4078 0.5340 ± 0.0072 0.5173 ± 0.0086
CAL500 0.3632 0.4855 ± 0.0035 0.4135 ± 0.0079 0.2268 0.3252 ± 0.0024 0.2623 ± 0.0055

Table 2: Comparison of plugin-estimator methods on multilabel F1 and Jaccard metrics. Reported
values correspond to instance-averaged metric (F1 and Jaccard) computed on test data (with stan-
dard deviation, over 10 random validation sets for tuning thresholds). Algorithm 1 is consistent for
instance-averaged metrics, and performs the best consistently across datasets.

DATASET BR Algorithm 1 Macro-Thres BR Algorithm 1 Macro-Thres
F1 Jaccard

SCENE 0.6601 0.6941 ± 0.0205 0.6737 ± 0.0137 0.5046 0.5373 ± 0.0177 0.5260 ± 0.0176
BIRDS 0.3366 0.3448 ± 0.0110 0.2971 ± 0.0267 0.2178 0.2341 ± 0.0077 0.2051 ± 0.0215
EMOTIONS 0.5440 0.6450 ± 0.0204 0.6440 ± 0.0164 0.3982 0.4912 ± 0.0072 0.4900 ± 0.0133
CAL500 0.1293 0.2687 ± 0.0035 0.3226 ± 0.0068 0.0880 0.1834 ± 0.0024 0.2146 ± 0.0036

Table 3: Comparison of plugin-estimator methods on multilabel F1 and Jaccard metrics. Reported
values correspond to the macro-averaged metric computed on test data (with standard deviation,
over 10 random validation sets for tuning thresholds). Macro-Thres is consistent for macro-averaged
metrics, and is competitive in three out of four datasets. Though not consistent for macro-averaged
metrics, Algorithm 1 achieves the best performance in three out of four datasets.

samples, joint threshold estimation enjoys additional statistical efficiency, while separate threshold
estimation enjoys greater flexibility. This trade-off may explain why Algorithm 1 achieves the best
performance in three out of four datasets in Table 3, though it is not consistent for macro-averaged
metrics.

6 Conclusions and Future Work

We have proposed a framework for the construction and analysis of multilabel classification metrics
and corresponding population optimal classifiers. Our main result is that for a large family of aver-
aged performance metrics, the EUM optimal multilabel classifier can be explicitly characterized by
thresholding of label-wise marginal instance-conditional probabilities, with weak label dependence
via a shared threshold. We have also proposed efficient and consistent estimators for maximizing
such multilabel performance metrics in practice. Our results are a step forward in the direction of
extending the state-of-the-art understanding of learning with respect to general metrics in binary and
multiclass settings. Our work opens up many interesting research directions, including the potential
for further generalization of our results beyond averaged metrics, and generalized results for DTA
population optimal classification, which is currently only well-understood for the F -measure.
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1320894, and NIH via R01 GM117594-01 as part of the Joint DMS/NIGMS Initiative to Support
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ranking through univariate losses. In Proceedings of the 29th International Conference on
Machine Learning (ICML-12), pages 1319–1326, 2012.
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A Appendix A: Proofs

A.1 Proof of Proposition 1

Observe that the EUM utility (2) corresponding to micro-averaged metric is sim-
ply: U(f ; Ψmicro,P) = Ψ(TP(f),FP(f),FN(f),FP(f)) where TP(f) = EP

[
T̂P(f)

]
(FP(f),FN(f),TN(f) defined similarly). By linearity of expectation, EP

[
T̂P(f)

]
=

1
MN

∑N
n=1

∑M
m=1 EP

[
T̂P(f)m,n

]
. But EP

[
T̂P(f)m,n

]
= P(fm(x) = 1, Ym = 1). Simi-

larly, for the instance-averaged metric, we see that the corresponding TP(f) = EP

[
T̂P(f)

]
=

P(fm(x) = 1, Ym = 1). Analogously, FP(f),FN(f),TN(f) can be seen to be identical for micro-
and instance-averaged metrics. Thus, whereas the sample metrics may be different, the population
EUM utilities of the micro-averaged and instance-averaged metrics coincide. The second claim that
f∗Ψ∗micro

≡ f∗Ψ∗instance
is immediate.

A.2 Proof of Theorem 2

For simplicity, the proof is presented for the finite domain case. Extension to the continuous case
follows directly from the approach in Theorem 2 of [9], which requires a more technical definition
of the derivatives. Let F = {f : X →RM}, and Θ = {f : X →{−1,+1}M} ⊂ F (Note that we
use the encoding {+1,−1} for ease and it is equivalent to {0, 1} encoding used in the main text).
The derivative of U(f ; Ψmicro,P) w.r.t. fm(x) is given by:

∇fm(x)U(f) =
1

(c1 − d1U(f))Dr(f)

[
ηm(x)− d2U(f)− c2

c1 − d1U(f)

]
µ(x)

where Dr(f) is denominator of U(f). A (multivariate) function f∗ ∈ Θ optimizes U if f∗ ∈ Θ and:∑
m

∑
x∈X

∇fm(x)U(f∗)fm(x)dx ≥
∑
m

∑
x∈X

∇fm(x)U(f∗)f∗m(x)dx ∀ f , f∗ ∈ Θ.

Thus, when c1 ≥ d1U∗, a necessary condition for local optimality is that the sign of f∗m and the sign
of [∇fm(x)U(f∗)] agree point-wise wrt. x, ∀ m. This is equivalent to the condition that sign(f∗m) =
sign(ηm(x)−δ∗). Combining this result with the constraint set f ∈ Θ, we have that f∗m = sign(f∗m),
thus f∗m = sign(ηm(x) − δ∗) is locally optimal. Finally, we note that f∗m = sign(ηm(x) − δ∗) is
unique for f ∈ Θ, thus f∗ is globally optimal. The proof for c1 < d1U∗ follows using similar
arguments. The observation that the threshold is shared between labels follows by definition of the
gradient, where we observe that the threshold depends on the optimal utility. We note that despite
the close similarity, the above result cannot be derived from Theorem 2 of [9] without significant
modification to accommodate a non-iid sampling distribution i.e. different label distributions when
viewed as a binary classification problem.

A.3 Proof of Proposition 3

Note that the population utility corresponding to macro-averaged metric Ψmacro can be written as:

U(f ; Ψmacro,P) =
1

M

M∑
m=1

Ψ(TPm(f),FPm(f),FNm(f),TNm(f)),

where TPm(f) = P(fm(x) = 1, Ym = 1) (FPm(f),FNm(f),TNm(f) defined similarly). Let Pm
denote the marginal P(X,Ym = 1). Note that U(f ; Ψmacro,P) is maximized by f∗ if for all m,
Ψ(TP(f),FP(f),FN(f),TN(f)), where f : X →{0, 1} and TP(f) = Pm(f(x) = 1, Y = 1),
is optimized by f∗m. From Theorem 2 of [9], we know that the Bayes optimal f∗m(x) for linear-
fractional Ψ with respect to Pm is given by [[ηm(x) > δ∗m]], where δ∗m depends only on Ψ and
marginal Pm.

A.4 Proof of Theorem 4

We first show the following claim:
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Claim. For a fixed multilabel classifier f , Ψmicro(f ; {x(n),y(n)}Nn=1)
p→U(f ; Ψmicro;P), where

Ψmicro defined in (6) is the micro-averaged metric computed on iid samples.

Proof. The proof follows closely that of Lemma 8 of [9]. Consider the simplified empirical Ψmicro

corresponding to the simplified population utility in (10), obtained by replacing TP(f) with T̂P(f),
γ(f) with γ̂(f) := 1

MN

∑M
m=1

∑N
n=1[[f

(n)
m = 1]] and π (in the definition of c0 and d0) with π̂ =

1
MN

∑M
m=1

∑N
n=1[[y

(n)
m = 1]]. Note that for any given ε1 > 0, ρ > 0, there exists N ′ such that

for any N > N ′, P(|T̂P(f) − E[T̂P(f)]| < ε1) > 1 − ρ/3, P(|γ̂(f) − γ(f)| < ε1) > 1 − ρ/3
and P(|π̂ − π| < ε1) > 1− ρ/3. Thus by union bound it follows that all the three events hold with
probability 1−ρ. Write c0 = c′o+c′′0π and d0 = d′0 +d′′0π. Let c̃1 = 1/|c1| if c1 6= 0 else let c̃1 = 0.
Define c̃2, d̃1, d̃2 accordingly. Let C = max(c̃1, c̃2) and D = max(d̃1, d̃2). Note that for Ψmicro to
be valid and bounded, max(C,D) > 0. For a given ε > 0, we want ε1 ≤ (d′0+d′′0 π+d1TP(f)+d2γ(f))ε

D(U(f ;Ψmicro;P)+ε)+C ,
so that we can guarantee |Ψmicro(f)− U(f ; Ψmicro;P)| < ε. Thus for all N > N ′, for given ε and δ,
we have shown that |Ψmicro(f)−U(f ; Ψmicro;P)| < ε with probability at least 1− ρ. This completes
the proof of the claim.

Assume the estimated η̂m(x) satisfies η̂m(x)
p→ ηm(x) as stated in the Theorem (this can be guar-

anteed by using a suitable class density estimation algorithm). Consider the multilabel classifier
f∗δ = ([[ηm(x) > δ]])Mm=1. Let δ∗ be the optimal threshold corresponding to the Bayes optimal
f∗Ψmicro

. Because δ̂ is the empirical minimizer on a finite sample, we have Ψmicro(f∗
δ̂

) ≥ Ψmicro(f∗δ∗)

on the sample. So:

U∗Ψmicro
− U(f∗

δ̂
; Ψmicro,P) = U∗Ψmicro

−Ψmicro(f∗
δ̂

) + Ψmicro(f∗
δ̂

)− U(f∗
δ̂

; Ψmicro,P)

≤ U∗Ψmicro
−Ψmicro(f∗δ∗) + Ψmicro(f∗

δ̂
)− U(f∗

δ̂
; Ψmicro,P)

≤ 2 sup
δ
|Ψmicro(f∗δ )− U(f∗δ ; Ψmicro,P)| (13)

Now, to conclude the proof, we argue that the last term in the RHS of the inequality above
vanishes as N → ∞. For a given f ∈ RM , let Fδ denote the class of multilabel classifiers
obtained by thresholding f for some δ ∈ (0, 1). Using Lemma 29.1 in [6], for given ρ and
ε1 > 0, supf∈Fδ |T̂P(f) − TP(f)| < ε1 with probability at least 1 − ρ/3. Following similar ar-
guments in the claim above, given ε > 0 and ρ, we can choose ε1 and N large enough such that
supδ |Ψmicro(f∗δ )−U(f∗δ ; Ψmicro,P)| < ε with probability at least 1− ρ. This shows that the RHS of
(13) vanishes as N →∞. The proof of the theorem is complete.

B Appendix B

B.1 Connection to Existing Results

Our results in Section 3 and Algorithm 1 generalize some of the existing results for learning with
general performance metrics in binary classification. In particular, when M = 1, our multilabel per-
formance metrics considered in Section 3 reduce to the linear-fractional family binary classification
metrics studied by Koyejo et al. [9]. The characterization of Bayes optimal in Theorem 2 of Koyejo
et al. [9] can be seen as a special case of our Theorem 2. Similarly, the plugin-estimation algorithm
of Koyejo et al. [9] can be derived from our Algorithm 1 for the binary case.

More recently, Narasimhan et al. [11] considered generalized performance metrics for multiclass
classification and showed that the Bayes optimal (of the EUM utility) can be characterized as a
thresholding of the class-conditional probability. We observe that our framework of metrics intro-
duced in Section 2 readily gives rise to the multiclass performance metrics studied by Narasimhan
et al. [11] with the additional constraint of a single label choice for each instance. While they show
the Bayes optimal and consistency of learning for a different family than the linear-fractional family
we consider in this paper, many of the popular metrics including multiclass F -measure and multi-
class Jaccard belong in both the families.
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B.2 Multilabel Decision-Theoretic Utility

Existing consistency results and algorithms for multilabel learning focus on the population utility
based on decision-theoretic analysis (DTA) defined in (4). Furthermore, we are not aware of consis-
tency results for general multilabel performance metrics. Gao and Zhou [7] define the consistency
of multilabel learning with respect to DTA utility. They focus on two specific losses — Hamming
and rank loss (the corresponding measures are defined in Section 2) and suggest surrogates for con-
sistent learning with respect to the losses. Note that Hamming loss is a linear metric (i.e. it is linear
in the primitives F̂N(f)m,n and F̂P(f)m,n) and hence the Bayes optimal characterizations coincide
for both DTA and EUM utility (See Equation (8) of Gao and Zhou [7]). For the Hamming loss, they
showed that the Bayes optimal for the DTA utility depends on pairwise conditional distributions, i.e.
P(Ym, Ym′ |x). However, Dembczynski et al. [2] subsequently showed that the Bayes optimal for the
un-normalized ranking loss indeed depends only on the label marginals P(Ym|x), and in turn showed
that minimizing appropriately weighted univariate loss functions (such as exponential and logistic
losses) independently for M labels is consistent with respect to rank loss. A subtle but important
aspect of the definition of rank loss in the existing literature including [7] and [2] is that the Bayes
optimal is allowed to be a real-valued function and may not necessarily correspond to an explicit la-
bel decision (note that our definition of Bayes optimal is inherently binary valued). Also, we achieve
consistent learning with respect to multilabel EUM utility using a plugin-estimation algorithm. Sim-
ilar plugin-estimators have been studied in the context of multilabel DTA utility maximization but
only for specific metrics. [4] proposed a novel plug-in rule algorithm for estimating the parameters
required for a Bayes-optimal prediction for F -measure (i.e., with respect to the DTA utility) via a
set of multinomial regression models. Beyond theoretical analysis, further empirical study of the
limits of the plug-in approach as compared to modern multilabel algorithms would be illuminating.
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C Appendix C

C.1 Simulated Data Results

The figure shows larger plots illustrating the Bayes optimal classifier for multilabel F1 measure on
synthetic data with 4 labels, and distribution supported on 5 instances. Plots from left to right show
the bayes optimal classifier prediction for instances, for labels 1 through 4. Note that the optimal δ∗
at which the label-wise marginal ηm(x) is thresholded is shared, conforming to Theorem 2
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