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ABSTRACT
Motivation: Clustering genes based upon their expression
patterns allows us to predict gene function. Most existing clus-
tering algorithms cluster genes together when their expression
patterns show high positive correlation. However, it has been
observed that genes whose expression patterns are strongly
anti-correlated can also be functionally similar. Biologically,
this is not unintuitive—genes responding to the same stimuli,
regardless of the nature of the response, are more likely to
operate in the same pathways.
Results: We present a new diametrical clustering algorithm
that explicitly identifies anti-correlated clusters of genes. Our
algorithm proceeds by iteratively (i) re-partitioning the genes
and (ii) computing the dominant singular vector of each gene
cluster; each singular vector serving as the prototype of
a ‘diametric’ cluster. We empirically show the effectiveness
of the algorithm in identifying diametrical or anti-correlated
clusters. Testing the algorithm on yeast cell cycle data, fibro-
blast gene expression data, and DNA microarray data from
yeast mutants reveals that opposed cellular pathways can
be discovered with this method. We present systems whose
mRNA expression patterns, and likely their functions, oppose
the yeast ribosome and proteosome, along with evidence for
the inverse transcriptional regulation of a number of cellular
systems.
Availability: See http://bioinformatics.icmb.utexas.edu for the
experimental results. Software is available on request.
Contact: usman@cs.utexas.edu

1 INTRODUCTION AND MOTIVATION
DNA microarrays simultaneously measure the mRNA expres-
sion of thousands of genes in a single experiment (DeRisi
et al., 1997), typically measuring expression of every gene
encoded by a genome. From sets of DNA microarray experi-
ments, an expression vector for each gene can be constructed,
describing the expression of the gene under a range of cellular
conditions, cell types, genetic backgrounds, etc.

A key step in the analysis of gene expression data is the
clustering of genes into groups that show similar expression

values over a wide range of experiments. Given enough inde-
pendent experiments, genes clustered in this fashion tend to
be functionally related (Eisen et al., 1998; Marcotte et al.,
1999).

There is already a wealth of work in cluster analysis of
genes, ranging from hierarchical clustering (Eisen et al.,
1998), self-organizing maps (Tamayo et al., 1999), neural net-
works (Herrero et al., 2001), simulated annealing (Lukashin
and Fuchs, 2001), algorithms based on principal compon-
ents analysis (Hastie et al., 2000) and graph-based algorithms
(Sharan and Shamir, 2000). Most of these algorithms use some
measure of correlation between expression vectors, such as
correlation coefficient, and tend to put those genes in one
cluster that show strong positive correlation between their
expression vectors. However, as observed by (Shatkay et al.,
2000):

‘Genes that are functionally related may demonstrate
strong anti-correlation in their expression levels, a
gene may be strongly suppressed to allow another
to be expressed, thus clustered into separate groups,
blurring the (functional) relationship between them.’

In general, we often expect the genes in a given cellular
pathway to be co-expressed (positively correlated) to some
extent. Genes whose expression is anti-correlated with these
might include members of a pathway whose action is opposed
to that of the first pathway (Qian et al., 2001). We expect anti-
correlated expression patterns from genes which repress the
expression of other genes, often genes involved in the same
biological pathway.

In this paper, we pose the goal of detecting anti-correlated
gene clusters. This provides us a way to explicitly look for
opposed systems of genes, and also to investigate functional
similarity between such opposed clusters.

To achieve this goal, we propose a new clustering algorithm
which puts strongly correlated and anti-correlated genes into
the same ‘diametric’ cluster. A simple post-processing step
separates the positively correlated genes from the negatively
correlated genes. Our clustering algorithm resembles the
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k-means procedure (Jain and Dubes, 1988), in that it itera-
tively alternates between (i) reallocation of cluster members
and (ii) computation of ‘prototypes’ of the new clusters. In
k-means, each cluster’s ‘prototype’ is the centroid (or mean) of
its constituent members. However, this simple strategy would
break down for our goal since each cluster contains posi-
tively and negatively correlated genes. In our algorithm, each
cluster’s prototype turns out to be the dominant singular vec-
tor of the matrix whose rows comprise the cluster members.
This strategy effectively identifies diametric clusters.

In this paper, we first discuss some similarity measures
used in clustering, then introduce the algorithm to detect anti-
correlated clusters. The algorithm is applied to three sets of
mRNA expression data, providing evidence for the inverse
transcriptional regulation of several cellular systems. A word
about notation: small letters such as g, h, x and v will denote
vectors, capital letters such as A, G denote matrices. Also,
gT h denotes the usual inner product between vectors.

2 SIMILARITY MEASURES AND
ALGORITHM

2.1 Similarity measures
Gene expression data from a set of microarray experiments
is typically presented as an m × n matrix G in which the
rows correspond to genes, the columns to experiments, and
the (i, j) entry in the matrix corresponds to the expression
level of gene i in the j th experiment. Note that m is the total
number of genes, while n is the number of experiments.

Most clustering algorithms require a similarity (or distance)
measure. A popular gene expression similarity measure is the
correlation coefficient (Eisen et al., 1998). For n-dimensional
gene vectors g and h, the correlation coefficient is defined as:

S(g, h) = 1

n

n∑
i=1

(
gi − µg

σg

) (
hi − µh

σh

)
(1)

where gi is the expression level of gene g in the ith exper-
iment, µg is a number usually taken to be the mean of all

expression levels of g, and σg =
√

(1/n)
∑n

i=1(gi − µg)2.
When µg and µh are taken as the means of values in g and h,
respectively, then S(g, h) is exactly equal to the Pearson cor-
relation coefficient, which is a measure that captures the linear
relationship between the observations gi and hi , i = 1, . . . , n.
When µg is set to 0, S(g, h) equals the cosine of the angle
between g and h.

By shifting each gene vector by its mean and then normal-
izing it to have unit norm, the Pearson correlation coefficient
equals the inner product between the (transformed) gene
vectors. Specifically, by making the transformations g̃i =
(gi − µg)/

∑n
j=1(gj − µg)

2, 1 ≤ i ≤ n, to every gene vec-
tor, the correlation coefficient in (1) may be written as the inner
product between two unit vectors, i.e., S(g, h) = g̃Th̃. In this

paper, we perform such data transformations before cluster-
ing. The inner product has been used previously as a measure
of similarity, for example see (Sharan and Shamir, 2000) and
(Brown et al., 2000). Note that each transformed gene vector g

resides on the unit (hyper)sphere in n-dimensional space.

2.2 Algorithm
Our goal is to find clusters containing genes that are either
highly positively correlated or highly negatively correlated.
Hence, an obvious similarity measure is the square of the
correlation coefficient (Graybill and Iyer, 1994), i.e.,

S(g, h) = (gTh)2, (2)

where g and h are gene vectors with mean 0 and norm 1. This
measure is high (close to 1) if the genes have high positive or
negative correlation. Having chosen a similarity measure, we
need an appropriate clustering algorithm.

The popular k-means algorithm is efficient but unsuitable
with this similarity measure. Given a cluster which contains
genes that have high positive as well as negative correlation,
it would be incorrect to use the cluster centroid (or mean) as
the ‘cluster prototype’ as is done in the traditional k-means
algorithm. Thus we need a definition of ‘cluster prototype’
compatible with the squared correlation coefficient.

Given a cluster Cj of genes, the natural question to ask is:
what cluster prototype (or representative) vector xj is closest,
on average, to all the gene vectors in the cluster using the
similarity measure in (2). Mathematically, we find a unit
vector xj such that the sum

∑
g∈Cj

(gTxj )
2 =

∑
g∈Cj

xT
j (ggT)xj = xT

j


∑

g∈Cj

ggT


 xj

is maximized. The optimal solution is achieved when xj

equals the dominant right singular vector of the matrix Gj

whose rows comprise all the gene vectors in the cluster (Golub
and Loan, 1996). Thus, given a clustering C1, . . . , Ck we can
measure its quality by the total squared correlation coefficient

Q(C1, C2, . . . , Ck) =
k∑

j=1

∑
g∈Cj

(gTvj )
2, (3)

where vj is the dominant singular vector of cluster Cj . Our
goal of finding k diametric clusters can be posed as the search
for clusters that maximize this quality.

Figure 1 gives an algorithm that searches for such a clus-
tering. Phase I of the algorithm alternates between two steps:
(a) obtain a new clustering based on the closeness of genes
to the current set of singular vectors and (b) re-compute the
set of singular vectors for this new clustering. The domin-
ant singular vector of each of the clusters can be efficiently
computed by using power iteration or the faster converging
Lanczos algorithm (Golub and Loan, 1996). Each iteration
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If the difference in Q(C1,... ,Ck) (see (Eqn 3)) between two con-
secutive iterations is less than δ go to Phase II, else go to step 2
above.

Fig. 1. Algorithm for diametrical clustering.

always increases the quality measure given in (3) (a proof is
given in the appendix). Thus the quality measure will converge
to a limiting value, and the iteration is guaranteed to termin-
ate with an appropriate convergence criterion [see Dhillon and
Modha (2001)].

Phase II of the algorithm separates each diametric cluster
into a pair of anti-correlated clusters. As shown in Figure 1
this is done by simply separating the genes in each diametric
cluster Ci according to whether they have positive or negative
inner product with the cluster’s singular vector, i.e., gTvi is
positive or negative. Note that the algorithm does not force a
diametric or anti-correlated structure on the data. If the data set
does not have anti-correlated clusters then one of the clusters
found in Phase II will be empty.

The algorithm is computationally efficient: the time taken
is O(mnkτ) where τ is the number of iterations required—
experimental results show that 15–20 iterations are typical. In
the rest of the paper we will refer to the Phase I clusters as
diametric clusters, and the Phase II clusters as anti-correlated
clusters.

3 EXPERIMENTAL RESULTS
We analyzed three large sets of mRNA expression data.
First, we analyzed human fibroblast gene expression data (Iyer
et al., 1999) reporting the response of human fibroblasts after

addition of serum to the growth media. This data set contains
expression levels for the 517 human genes whose expression
changed substantially following serum stimulation. The data
(12 time points and an unsynchronized sample) was prepro-
cessed by dividing each entry by the unsynchronized sample
expression level, taking the log of the result, then normalizing
each 12-element expression vector to have unit L2 norm.

Two yeast data sets were analyzed. The first consists of
gene expression data from synchronized yeast cultures grow-
ing through several phases of the cell cycle (Spellman et al.,
1998). The data represents 82 time points from yeast cultures
synchronized by four independent methods for a subset of 696
genes which have at most four missing values. Each gene vec-
tor was normalized to have mean 0 and norm 1. The second
yeast data set is that of Rosetta Inpharmatics (Hughes et al.,
2000), consisting of 300 experiments measuring expression
of 6048 yeast genes, in which transcript levels of a mutant
or compound-treated culture were compared to those of a
wild-type or mock-treated culture. We examined the subset of
5246 genes which had no missing expression measurements,
and normalized each 300-element expression vector to have
unit L2 norm.

3.1 Validating anti-correlated mRNA
expression

To test the extent of anti-correlated gene expression, we mea-
sured functional relatedness of anti-correlated genes. We took
the 1174 yeast genes with functional annotation in the KEGG
pathway database (Kanehisa and Goto, 2000), then measured
the correlation coefficients between the Rosetta expression
vectors of all pairs of the annotated yeast genes. We represen-
ted each gene’s function as a set containing KEGG categories,
which allowed us to compute the Jaccard coefficient between
the KEGG categories (Verjovsky Marcotte and Marcotte,
2002) of every gene pair. The Jaccard coefficient of two sets
A and B is defined as |A ∩ B|/|A ∪ B| where |A| denotes the
size of set A. In Figure 2, we have plotted the mean Jaccard
coefficient versus the correlation coefficient of the expression
vectors. As expected, genes with co-expression (high positive
correlation coefficients) show strong functional relatedness
(i.e. large Jaccard coefficients). However, genes with anti-
correlated expression (high negative correlation coefficients)
also show functional similarity, validating the search for
anti-correlated gene expression clusters. We observed sim-
ilar results when function keywords were obtained from the
SWISS-PROT database (Bairoch and Apweiler, 2000).

3.2 Analysis of diametrical clusters
We applied diametrical clustering to the human fibroblast
and Rosetta yeast expression sets. In general, analysis of
the human data revealed that systems downregulated upon
serum stimulation are systematically understudied. The yeast
data revealed a number of presumably coordinately regulated,
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Fig. 2. Yeast genes with both highly correlated and highly anti-
correlated mRNA expression patterns tend to operate in similar
cellular pathways.

opposed cellular systems which have not been previously
observed.

3.2.1 Human fibroblasts We applied our algorithm to
obtain five diametric clusters in Phase I which were separ-
ated into 10 anti-correlated clusters in Phase II. Again, the
diametrical clustering algorithm nicely identifies genes with
opposed expression patterns (Fig. 3).

Known relationships: In general, we find the systems
induced by serum addition are partly characterized, but the
systems turned off in a synchronized manner are considerably
under-studied. The asymmetry in knowledge of the cellular
systems is especially obvious for the diametric clusters 6 and 7
(Fig. 3d). Cluster 7 includes a number of genes involved in
inter-cellular signaling, as well as inflammation, angiogenesis
and re-epithelialization, including IL1beta, thrombomodulin,
IL8, heparin binding growth factor and ICAM1. These genes
are induced shortly after the addition of serum, only to be
turned off again after a few hours. The anti-correlated cluster 6
contains 80 genes, which are expressed in the G0 resting state,
down-regulated following a short interval after serum addi-
tion, only to be expressed again shortly after. These genes
include stress response genes, such as heat shock factor 2,
and genes inhibitory of cell growth, such as the cdk6 inhib-
itor. However, of the 80 genes in this cluster, 73 are of entirely
unknown function.

Cluster 3 (Fig. 3b) includes a number of genes involved in
cytoskeletal re-organization, such as the G-protein coupled
receptor EDG-1 and desmoplakin, as well as genes such as
the GTP-binding protein RAN and the RAN-specific GTPase
activating protein. These genes show quite low expression
initially, gradually rising in expression levels through the
experiment. The anti-correlated cluster 2 shows exactly the
opposite pattern: genes expressed high at the beginning of the
experiment whose expression levels fall gradually over time.

Fig. 3. Human genes responding to serum stimulation exhibit dia-
metric mRNA expression patterns. In each figure are plotted the
mean expression profiles of two opposed clusters obtained on the
fibroblast data set. Systems which are downregulated in response to
serum stimulation are seen to be systematically understudied.

The 57 genes in this cluster include fibrillin, farnesyl diphos-
phate farnesyltransferase, carnitine palmitoyltransferase, and
46 genes of unknown function.

New relationships: A comparison with the clustering of this
data by (Iyer et al., 1999) reveals two novel clusters by diame-
trical clustering. First, cluster 9 (Fig. 3e) contains a number of
genes related to DNA replication and cell cycle progression,
including the G2/M-specific cyclin A and the cyclin dependent
kinases regulatory subunit, as well as importin 1, proliferating
cell nuclear antigen, centromeric protein E, and ribonucleotide
reductase. These genes all show minimal expression in the
G0 resting state, but are induced following a considerable
time lag after serum addition. The anti-correlated cluster 8
shows a set of genes with the opposite expression pattern,
initially expressed in G0, but then turning off with a timing
well synchronized to the genes of cluster 9. Of the nine genes
in this cluster, only four of known function: apolipoprotein
D, complement C1S, lipoprotein lipase, and connective tissue
growth factor. Thus, in a fashion coordinated with the re-entry
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into the cell cycle, genes are downregulated for serum lipid
transport, fibrogenesis, and complement activation.

A second novel diametric cluster is shown in Figure 3a:
Cluster 1 represents those genes showing a transient induc-
tion immediately following the addition of serum, such as
endothelin 1, interleukin 6, tropomyosin alpha, and the early
growth response protein 1. Genes in the anti-correlated cluster
0 show a transient decrease in expression, recovering about
16–20 h following serum addition. However, unlike the tran-
siently activated genes, of which just less than half are
characterized, 26 of the 29 genes in this diametric cluster
are of unknown function.

3.2.2 Rosetta yeast
Known relationships: We applied diametrical clustering to

the Rosetta data set to produce 40 clusters in Phase I, thus
giving a total of 80 anti-correlated clusters in Phase II. Our
analysis reveals a number of opposed cellular systems, listed
in full at http://www.cs.utexas.edu/users/usman/diametrical
Four pairs of diametric clusters are shown in Figure 4. As
an example, the yeast amino acid bio-synthesis genes (CPA2,
HIS4, HIS5, LYS1, ARG4, HOM3, etc.) are strongly co-
expressed (correlation coefficients >0.7 over 300 microarray
experiments (Hughes et al., 2000) with the SER3 gene, which
catalyzes the first committed step in serine synthesis. The
CHA1 gene, encoding the serine/threonine deaminase which
breaks down serine in the opposed catabolic pathway, shows
strongly anti-correlated expression (correlation coefficient =
−0.7) with the SER3 gene. So, genes involved in the synthesis
of serine show anti-correlated expression with genes involved
in the break down of serine (Fig. 4a).

New relationships: In cluster 46 (Figure 4b) we observe
that a large number of iron and copper uptake and acquisition
genes are co-expressed, including FIT1, FIT2, FIT3, the ferric
reductase FRE2, FRE6, the iron permease FTR1, the ferroxi-
dase FET3, the copper transporter CTR2, and the enterobactin
transporter ENB1. The anti-correlated cluster 47 contains
the CCC1 gene, which is known to transport excess iron from
the cytosol to store it in the vacuole (Li et al., 2001). Thus, the
systems of iron acquisition and handling of excess iron are in
opposition and show diametric expression.

A third example of opposed systems is shown in Figure 4c:
a number of proteasomal and vesicular transport genes are
co-expressed, including proteasomal proteins alpha 5 and 7,
beta 1,3,4,6, and 7, SNX4, RPN 1, 2, 7, 11, and 12, RPT 2, 4,
and 6, and the proteasome maturation factor UMP1. The anti-
correlated cluster contains genes involved in carbohydrate and
amino acid synthesis, including acetate coA ligase, ILV5,
MET6, dihydrofolate reductase DFR1. We speculate that the
amino acids produced by proteosomal degradation relieve the
cell from having to synthesize the amino acids. Therefore,
the protein degradation and amino acid synthesis genes can
be inversely regulated, as we observe.

Fig. 4. Clustering the Rosetta data reveals opposing systems of yeast
genes. The plots show expression profiles of genes known (a–c)
or proposed (d) to work in functionally related, but diametrically
expressed, cellular systems.

As a fourth example (Figure 4d), cluster 8 contains
more than 50 ribosomal genes. The anti-correlated cluster
contains a set of genes of unknown function, including
YJL149W, YNL116W, YNR005C, YMR184W, ECM37,
MLF3, YBR016W, YJR120W, YDL172C, YDL053C,
YMR140W, YNL140C, YMR141C, YBR273C, as well as
BMH2, a homolog of the mammalian 14-3-3 protein which
interacts with the proteasome, NGR1, a gene possibly
involved in growth regulation, and AAP, a gene which
represses translation of the arginine bio-synthetic gene CPA1
in the presence of excess arginine. It is possible that these
uncharacterized genes, whose expression patterns oppose
that of the ribosome, may represent systems which regu-
late translation (such as AAP) or protein degradation (such
as BMH2).

3.3 Performance comparisons
We now provide some statistics on the stability of diametrical
clustering and compare it to other clustering methods.

3.3.1 Implementation and platform We implemented our
clustering algorithm and k-means in C++ using the LEDA
library. The convergence parameter δ (Fig. 1) was set to
0.001, and singular vectors were computed by the power
iteration using 20 iterations. CLICK (Sharan and Shamir,
2000) was used from the Expander v1.0 version [available
from (Sharan and Shamir, 2000)] and GeneShaving (Hastie
et al., 2000) from the GeneClust software package (Parmigiani
et al., 2003). All experiments were performed on a 500 MHz
Pentium PC with 128 MB RAM running Debian Linux.
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Table 1. The stability of the diametrical clustering algorithm is indicated
by the low standard deviation of the total squared correlation coefficient for
clusters produced by Phase I of the algorithm

Data Set No of diametric
clusters

Mean Std. Dev.

Human fibroblasts 5 310.75 0.41
Yeast cell cycle 6 155.84 1.42
Rosetta 25 637.48 1.03

3.3.2 Stability To measure the stability of the algorithm
we computed the standard deviation of the total squared cor-
relation coefficient [see (3)] over 20 runs. Table 1 shows that
the standard deviation of the squared correlation coefficient is
small compared to its mean value and hence the algorithm is
quite stable. The standard deviations ofHAve andSAve (defined
later) values (not shown here) are also small on all the data sets.

3.3.3 Comparison with clusters from other algorithms We
compared the actual clusters of our algorithm to those of
k-means, CLICK, Hierarchical clustering which was obtained
from (Iyer et al., 1999), random clustering, and GeneShaving,
as applied to the human fibroblasts data set. To compare two
different clusterings, C and C′, we used the Hubert statistic
(Jain and Dubes, 1988). Let V be the proximity matrix for C,
where V [i, j ] = 1 iff genes i and j are in the same cluster, and
0 otherwise. Similarly we define W for clustering C′. Then
the Hubert statistic is defined as

1

M

m−1∑
i=1

m∑
j=i+1

[V (i, j) − µv][W(i, j) − µw]/σvσw

where m is the total number of genes, M = (
m
2

)
, µv =

(1/M)
∑m−1

i=1
∑m

j=i+1 V (i, j), σ 2
v = µv − µ2

v , and µw and
σw are defined similarly. Intuitively, the Hubert statistic meas-
ures how well two sets of clusterings are correlated and ranges
from −1 to 1. A value near 1 indicates high correlation, while
low values indicate poor correlation between the clusterings.

Table 2 shows the Hubert statistic values for clusterings
obtained using various algorithms on the human fibroblast
data set. All the methods were made to produce 10 clusters
(10 anti-correlated for diametrical) except for CLICK which
produces 5.7 clusters on the average. This table shows that
in addition to uncovering anti-correlated structure in the data,
the diametrical clustering algorithm reveals clusters similar to
those revealed by other algorithms.

One other algorithm, GeneShaving, is theoretically cap-
able of identifying anti-correlated genes. GeneShaving finds
a cluster by repeatedly computing the largest principal com-
ponent of the relevant part of the expression matrix and then
shaving off genes with the smallest absolute inner product
with this component (Hastie et al., 2000). The next cluster is
then found by using a similar strategy after orthogonalizing

Table 2. A comparison of cluster contents obtained from different algorithms,
as measured by the Hubert statistic and averaged over 20 trials, reveals that
all methods (except for GeneShaving) yield equally correlated clusterings

Random Kmeans CLICK Hierarchical GeneShaving

Diametrical −0.001 0.531 0.446 0.439 0.105
Random −0.001 −0.0007 0.025 −0.0005
Kmeans 0.482 0.453 0.083
CLICK 0.4 −0.087
Hierarchical 0.1235

the expression matrix against the average gene of the previ-
ous cluster. As a result, GeneShaving produces overlapping
clusters and not every gene is assigned to some cluster which
is in contrast to our algorithm. For example with 10 clusters on
the human fibroblasts data set and six clusters on the yeast cell
cycle data 9 and 73.5% of the genes were left out, respectively.
This explains the low correlation of all methods with Gene-
Shaving clusterings. Thus, even though both our algorithm
and GeneShaving can return anti-correlated clusters, the
actual clusterings are not correlated.

3.3.4 Comparison of cluster quality We next compare the
average coherence and separation of our clusters to those
of other algorithms. We evaluate these using HAve and SAve

measures (Sharan and Shamir, 2000). Let ci be the normalized
centroid (mean) vector of cluster Ci . Then

HAve = 1

m

k∑
i=1

∑
g∈Ci

gTci ,

SAve = 1∑
i �=j |Ci ||Cj |

∑
i �=j

|Ci ||Cj |cT
i cj ,

where |Ci | denotes the size of cluster Ci . Intuitively, HAve

measures the average cohesiveness of clusters, while SAve

measures the average separation between clusters. High val-
ues of HAve imply that the clusters have high cohesiveness,
while low values of SAve mean that the clusters are well sepa-
rated. In general, we desire higher values of HAve and lower
values of SAve.

On the yeast cell cycle and human fibroblast data, we com-
pared our results to those published in (Sharan et al., 2002)
and (Sharan and Shamir, 2000) respectively but used our
implementation of k-means. On the Rosetta data set we com-
pared our cluster quality to CLICK using the Expander v1.0
software. All data sets were preprocessed in the same manner
in the studies we compared against, and for diametrical,
k-means and CLICK we averaged the results over 20 runs.

Table 3 shows that diametrical clustering produces clusters
of comparable quality to the other algorithms. Note that the
numbers in Table 3 for diametrical clustering are for the
Phase II (anti-correlated) clusters.
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Table 3. Clustering quality indicates that diametrical clustering com-
pares favorably with other algorithms. Note that our algorithm does
not explicitly try to optimize these values, instead focusing on finding
diametric gene clusters

Data set Algorithm No of clusters HAve SAve

Yeast cell cycle Diametrical 6 0.6 −0.1
CLICK 6 0.66 −0.1
Kmeans 6 0.6 −0.06
GeneCluster (SOM) 6 0.62 −0.07
CAST 5 0.6 −0.15

Human fibroblast Diametrical 10 0.88 −0.09
CLICK 10 0.88 −0.34
Kmeans 10 0.88 −0.12
Hierarchical 10 0.87 −0.13

Rosetta yeast Diametrical 50 0.56 −0.02
CLICK (Expander) 50 0.52 −0.027
Kmeans 50 0.57 −0.018

Table 4. A comparison of running times (in seconds) averaged over
20 trials reveals that diametrical clustering is computationally effi-
cient. The average number of clusters created by each algorithm is
indicated in parentheses

Data set CLICK Diametrical Kmeans

Human fibroblast 128.72 (5.7) 1.5 (6) 0.42 (6)
Yeast cell cycle 72.5 (10.5) 10.38 (12) 5.4 (12)
Rosetta 402.27 (50) 858.15 (50) 836.74 (50)

3.3.5 Comparison of running time We finally provide a
comparison of running times in Table 4 averaged over 20 trials.
The GeneShaving implementation was only available on
S-plus software, so we did not include its running time
numbers.

We give results for the closest number of clusters produced
by CLICK. Even though we have a simple implementation of
our algorithm in C++, Table 4 shows that the running time is
still acceptable for large data sets. In future work, we intend
to optimize the speed of our implementation.

4 CONCLUSIONS AND FUTURE WORK
Using our diametrical clustering algorithm, we discover
systems opposing the yeast ribosome and proteasome, we
demonstrate the opposing mRNA expression profiles of
amino acid synthetic and degredative systems, as well as
of iron acquisition and excess iron storage systems. Finally,
we demonstrate that human fibroblast genes downregulated
following serum stimulation are systematically understud-
ied, suggesting that diametrical clustering should be widely
applicable for bringing to light similarly non-obvious rela-
tionships between cellular systems.

A number of improvements to our analysis are apparent.
Foremost, there are problems with k-means like strategies—
for example, empty clusters, initialization strategies, the
need to specify the number of clusters, etc., which could
be improved. Another interesting point to note is that
our diametric clustering algorithm proceeds by clustering
together gene vectors according to their closeness to the
lines described by the singular vectors. These lines are one-
dimensional objects—on the other hand, traditional clustering
algorithms like k-means cluster vectors based on their prox-
imity to points, which are zero-dimensional objects. Our
algorithm could be modified to look for closeness to higher
dimensional objects such as in (Bradley and Mangasarian,
2000), which might suggest linear dependences between
clusters and may give even more insight into the organiz-
ation and regulation of genes. Also, we could use some
filtration techniques to separate and identify outliers in the
data set.

The correlation coefficient is a popular measure for meas-
uring similarity between genes and its use is experimentally
validated by Figure 2. The squared correlation coefficient
restricts us to examining quadratic relationships in the data. It
is likely that other non-linear relationships will exist, espe-
cially in time series and cell cycle data. Gene expression
relationships may be heteroscedastic in nature. An interesting
extension of our methodology would be to explore non-linear
relationships, possibly using kernel methods (Schölkopf et al.,
1998).

Finally, it would be very interesting to look for con-
served regulatory motifs upstream of the genes in diametrical
clusters. It is not immediately apparent if the genes would
be expected to share common motifs, but as they seem to
be responding to common stimuli, albeit in opposite direc-
tions, it is not unreasonable to expect to find common control
elements, possibly even those responsible for the general
response, while elements responsible for the specific direction
of response might be found in the separated clusters.
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APPENDIX
Lemma 1 (Golub and Loan, 1996). Suppose g1, g2, . . . , gm

are n-dimensional real vectors that form the rows of the m×n

matrix G. Then the unit vector x that maximizes f (x) =
xT(

∑
i gig

T
i )x = xTGTGx is the dominant right singular

vector v1 of G (or equivalently, the dominant eigenvector of
GTG). The optimal value equals f (v1) = vT

1 (
∑

i gig
T
i )v1 =

σ 2
1 , where σ1 is the largest singular value of G and σ1 > σ2.

Theorem 1. Phase 1 of Algorithm Diametrical_Clustering
given in Figure 1 never decreases the quality measure
Q(C1, . . . , Ck) = ∑k

j=1
∑

g∈Cj
(gTvj )

2 from one iteration
to the next.

Proof. Let C
(t)
1 , . . . , C(t)

k be the clusters at iteration t , and

let v
(t)
1 , . . . , v(t)

k be the corresponding singular vectors. Then

Q(C
(t)
1 , . . . , C(t)

k ) =
k∑

j=1

∑
g∈C

(t)

j

(
gTv

(t)
j

)2

≤
k∑

j=1

∑
g∈C

(t)

j

(
gTv

(t)
j ∗(g)

)2

≤
k∑

j=1

∑
g∈C

(t+1)

j

(
gTv

(t+1)
j

)2

= Q
(
C

(t+1)
1 , . . . , C(t+1)

k

)

where the first inequality is due to step 2 of the algorithm (see
Figure 1), and the second inequality follows from Lemma 1.
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