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Abstract

We study the matrix completion problem with side information. Side information
has been considered in several matrix completion applications, and has been em-
pirically shown to be useful in many cases. Recently, researchers studied the effect
of side information for matrix completion from a theoretical viewpoint, showing
that sample complexity can be significantly reduced given completely clean fea-
tures. However, since in reality most given features are noisy or only weakly in-
formative, the development of a model to handle a general feature set, and investi-
gation of how much noisy features can help matrix recovery, remains an important
issue. In this paper, we propose a novel model that balances between features and
observations simultaneously in order to leverage feature information yet be robust
to feature noise. Moreover, we study the effect of general features in theory and
show that by using our model, the sample complexity can be lower than matrix
completion as long as features are sufficiently informative. This result provides
a theoretical insight into the usefulness of general side information. Finally, we
consider synthetic data and two applications — relationship prediction and semi-
supervised clustering — and show that our model outperforms other methods for
matrix completion that use features both in theory and practice.

1 Introduction

Low rank matrix completion is an important topic in machine learning and has been successfully
applied to many practical applications [22, 12, 11]. One promising direction in this area is to exploit
the side information, or features, to help matrix completion tasks. For example, in the famous Netflix
problem, besides rating history, profile of users and/or genre of movies might also be given, and one
could possibly leverage such side information for better prediction. Observing the fact that such
additional features are usually available in real applications, how to better incorporate features into
matrix completion becomes an important problem with both theoretical and practical aspects.

Several approaches have been proposed for matrix completion with side information, and most of
them empirically show that features are useful for certain applications [1, 28, 9, 29, 33]. However,
there is surprisingly little analysis on the effect of features for general matrix completion. More re-
cently, Jain and Dhillon [18] and Xu et al. [35] provided non-trivial guarantees on matrix completion
with side information. They showed that if “perfect” features are given, under certain conditions,
one can substantially reduce the sample complexity by solving a feature-embedded objective. This
result suggests that completely informative features are extremely powerful for matrix completion,
and the algorithm has been successfully applied in many applications [29, 37]. However, this model
is still quite restrictive since if features are not perfect, it fails to guarantee recoverability and could
even suffer poor performance in practice. A more general model with recovery analysis to handle
noisy features is thus desired.

In this paper, we study the matrix completion problem with general side information. We propose a
dirty statistical model which balances between feature and observation information simultaneously
to complete a matrix. As a result, our model can leverage feature information, yet is robust to noisy
features. Furthermore, we provide a theoretical foundation to show the effectiveness of our model.
We formally quantify the quality of features and show that the sample complexity of our model
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depends on feature quality. Two noticeable results could thus be inferred: first, unlike [18, 35],

given any feature set, our model is guaranteed to achieve recovery with at most O(n3/2) samples in
distribution-free manner, where n is the dimensionality of the matrix. Second, if features are rea-

sonably good, we can improve the sample complexity to o(n3/2). We emphasize that since Ω(n3/2)
is the lower bound of sample complexity for distribution-free, trace-norm regularized matrix com-
pletion [32], our result suggests that even noisy features could asymptotically reduce the number
of observations needed in matrix completion. In addition, we empirically show that our model out-
performs other completion methods on synthetic data as well as in two applications: relationship
prediction and semi-supervised clustering. Our contribution can be summarized as follows:

• We propose a dirty statistical model for matrix completion with general side information
where the matrix is learned by balancing features and pure observations simultaneously.

• We quantify the effectiveness of features in matrix completion problem.
• We show that our model is guaranteed to recover the matrix with any feature set, and

moreover, the sample complexity can be lower than standard matrix completion given in-
formative features.

The paper is organized as follows. Section 2 states some related research. In Section 3, we introduce
our proposed model for matrix completion with general side information. We theoretically analyze
the effectiveness of features in our model in Section 4, and show experimental results in Section 5.

2 Related Work

Matrix completion has been widely applied to many machine learning tasks, such as recommender
systems [22], social network analysis [12] and clustering [11]. Several theoretical foundations have
also been established. One remarkable milestone is the strong guarantee provided by Candès et
al. [7, 5], who proves that O(npolylogn) observations are sufficient for exact recovery provided
entries are uniformly sampled at random. Several work also studies recovery under non-uniform
distributional assumptions [30, 10], distribution-free setting [32], and noisy observations [21, 4].

Several works also consider side information in matrix completion [1, 28, 9, 29, 33]. Although most
of them found that features are helpful for certain applications [28, 33] and cold-start setting [29]
from their experimental supports, their proposed methods focus on the non-convex matrix factoriza-
tion formulation without any theoretical guarantees. Compared to them, our model mainly focuses
on a convex trace-norm regularized objective and on theoretical insight on the effect of features. On
the other hand, Jain and Dhillon [18] (also see [38]) studied an inductive matrix completion objective
to incorporate side information, and followup work [35] also considers a similar formulation with
trace norm regularized objective. Both of them show that recovery guarantees could be attained with
lower sample complexity when features are perfect. However, if features are imperfect, such models
cannot recover the underlying matrix and could suffer poor performance in practice. We will have a
detailed discussion on inductive matrix completion model in Section 3.

Our proposed model is also related to the family of dirty statistical models [36], where the model
parameter is expressed as the sum of a number of parameter components, each of which has its
own structure. Dirty statistical models have been proposed mostly for robust matrix completion,
graphical model estimation, and multi-task learning to decompose the sparse component (noise) and
low-rank component (model parameters) [6, 8, 19]. Our proposed algorithm is completely different.
We aim to decompose the model into two parts: the part that can be described by side information
and the part that has to be recovered purely by observations.

3 A Dirty Statistical Model for Matrix Completion with Features

Let R ∈ R
n1×n2 be the underlying rank-k matrix that aims to be recovered, where k ≪ min(n1, n2)

so that R is low-rank. Let Ω be the set of observed entries sampled from R with cardinality |Ω| = m.

Furthermore, let X ∈ R
n1×d1 and Y ∈ R

n2×d2 be the feature set, where each row xi (or yi) denotes
the feature of the i-th row (or column) entity of R. Both d1, d2 ≤ min(n1, n2) but can be either
smaller or larger than k. Thus, given a set of observations Ω and the feature set X and Y as side
information, the goal is to recover the underlying low rank matrix R.

To begin with, consider an ideal case where the given features are “perfect” in the following sense:

col(R) ⊆ col(X) and row(R) ⊆ col(Y ). (1)

Such a feature set can be thought as perfect since it fully describes the true latent feature space of
R. Then, instead of recovering the low rank matrix R directly, one can recover a smaller matrix
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M ∈ R
d1×d2 such that R = XMY T . The resulting formulation, called inductive matrix comple-

tion (or IMC in brief) [18], is shown to be both theoretically preferred [18, 35] and useful in real
applications [37, 29]. Details of this model can be found in [18, 35].

However, in practice, most given features X and Y will not be perfect. In fact, they could be quite
noisy or only weakly correlated to the latent feature space of R. Though in some cases applying
IMC with imperfect X,Y might still yield decent performance, in many other cases, the performance
drastically drops when features become noisy. This weakness of IMC can also be empirically seen
in Section 5. Therefore, a more robust model is desired to better handle noisy features.

We now introduce a dirty statistical model for matrix completion with (possibly noisy) features.
The core concept of our model is to learn the underlying matrix by balancing feature information
and observations. Specifically, we propose to learn R jointly from two parts, one is the low rank
estimate from feature space XMY T , and the other part N is the part outside the feature space.
Thus, N can be used to capture the information that noisy features fail to describe, which is then
estimated by pure observations. Naturally, both XMY T and N are preferred to be low rank since
they are aggregated to estimate a low rank matrix R. This further leads a preference on M to be low
rank as well, since one could expect only a small subspace of X and a subspace of Y are jointly
effective to form the low rank space XMY T . Putting all of above together, we consider to solve the
following problem:

min
M,N

∑

(i,j)∈Ω

ℓ((XMY T +N)ij , Rij) + λM‖M‖∗ + λN‖N‖∗, (2)

where M and N are regularized with trace norm because of the low rank prior. The underlying
matrix R can thus be estimated by XM∗Y T+N∗. We refer our model as DirtyIMC for convenience.

To solve the convex problem (2), we propose an alternative minimization scheme to solve N and M
iteratively. Our algorithm is stated in details in Appendix A. One remark of this algorithm is that it
is guaranteed to converge to a global optimal, since the problem is jointly convex with M and N .

The parameters λM and λN are crucial for controlling the importance between features and residual.
When λM = ∞, M will be enforced to 0, so features are disregarded and (2) becomes a standard
matrix completion objective. Another special case is λN = ∞, in which N will be enforced to 0
and the objective becomes IMC. Intuitively, with an appropriate ratio λM/λN , the proposed model
can incorporate useful part of features, yet be robust to noisy part by compensating from pure ob-
servations. Some natural questions arise from here: How to quantify the quality of features? What
is the right λM and λN given a feature set? And beyond intuition, how much can we benefit from
features using our model in theory? We will formally answer these questions in Section 4.

4 Theoretical Analysis

Now we analyze the usefulness of features in our model under a theoretical perspective. We first
quantify the quality of features and show that with reasonably good features, our model achieves
recovery with lower sample complexity. Finally, we compare our results to matrix completion and
IMC. Due to space limitations, detailed proofs of Theorems and Lemmas are left in Appendix B.

4.1 Preliminaries

Recall that our goal is to recover a rank-k matrix R given observed entry set Ω, feature set X and Y
described in Section 3. To recover the matrix with our model (Equation (2)), it is equivalent to solve
the hard-constraint problem:

min
M,N

∑

(i,j)∈Ω

ℓ((XMY T +N)ij , Rij), subject to ‖M‖∗ ≤M, ‖N‖∗ ≤ N . (3)

For simplicity, we will consider d = max(d1, d2) = O(1) so that feature dimensions do not grow
as a function of n. We assume each entry (i, j) ∈ Ω is sampled i.i.d. under an unknown distri-
bution with index set {(iα, jα)}mα=1. Also, each entry of R is assumed to be upper bounded, i.e.
maxij |Rij | ≤ R (so that trace norm of R is in O(

√
n1n2)). Such circumstance is consistent with

real scenarios like the Netflix problem where users can rate movies with scale from 1 to 5. For con-
venience, let θ = (M,N) be any feasible solution, and Θ = {(M,N) | ‖M‖∗ ≤ M, ‖N‖∗ ≤ N}
be the feasible solution set. Also, let fθ(i, j) = xT

i Myj + Nij be the estimation function for Rij

parameterized by θ, and FΘ = {fθ | θ ∈ Θ} be the set of feasible functions. We are interested in
the following two “ℓ-risk” quantities:

• Expected ℓ-risk: Rℓ(f) = E(i,j)

[

ℓ(f(i, j), Rij)
]

.
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• Empirical ℓ-risk: R̂ℓ(f) =
1
m

∑

(i,j)∈Ω ℓ(f(i, j), Rij).

Thus, our model is to solve for θ∗ that parameterizes f∗ = argminf∈FΘ
R̂ℓ(f), and it is sufficient

to show that recovery can be attained if Rℓ(f
∗) approaches to zero with large enough n and m.

4.2 Measuring the Quality of Features

We now link the quality of features to Rademacher complexity, a learning theoretic tool to measure
the complexity of a function class. We will show that quality features result in a lower model
complexity and thus a smaller error bound. Under such a viewpoint, the upper bound of Rademacher
complexity could be used for measuring the quality of features.

To begin with, we apply the following Lemma to bound the expected ℓ-risk.

Lemma 1 (Bound on Expected ℓ-risk [2]). Let ℓ be a loss function with Lipschitz constant Lℓ

bounded by B with respect to its first argument, and δ be a constant where 0 < δ < 1. Let R(FΘ)
be the Rademacher complexity of the function class FΘ (w.r.t. Ω and associated with ℓ) defined as:

R(FΘ) = Eσ

[

sup
f∈FΘ

1

m

m
∑

α=1

σαℓ(f(iα, jα), Riαjα)
]

, (4)

where each σα takes values {±1} with equal probability. Then with probability at least 1 − δ, for
all f ∈ FΘ we have:

Rℓ(f) ≤ R̂ℓ(f) + 2EΩ

[

R(FΘ)
]

+ B

√

log 1
δ

2m
.

Apparently, to guarantee a small enough Rℓ, both R̂ℓ and model complexity EΩ

[

R(FΘ)
]

have to be

bounded. The next key lemma shows that, the model complexity term EΩ

[

R(FΘ)
]

is related to the
feature quality in matrix completion context.

Before diving into the details, we first provide an intuition on the meaning of “good” features.
Consider any imperfect feature set which violates (1). One can imagine such feature set is perturbed
by some misleading noise which is not correlated to the true latent features. However, features
should still be effective if such noise does not weaken the true latent feature information too much.
Thus, if a large portion of true latent features lies on the informative part of the feature spaces X
and Y , they should still be somewhat informative and helpful for recovering the matrix R.

More formally, the model complexity can be bounded in terms ofM andN by the following lemma:

Lemma 2. Let X = maxi ‖xi‖2, Y = maxi ‖yi‖2 and n = max(n1, n2). Then the model com-
plexity of function class FΘ is upper bounded by:

EΩ

[

R(FΘ)
]

≤ 2LℓMXY
√

log 2d

m
+min

{

2LℓN
√

log 2n

m
,

√

9CLℓB
N (
√
n1 +

√
n2)

m

}

.

Then, by Lemma 1 and 2, one could carefully construct a feasible solution set (by settingM and

N ) such that both R̂ℓ(f
∗) and EΩ

[

R(FΘ)
]

are controlled to be reasonably small. We now suggest
a witness pair ofM and N constructed as follows. Let γ be defined as:

γ = min

(

mini ‖xi‖
X ,

mini ‖yi‖
Y

)

.

Let Tµ(·) : R
+ → R

+ be the thresholding operator where Tµ(x) = x if x ≥ µ and Tµ(x) =

0 otherwise. In addition, let X =
∑d1

i=1 σiuiv
T
i be the reduced SVD of X , and define Xµ =

∑d1

i=1 σ1Tµ(σi/σ1)uiv
T
i to be the “µ-informative” part of X . The ν-informative part of Y , denoted

as Yν , can also be defined similarly. Now consider settingM = ‖M̂‖∗ andN = ‖R−XµM̂Y T
ν ‖∗,

where
M̂ = argmin

M
‖XµMY T

ν −R‖2F = (XT
µ Xµ)

−1XT
µ RYν(Y

T
ν Yν)

−1

is the optimal solution for approximating R under the informative feature space Xµ and Yν . Then

the following lemma shows that the trace norm of M̂ will not grow as n increases.

Lemma 3. Fix µ, ν ∈ (0, 1], and let d̂ = min(rank(Xµ), rank(Yν)). Then with some universal
constant C ′:

‖M̂‖∗ ≤
d̂

C ′µ2ν2γ2XY .
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Moreover, by combining Lemma 1 - 3, we can upper bound Rℓ(f
∗) of DirtyIMC as follows:

Theorem 1. Consider problem (3) with M = ‖M̂‖∗ and N = ‖R − XµM̂Y T
ν ‖∗. Then with

probability at least 1− δ, the expected ℓ-risk of an optimal solution (N∗,M∗) will be bounded by:

Rℓ(f
∗) ≤ min

{

4LℓN
√

log 2n

m
,

√

36CLℓB
N (
√
n1 +

√
n2)

m

}

+
4Lℓd̂

C ′µ2ν2γ2

√

log 2d

m
+ B

√

log 1
δ

2m
.

4.3 Sample Complexity Analysis

From Theorem 1, we can derive the following sample complexity guarantee of our model. For
simplicity, we assume k = O(1) so it will not grow as n increases in the following discussion.

Corollary 1. Suppose we aim to “ǫ-recover” R where E(i,j)

[

ℓ(Nij + XMY T
ij , Rij)

]

< ǫ given

an arbitrarily small ǫ. Then for DirtyIMC model, O(min(N√n,N 2 log n)/ǫ2) observations are
sufficient for ǫ-recovery provided a sufficiently large n.

Corollary 1 suggests that the sample complexity of our model only depends on the trace norm of

residual N . This matches the intuition of good features stated in Section 4.2 because XM̂Y T will
cover most part of R if features are good, and as a result, N will be small and one can enjoy small
sample complexity by exploiting quality features.

We also compare our sample complexity result with other models. First, suppose features are perfect
(so that N = O(1)), our result suggests that only O(log n) samples are required for recovery.
This matches the result of [35], in which the authors show that given perfect features, O(log n)
observations are enough for exact recovery by solving the IMC objective. However, IMC does
not guarantee recovery when features are not perfect, while our result shows that recovery is still
attainable by DirtyIMC with O(min(N√n,N 2 log n)/ǫ2) samples. We will also empirically justify
this result in Section 5.

On the other hand, for standard matrix completion (i.e. no features are considered), the most well-
known guarantee is that under certain conditions, one can achieve O(n poly log n) sample com-
plexity for both ǫ-recovery [34] and exact recovery [5]. However, these bounds only hold with
distributional assumptions on observed entries. For sample complexity without any distributional

assumptions, Shamir et al. [32] recently showed that O(n3/2) entries are sufficient for ǫ-recovery,
and this bound is tight if no further distribution of observed entries is assumed. Compared to those
results, our analysis also requires no assumptions on distribution of observed entries, and our sample

complexity yields O(n3/2) as well in the worst case, by the fact that N ≤ ‖R‖∗ = O(n). Notice

that it is reasonable to meet the lower bound Ω(n3/2) even given features, since in an extreme case,
X,Y could be random matrices and have no correlation to R, and thus the given information is as
same as that in standard matrix completion.

However, in many applications, features will be far from random, and our result provides a theoreti-
cal insight to show that features can be useful even if they are imperfect. Indeed, as long as features
are informative enough such that N = o(n), our sample complexity will be asymptotically lower

than O(n3/2). Here we provide two concrete instances for such a scenario. In the first scenario, we
consider the rank-k matrix R to be generated from random orthogonal model [5] as follows:

Theorem 2. Let R ∈ R
n×n be generated from random orthogonal model, where U = {ui}ki=1, V =

{vi}ki=1 are random orthogonal bases, and σ1 . . . σk are singular values with arbitrary magnitude.
Let σt be the largest singular value such that limn→∞ σt/

√
n = 0. Then, given the noisy features

X,Y where X:i = ui (and Y:i = vi) if i < t and X:i (and V:i) be any basis orthogonal to U (and
V ) if i ≥ t, o(n) samples are sufficient for DirtyIMC to achieve ǫ-recovery.

Theorem 2 suggests that, under random orthogonal model, if features are not too noisy in the sense
that noise only corrupts the true subspace associated with smaller singular values, we can approxi-
mately recover R with only o(n) observations. An empirical justification for this result is presented
in Appendix C. Another scenario is to consider R to be the product of two rank-k Gaussian matrices:

Theorem 3. Let R = UV T be a rank-k matrix, where U, V ∈ R
n×k are true latent row/column fea-

tures with each Uij , Vij ∼ N (0, σ2) i.i.d. Suppose now we are given a feature set X , Y where g(n)
row items and h(n) column items have corrupted features. Moreover, each corrupted row/column
item has perturbed feature xi = ui + ∆ui and yi = vi + ∆vi, where ‖∆u‖∞ ≤ ξ1 and
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Figure 1: Performance of various methods for matrix completion under different sparsity and feature
quality. Compared to other feature-based completion methods, the top figures show that DirtyIMC
is less sensitive to noisy features with each ρs, and the bottom figures show that error of DirtyIMC
always decreases to 0 with more observations given any feature quality.

‖∆v‖∞ ≤ ξ2 with some constants ξ1 and ξ2. Then for DirtyIMC model (3), with high probability,

O
(

max(
√

g(n),
√

h(n))n log n
)

observations are sufficient for ǫ-recovery.

Theorem 3 suggests that, if features have good quality in the sense that items with corrupted features
are not too many, for example g(n), h(n) = O(log n), then sample complexity of DirtyIMC can be

O(n log n
√
log n) = o(n3/2) as well. Thus, both Theorem 2 and 3 provide concrete examples

showing that given imperfect yet informative features, the sample complexity of our model can be

asymptotically lower than the lower bound of pure matrix completion (which is Ω(n3/2)).

5 Experimental Results

In this section, we show the effectiveness of the DirtyIMC model (2) for matrix completion with
features on both synthetic datasets and real-world applications. For synthetic datasets, we show
that DirtyIMC model better recovers low rank matrices under various quality of features. For real
applications, we consider relationship prediction and semi-supervised clustering, where the current
state-of-the-art methods are based on matrix completion and IMC respectively. We show that by
applying DirtyIMC model to these two problems, we can further improve performance by making
better use of features.

5.1 Synthetic Experiments

We consider matrix recovery with features on synthetic data generated as follows. We create a
low rank matrix R = UV T , as the true latent row/column space U, V ∈ R

200×20, Uij , Vij ∼
N (0, 1/20). We then randomly sample ρs percent of entries Ω from R as observations, and construct
a perfect feature set X∗, Y ∗ ∈ R

200×40 which satisfies (1). To examine performance under different
quality of features, we generate features X , Y with a noise parameter ρf , where X and Y will be
derived by replacing ρf percent of bases of X∗ (and Y ∗) with bases orthogonal to X∗ (and Y ∗). We
then consider recovering the underlying matrix R given X , Y and a subset Ω of R.

We compare our DirtyIMC model (2) with standard trace-norm regularized matrix completion (MC)
and two other feature-based completion methods: IMC [18] and SVDfeature [9]. The standard

relative error ‖R̂ − R‖F /‖R‖F is used to evaluate a recovered matrix R̂. For each method, we
select parameters from the set {10α}2α=−3 and report the one with the best recovery. All results are
averaged over 5 random trials.

Figure 1 shows the recovery of each method under each sparsity level ρs = 0.1, 0.25, 0.4, and
each feature noise level ρf = 0.1, 0.5 and 0.9. We first observe that in the top figures, IMC and
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Method DirtyIMC MF-ALS [16] IMC [18] HOC-3 HOC-5 [12]
Accuracy 0.9474±0.0009 0.9412±0.0011 0.9139±0.0016 0.9242±0.0010 0.9297±0.0011

AUC 0.9506 0.9020 0.9109 0.9432 0.9480

Table 1: Relationship prediction on Epinions. Compared with other approaches, DirtyIMC model
gives the best performance in terms of both accuracy and AUC.

SVDfeature perform similarly under different ρs. This suggests that with sufficient observations,
performance of IMC and SVDfeature mainly depend on feature quality and will not be affected
much by the number of observations. As a result, given good features (1d), they achieve smaller
error compared to MC with few observations, but as features become noisy (1e-1f), they suffer
poor performance by trying to learn the underlying matrix under biased feature spaces. Another
interesting finding is that when good features are given (1d), IMC (and SVDfeature) still fails to
achieve 0 relative error as the number of observations increases, which reconfirms that IMC cannot
guarantee recoverability when features are not perfect. On the other hand, we see that performance
of DirtyIMC can be improved by both better features or more observations. In particular, it makes
use of informative features to achieve lower error compared to MC and is also less sensitive to noisy
features compared to IMC and SVDfeature. Some finer recovery results on ρs and ρf can be found
in Appendix C.

5.2 Real-world Applications

Relationship Prediction in Signed Networks. As the first application, we consider relationship
prediction problem in an online review website Epinions [26], where people can write reviews and
trust or distrust others based on their reviews. Such social network can be modeled as a signed
network where trust/distrust are modeled as positive/negative edges between entities [24], and the
problem is to predict unknown relationship between any two users given the network. A state-of-
the-art approach is the low rank model [16, 12] where one can first conduct matrix completion on
adjacency matrix and then use the sign of completed matrix for relationship prediction. Therefore,
if features of users are available, we can also consider low rank model by using our model for matrix
completion step. This approach can be regarded as an improvement over [16] by incorporating
feature information.

In this dataset, there are about n = 105K users and m = 807K observed relationship pairs where
15% relationships are distrust. In addition to who-trust-to-whom information, we also have user
feature matrix Z ∈ R

n×41 where for each user a 41-dimensional feature is collected based on
the user’s review history, such as number of positive/negative reviews the user gave/received. We
then consider the low-rank model in [16] where matrix completion is conducted by DirtyIMC with
non-convex relaxation (5) (DirtyIMC), IMC [18] (IMC), and matrix factorization proposed in [16]
(MF-ALS), along with another two prediction methods, HOC-3 and HOC-5 [12]. Note that both
row and column entities are users so X = Y = Z is set for both DirtyIMC and IMC model.

We conduct the experiment using 10-fold cross validation on observed edges, where the parameters
are chosen from the set ⊔2α=−3{10α, 5 × 10α}. The averaged accuracy and AUC of each method
are reported in Table 1. We first observe that IMC performs worse than MF-ALS even though IMC
takes features into account. This is because features are only weakly related to relationship matrix,
and as a result, IMC is misled by such noisy features. On the other hand, DirtyIMC performs
the best among all prediction methods. In particular, it performs slightly better than MF-ALS in
terms of accuracy, and much better in terms of AUC. This shows DirtyIMC can still exploit weakly
informative features without being trapped by noisy features.

Semi-supervised Clustering. We now consider semi-supervised clustering problem as another ap-
plication. Given n items, the item feature matrix Z ∈ R

n×d, and m pairwise constraints specifying
whether item i and j are similar or dissimilar, the goal is to find a clustering of items such that most
similar items are within the same cluster.

We notice that the problem can indeed be solved by matrix completion. Consider S ∈ R
n×n to be

the signed similarity matrix defined as Sij = 1 (or−1) if item i and j are similar (or dissimilar), and
0 if similarity is unknown. Then solving semi-supervised clustering becomes equivalent to finding
a clustering of the symmetric signed graph S, where the goal is to cluster nodes so that most edges
within the same group are positive and most edges between groups are negative [12]. As a result, a
matrix completion approach [12] can be applied to solve the signed graph clustering problem on S.

Apparently, the above solution is not optimal for semi-supervised clustering as it disregards fea-
tures. Many semi-supervised clustering algorithms are thus proposed by taking both item features
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Figure 2: Semi-supervised clustering on real-world datasets. For Mushroom dataset where features
are almost ideal, both MCCC and DirtyIMC achieve 0 error rate. For Segment and Covtype where
features are more noisy, our model outperforms MCCC as its error decreases given more constraints.

number of items n feature dimension d number of clusters k
Mushrooms 8124 112 2

Segment 2319 19 7
Covtype 11455 54 7

Table 2: Statistics of semi-supervised clustering datasets.

and constraints into consideration [13, 25, 37]. The current state-of-the-art method is the MCCC
algorithm [37], which essentially solves semi-supervised clustering with IMC objective. In [37], the
authors show that by running k-means on the top-k eigenvectors of the completed matrix ZMZT ,
MCCC outperforms other state-of-the-art algorithms [37].

We now consider solving semi-supervised clustering with our DirtyIMC model. Our algorithm,
summarized in Algorithm 2 in Appendix D, first completes the pairwise matrix with DirtyIMC
objective (2) instead of IMC (with both X,Y are set as Z), and then runs k-means on the top-k
eigenvectors of the completed matrix to obtain a clustering. This algorithm can be viewed as an
improved version of MCCC to handle noisy features Z.

We now compare our algorithm with k-means, signed graph clustering with matrix completion [12]
(SignMC) and MCCC [37]. Note that since MCCC has been shown to outperform most other
state-of-the-art semi-supervised clustering algorithms in [37], comparing with MCCC is sufficient
to demonstrate the effectiveness of our algorithm. We perform each method on three real-world
datasets: Mushrooms, Segment and Covtype 1. All of them are classification benchmarks where
features and ground-truth class of items are both available, and their statistics are summarized in Ta-
ble 2. For each dataset, we randomly sample m = [1, 5, 10, 15, 20, 25, 30]× n pairwise constraints,
and perform each algorithm to derive a clustering π, where πi is the cluster index of item i. We then
evaluate π by the following pairwise error to ground-truth:

n(n− 1)

2

(

∑

(i,j):π∗

i
=π∗

j

1(πi 6= πj) +
∑

(i,j):π∗

i
6=π∗

j

1(πi = πj)

)

where π∗
i is the ground-truth class of item i.

Figure 2 shows the result of each method on all three datasets. We first see that for Mushrooms
dataset where features are perfect (100% training accuracy can be attained by linear-SVM for clas-
sification), both MCCC and DirtyIMC can obtain a perfect clustering, which shows that MCCC is
indeed effective with perfect features. For Segment and Covtype datasets, we observe that the per-
formance of k-means and MCCC are dominated by feature quality. Although MCCC still benefits
from constraint information as it outperforms k-means, it clearly does not make the best use of con-
straints, as its performance does not improves even if number of constraints increases. On the other
hand, the error rate of SignMC can always decrease down to 0 by increasing m. However, since it
disregards features, it suffers from a much higher error rate than methods with features when con-
straints are few. We again see DirtyIMC combines advantage from MCCC and SignMC, as it makes
use of features when few constraints are observed yet leverages constraint information simultane-
ously to avoid being trapped by feature noise. This experiment shows that our model outperforms
state-of-the-art approaches for semi-supervised clustering.

Acknowledgement. We thank David Inouye and Hsiang-Fu Yu for helpful comments and discus-
sions. This research was supported by NSF grants CCF-1320746 and CCF-1117055.

1All datasets are available at http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/.
For Covtype, we subsample from the entire dataset to make each cluster has balanced size.
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Algorithm 1 Alternative Minimization for DirtyIMC with Squared Loss

Input: feature matrix X , Y , parameters (λM , λN ) in objective (2), max iteration tmax.

t = 0,M (t) ← 0, N (t) ← 0.
while Not converged and t < tmax do

Solve M (t+1) ← argminM
∑

(i,j)∈Ω(XMY T
ij − (R−N (t))ij)

2 + λM‖M‖∗
Solve N (t+1) ← argminN

∑

(i,j)∈Ω(Nij − (R−XM (t+1)Y T )ij)
2 + λN‖N‖∗

t← t+ 1
end while
return recovered matrix XM (t)Y T +N (t).

Appendix A: Solving DirtyIMC Objectives

To solve problem (2), we propose an alternative minimization scheme where at each step we fix one
of the variables (M or N ) and solve for the other. For simplicity, here we focus on the case where
ℓ is squared loss, which is also considered in our experiments. The algorithm is summarized in
Algorithm 1. As one variable is fixed, the subproblem reduces to either standard matrix completion
or IMC, which is easy to solve as discussed below. This algorithm can be viewed as applying a
block coordinate descent algorithm on convex (but non-smooth) function, and thus is guaranteed to
converge to global optimal using standard analysis (e.g. [15]).

We now briefly discuss how to solve two subproblems in Algorithm 1. First, when fixing N , the
subproblem becomes an IMC objective with observed matrix to be R−N . We then apply proximal
gradient descent to update M . Notice that in our setting, feature dimensions (d1, d2) are much
smaller than number of entities (n1, n2). Therefore, for small d, it is relatively inexpensive to
compute a full SVD for a d1 × d2 matrix in each proximal step.

On the other hand, when fixing M , the subproblem becomes standard matrix completion problem
for the residual matrix R − XMY T . We then apply active subspace selection algorithm (Active-
ALT) [17] to solve the matrix completion problem.

Another possibility is to consider the non-convex relaxation of problem (2) as:

min
U,V,W,H

∑

(i,j)∈Ω

ℓ((XUTV Y T+WTH)ij , Rij)+
λM

2
(‖W‖2F+‖H‖2F )+

λN

2
(‖U‖2F+‖V ‖2F ), (5)

in which M , N is factorized to low rank matrices U ∈ R
d1×k1 , V ∈ R

d2×k1 and W ∈ R
n1×k2 , H ∈

R
n2×k2 . A similar alternative minimization scheme, i.e. fix three variables and solve for the other,

can be applied to obtain a solution for U, V,W,H . Although problem (5) is equivalent to the convex
problem (2) if k1 ≥ rank(M∗) and k2 ≥ rank(N∗) [34], it is not jointly convex for all variables.
So unlike Algorithm 1, using alternative minimization to solve (5) may not obtain the global opti-
mum. However, the analysis in [3] shows that the algorithm converges to stationary points if each
subproblem has a unique minimizer, which is indeed the case in (5) because of the regularizations.
Researchers found that such non-convex relaxation to be useful since it is easier to solve, and em-
pirically yields a competitive result compared to convex problem [22].

Finally, we notice that a recently proposed method “Boosted IMC” [33] could also be represented as
a special case of our alternative scheme for non-convex relaxation (5). The method could be viewed

as an one iteration heuristic of Algorithm 1 (i.e. tmax = 1), in which they first solve N (1) and then

solve M (1) using matrix factorization. Although this method is proposed as a heuristic for Blog
recommendation rather than an algorithm for solving a formal defined matrix completion objective,
it could also be interpreted as an algorithm that approximately solves our DirtyIMC model. We also
compare our DirtyIMC with Boosted IMC in Appendix C.

Appendix B: Proofs

Proof of Lemma 2

Proof. To begin with, we introduce a lemma to bound the Rademacher complexity for the function
class with bounded trace norm.

10



Lemma 4. Let Sw = {W ∈ R
n×n | ‖W‖∗ ≤ W} and A = maxi ‖Ai‖2, where each Ai ∈ R

n×n,
then:

Eσ

[

sup
W∈Sw

1

m

m
∑

i=1

σitrace(WAi)
]

≤ 2AW
√

log 2n

m
.

This Lemma is a special case of Theorem 1 in [20] with the fact that the dual norm of the matrix
2-norm is trace norm. Thus, by using Rademacher contraction principle (e.g. Lemma 5 in [27]),
R(FΘ) can be written as:

R(FΘ) ≤ LℓEσ

[

sup
θ∈Θ

1

m

m
∑

σ=1

σα(XMY T +N)iαjα

]

= LℓEσ

[

sup
‖M‖∗≤M

1

m

m
∑

σ=1

σαx
T
iαMyjα

]

+ LℓEσ

[

sup
‖N‖∗≤N

1

m

m
∑

σ=1

σαNiαjα

]

= LℓEσ

[

sup
‖M‖∗≤M

1

m

m
∑

α=1

σαtrace(Myjαx
T
iα)

]

+ LℓEσ

[

sup
‖N‖∗≤N

1

m

m
∑

α=1

σαtrace(Nejαe
T
iα)

]

≤ 2Lℓ

(

Mmax
i,j
‖yjx

T
i ‖2

√

log 2d

m
+N

√

log 2n

m

)

,

where the last equation is derived by applied Lemma 4. Since maxi,j ‖yjx
T
i ‖2 =

maxj ‖yj‖2 maxi ‖xi‖2, we derive an upper bound of R(FΘ):

EΩ

[

R(FΘ)
]

≤ 2LℓMXY
√

log 2d

m
+ 2LℓN

√

log 2n

m
. (6)

However, in some circumstances, the above bound (6) will become too loose for our sample com-
plexity analysis. As a result, we need to deal with these cases by introducing a tighter bound on
trace norm of residual (i.e. N ). The following bound mainly follows the proof step in [32], which
provides a tighter bound on trace-norm regularized function class. To begin with, we can rewrite
R(FΘ) as:

R(FΘ) = Eσ

[

sup
f∈FΘ

1

m

m
∑

α=1

σαℓ(f(iα, jα), Riα,jα))
]

= Eσ

[

sup
f∈FΘ

1

m

∑

(i,j)

Γijℓ(f(i, j), Rij)
]

,

where Γ ∈ R
n1×n2 with each entry Γij =

∑

α:iα=i,jα=j σα. Now, using the same trick in [32], we

can divide Γ based on the “hit-time” on entry (i, j) of Ω, with some threshold p > 0 whose value
will be set later. Formally, let hij = |{α : iα = i, jα = j}|, and let A,B ∈ R

n1×n2 be defined as:

Aij =

{

Γij , if hij > p,

0, otherwise.
Bij =

{

0, if hij > p,

Γij , otherwise.
(7)

By construction, Γ = A+B. Therefore, we can separate R(FΘ) as:

R(FΘ) = Eσ

[

sup
f∈FΘ

1

m

∑

(i,j)

Aijℓ(f(i, j), Rij)
]

+ Eσ

[

sup
f∈FΘ

1

m

∑

(i,j)

Bijℓ(f(i, j), Rij)
]

. (8)

For the first term of (8), by the assumption |ℓ(f(i, j), Rij)| ≤ B, it can be upper bounded by:

B
m
Eσ

[

∑

(i,j)

|Aij |
]

≤ B√
p

by using the Lemma 10 in [32]. Now consider the second term of (8). Again, by using Rademacher
contraction principle, it can be upper bounded by:

Lℓ

m
Eσ

[

sup
f∈FΘ

∑

(i,j)

Bijf(i, j)
]

=
Lℓ

m
Eσ

[

sup
M :‖M‖∗≤M

∑

(i,j)

Bijx
T
i Myj

]

+
Lℓ

m
Eσ

[

sup
N :‖N‖∗≤N

∑

(i,j)

BijNij

]

, (9)
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which is separated by feature-covered part and residual part. We first consider the residual part (i.e.
the second term of (9)). By applying Hölder’s inequality, the second term of (9) is upper bounded
by:

Lℓ

m
sup

N :‖N‖∗≤N
‖B‖2‖N‖∗ =

LℓN
m

Eσ

[

‖B‖2
]

≤ 2.2CLℓN√p(
√
n1 +

√
n2)

m
,

where the last inequality is derived by applying Lemma 11 in [32]. Now, for the first term of (9),
notice that we can upper bound this term by:

Lℓ

m
Eσ

[

sup
M :‖M‖∗≤M

m
∑

α=1

σαx
T
iαMyjα

]

= LℓEσ

[

sup
‖M‖∗≤M

1

m

m
∑

α=1

σαtrace(Myjαx
T
iα)

]

≤ 2LℓMmax
i,j
‖yjx

T
i ‖2

√

log 2d

m

= 2LℓMXY
√

log 2d

m
.

Therefore, putting back all above upper bound to (8), with p chosen to be mB/(2.2CLℓN (
√
n1 +√

n2)), we can get another bound on R(FΘ) by:

EΩ

[

R(FΘ)
]

≤ 2LℓMXY
√

log 2d

m
+

√

9CLℓB
N (
√
n1 +

√
n2)

m
. (10)

The Theorem thus follows by combining two bounds from (6) and (10).

Proof of Lemma 3

We first need the following lemma to bound the largest singular value σx of feature matrix X (and
also σy of Y ) .

Lemma 5. Let X ∈ R
n×d be a feature matrix. Then there exists a constant C ′′ (i.e. not a function

of n), such that:

σx ≥ C ′′γX√n.

Proof. Let x̃i be normalized feature vectors that x̃i =
xi

‖xi‖ for all i = 1 . . . n, so that each x̃i lies on

the d dimensional unit sphere Sd = {x̃ ∈ R
d | ‖x̃‖ = 1}. From Lemma 21 of [14], for any η > 0,

the d dimensional unit sphere can be partitioned into N = (c/η)d equal volume cells (denoted as
P1 . . . PN ) whose diameter is at most η, where c is some constant. Therefore, if two unit vectors
x,y are in the same cell Pi, since ‖x− y‖ ≤ η, the angle θ between x and y will satisfy

θ

2
≤ sin−1(

η

2‖x‖ ) = sin−1 η

2
,

which leads the inner product of x and y to be:

xTy = cos θ = 1− 2 sin2(
θ

2
) ≥ 1− 2(

η

2
)2 = 1− η2

2
.

Thus, taking η = 1, we can partition the unit sphere into N = cd cells such that

xTy ≥ 1

2
, if x,y ∈ Pi.

Now reconsider n normalized feature vectors x̃1, . . . , x̃n, each of which belongs to one of the cell
Pi. By Pigeonhole Theorem, there exists one cell P ∗ ∈ {Pi}Ni=1 such that at least n/N vectors lie
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in P ∗. Consider any unit vector w in P ∗, then we have x̃T
i w ≥ 1

2 for all x̃i ∈ P ∗. Therefore,

‖Xw‖2 ≥
√

∑

i:xi∈P∗

(xT
i w)2

≥
√

∑

i:xi∈P∗

γ2X 2(x̃T
i w)2

≥ γX
√

n

N
(
1

2
)2

=

(

1

2
√
N

)

γX√n,

which concludes that
σx ≥ C ′′γX√n

where C ′′ = 1
2
√
N

is a constant with respect to n.

With Lemma 5, we can now prove the Lemma 3 as follows:

Proof. To begin with, we have:

‖XT
µ RYν‖2 ≤ ‖Xµ‖2‖R‖2‖Yν‖2 ≤ σxσy‖R‖∗.

On the other hand, by the closed form solution of M̂ , we have:

‖M̂‖∗ ≤ ‖M̂‖2d̂
= ‖(XT

µ Xµ)
−1XT

µ RY (Y T
ν Yν)

−1‖2d̂

≤ σxσy‖R‖∗d̂
σ2
xmσ2

ym

,

where σxm, σym are the smallest singular value of Xµ, Yν respectively. Also, by construction of
Xµ and Yν , we have σxm ≥ µσx and σym ≥ νσy . Combining Lemma 5, we have:

‖M̂‖∗ ≤
‖R‖∗d̂

µ2ν2σxσy

≤ ‖R‖∗d̂
C ′√n1n2γ2µ2ν2XY ,

where C ′ is a constant independent to n1, n2. By the fact that ‖R‖∗ ≤ R
√
n1n2, the lemma is

proved.

Proof of Theorem 2

Proof. By the construction of feature space, we can rewrite X and Y as follows:

X =

t−1
∑

i=1

uie
T
i +

d
∑

i=t

ũie
T
i Y =

t−1
∑

i=1

vie
T
i +

d
∑

i=t

ṽie
T
i , (11)

where for each ũi, ũ
T
i uj = 0, ∀j. Therefore, the trace norm of residual can be bounded by:

‖R−XM̂Y T ‖∗ = ‖Ũ ŨTR+RṼ Ṽ T − Ũ ŨTRṼ Ṽ T ‖∗
≤ 2‖Ũ ŨTUΣV T ‖∗ + ‖UΣV T Ṽ Ṽ T ‖∗

≤ 3

k
∑

i=t

σi,

13



where Ũ , Ṽ are the second term of X and Y in (11). Moreover, we have σi = o(
√
n) for all i ≥ t.

To see this, suppose σp = Ω(
√
n) for any t ≤ p ≤ k, then:

lim
n→∞

σt√
n
≥ lim

n→∞
σp√
n
> 0,

leading a contradiction to the definition of σt. Therefore we can conclude:

N = ‖R−XM̂Y T ‖∗ ≤ 3

k
∑

i=t

σi ≤ 3k × o(
√
n) = o(

√
n),

and the Theorem is thus proved by plugging the above bound to Corollary 1.

Proof of Theorem 3

Proof. We prove the Theorem by showing that the trace norm of R −XM̂Y T will be O((g(n) +
h(n)) log n) in this scenario given that other dimensions (d and k) do not grow as a function of
n. First, note that in this scenario, we can denote X = U + ∆U and Y = V + ∆V , where
U ⊆ col(R), V ⊆ row(R) and ∆U,∆V are g(n), h(n) column sparse respectively. The following

Lemma then bounds the trace norm of R−XM̂Y T in terms of ∆U and ∆V .

Lemma 6. Let ∆U,∆V be defined as above. Then with high probability,

‖R−XM̂Y T ‖∗ ≤ c1ξ1

√

k

g(n)
‖∆UTR‖∗ + c2ξ2

√

k

h(n)
‖R∆V ‖∗ (12)

with some universal constants c1 and c2.

Proof. Let ∆U = U1Σ1V
T
1 and ∆V = U2Σ2V

T
2 be the reduced SVD of the perturbation matrix

∆U,∆V accordingly. Then we have:

‖R−XM̂Y T ‖∗ ≤ ‖U1U
T
1 R+RU2U

T
2 − U1U

T
1 RU2U

T
2 ‖∗

≤ 2‖U1U
T
1 R‖∗ + ‖RU2U

T
2 ‖∗

= 2‖∆U(V1Σ
−2
1 V T

1 )∆UTR‖∗ + ‖R∆V (V2Σ
−2
2 V T

2 )∆V T ‖∗. (13)

For the first term of (13), using Hölder’s inequality, we can upper bound it by:

‖∆U‖2‖V1Σ
−2
1 V T

1 ‖2‖∆UTR‖∗ = ‖∆U‖2‖Σ−2
1 ‖2‖∆UTR‖∗, (14)

which suggests that we need to bound the largest and smallest singular values of ∆U to bound (14).

Consider ∆U ′ ∈ R
g(n)×k to be the truncated ∆U where only non-zero rows in ∆U are left. The

spectrum of ∆U ′ is same as ∆U . Moreover, its two norm can be bounded by:

‖∆U ′‖2 ≤ ‖ξ1E1‖2 ≤ ξ1
√

kg(n),

where E1 ∈ R
g(n)×k is the matrix with all entries are one. Also, using the result of [31], we can

guarantee that with high probability σk(∆U ′) ≥ Ω(
√

g(n)−
√
k), which suggests w.h.p.:

‖Σ−2
1 ‖ =

1

σk(∆U)2
=

1

σk(∆U ′)2
≤ O(

1

g(n)
).

Thus, combining the above two bounds, the first term of (13) can be upper bounded by:

c1ξ1

√

k

g(n)
‖∆UTR‖∗,

with some universal constant c1. Similarly, the second term of (13) can be upper bounded by

c2ξ2
√

k/h(n)‖R∆V ‖∗. The lemma is thus proved.

14



Therefore, given Lemma 6, we now need to bound ‖∆UTR‖∗ and ‖R∆V ‖∗. We first focus on

bounding the term ‖∆UTR‖∗. By R = UV T and the construction of U , V , we have:

‖∆UTR‖∗ = ‖∆UTUV T ‖∗ ≤ ‖GV T ‖∗
where G ∈ R

k×k with each entry in Gij ∼ ξ1g(n)N (0, σ2). Thus, let Z = GV T , Z ∈ R
k×n, then

each entry Zij ∼ ξ1g(n)
σ2

2 χ2
k, where χ2

k is a chi-square distribution with degree of freedom k.

We next show that the trace norm of Z will be bounded in small enough order with high probabil-
ity. To begin with, the following Lemma is used as an exponentially decreasing bound on the tail
distribution of chi-square statistics.

Lemma 7 (Exponential Tail Bound of χ2
k). Let X be a random variable which follows χ2

k. Then for
any t > 1, we have:

Pr(X ≥ tk) ≤ exp

{−k(
√

(t− 1)2 + 1− 1)

2

}

This Lemma is a corollary of Lemma 1 in [23]. Given this lemma, we can now derive the following
lemma to upper bound ‖∆UTR‖∗:

Lemma 8. Let ∆UTR ∈ R
k×n where ∆U and R are set as in Theorem 3. Then its trace norm can

be upper bounded by:

‖∆UTR‖∗ ≤ C1k
3

2 g(n)
√
n log n

with probability at least 1− kn− k−2

2 .

Proof. Since ‖∆UTR‖∗ ≤ ‖Z‖∗ where Zij ∼ ξ1g(n)
σ2

2 χ2
k, by applying Lemma 7 with t = log n,

we can guarantee that with probability at least 1− n
−k
2 :

Zij ≤ ξ1g(n)
σ2

2
k log n.

Thus, by applying union bound on each Zij , with probability at least 1− kn− k−2

2 :

‖∆UTR‖∗ ≤ ‖Z‖∗ ≤ ξ1g(n)
σ2

2
k log n‖E‖∗,

where E ∈ R
k×n is a rank-1 matrix with all entries are 1. We can thus conclude the Lemma by the

fact that ‖E‖∗ = ‖E‖2 =
√
nk.

Similarly, by using the same proof steps, it could also be shown that ‖R∆V ‖∗ ≤
C2k

3/2h(n)
√
n log n. Therefore, substituting above bounds back to Lemma 6, we obtain:

N = ‖R−XM̂Y T ‖∗

≤ c1ξ1

√

k

g(n)
‖∆UTR‖∗ + c2ξ2

√

k

h(n)
‖R∆V ‖∗

= O
(

max(
√

g(n),
√

h(n))
√
n log n

)

,

and the proof is thus completed by plugging this result into Corollary 1.

Appendix C: More Synthetic experiments for DirtyIMC

Experiment on random orthogonal model

Here we conduct an experiment based on random orthogonal model stated in Theorem 2. We create
a low rank matrix R = UΣV T where U, V ∈ R

n×20 are both random orthogonal matrix, and the
singular values to be ⊔10α=1{αn, α log n}, so there are 10 singular values have smaller growth rate
O(log n). Follow Theorem 2, we construct X,Y by replacing the bottom 10 singular vectors in
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Figure 3: A synthetic experiment where noise only corrupts the insignificant part of true latent
features (i.e. space spanned by smaller singular values). We see that in this case, given O(n) obser-
vations, DirtyIMC could still recover the underlying matrix using sufficiently informative features,
while matrix completion fails to recover as the error becomes unbounded with larger n. The result
supports guarantee provided in Theorem 2.

U and V with bases orthogonal to U and V . We increase n from 250 to 3000, and for each n we
randomly sample m = 100n observations, apply our model and matrix completion to complete
the matrix, and evaluate the recovered matrix using relative error. From Theorem 2, our DirtyIMC
model should be able to approximately recover the matrix given 100n > o(n) observations, which
is indeed true as Figure 3 suggests. As a comparison, standard matrix completion fails to recover the
matrix with only O(n) observations as n increases. This result empirically supports our theoretical
analysis on the usefulness of noisy features.

Finer results for synthetic experiments in Section 5

Figure 4 and 5 show finer plots under each sparsity of observation ρs and feature noise level ρf .

Comparisons between DirtyIMC and Boosted IMC

As we mentioned in Appendix A, a recently proposed method “Boosted IMC” [33] could be viewed
as a special case of our model, where their method is basically Algorithm 1 with tmax = 1, and
in each subproblem they replace the trace norm regularized objective with matrix factorization ob-
jective. Here we compare our DirtyIMC (Algorithm 1) with Boosted IMC on synthetic datasets
generated as same as Section 5 stated. We follow their implementation with rank of U, V,W,H are
all set to be 40. The result is shown in Figure 6.

We observe that though Boosted IMC has a similar trend to DirtyIMC, in general, DirtyIMC per-
forms better than Boosted IMC. However, Boosted IMC may be still good enough as an approxi-
mation of DirtyIMC in certain cases where efficiency is critical, since it only requires one iteration
update of M and N .

Appendix D: Details for applying DirtyIMC to semi-supervised clustering

Here we follow the discussion in Section 5 for semi-supervised clustering. Suppose we are given
m pairwise constraints describing similarity (or dissimilarity) of some pairs of items, then we can
construct the following pairwise similarity matrix S as:

Sij =

{

1, if i and j are similar,

0, if i and j are dissimilar.

Obviously, S has many missing entries since only m ≪ n2 pairwise constraints are known. In
addition, ideally S should be a subset of observations sampled from UUT , where U ∈ R

n×k with
each i-th column of U is an indicator vector of the i-th cluster. Therefore, one can try to recover
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Figure 4: Finer results for synthetic experiments where completion methods are applied under dif-
ferent feature quality with a fixed ρs

(or complete) the matrix back with DirtyIMC objective, and the column space of recovered matrix,
spanned by its top-k eigenvectors, will (ideally) reveal the indicator vectors. Our detailed algorithm
is summarized in Algorithm 2.

One subtle yet critical issue in Algorithm 2 is to compute the top-k eigenvectors of recovered S
(denoted as R). Note that after solving DirtyIMC objective, we are only given the low rank expres-
sion of N∗ and M∗. Compute R explicitly and then compute its leading eigenvectors is expensive
and not scalable. Therefore, we instead run subspace iteration on N∗ + ZM∗ZT to solve for top-k
eigenvectors efficiently. Also, since the resulting top-k eigenvectors are used for running k-means,
we do not need to obtain a very accurate eigenvectors in this case. Therefore, parameters associated
with precision (tmax and ǫ) could be set relatively loose for efficiency in practice.
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Figure 5: Finer results for synthetic experiments where completion methods are applied under dif-
ferent sparsity of observations with a fixed ρf
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(b) ρs = 0.25
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(c) ρs = 0.4
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(d) ρf = 0.1
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(e) ρf = 0.5
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(f) ρf = 0.9

Figure 6: Performance of DirtyIMC and Boosted IMC (an approximation of DirtyIMC model) on
synthetic datasets.

Algorithm 2 Semi-supervised clustering with DirtyIMC

Input: feature matrix Z, pairwise similarity matrix S, number of clusters k, regularization pa-
rameters (λM , λN ) in (2).
// Solve DirtyIMC objective with Algorithm 1.
(M∗, N∗)← argminM,N

∑

(i,j)∈S((ZMZT +N)ij − Sij)
2 + λM‖M‖∗ + λN‖N‖∗

// Subspace iterations for finding top-k eigenvectors.
ǫ← 10−3, tmax ← 10, t← 1
[UM ,ΣM , VM ]← SVD(M∗)
initialize U(t) ← QR(ZUM , k)
while t ≤ tmax do

U(t+1) ← QR(ZM∗ZTU(t) +N∗U(t), k)
t← t+ 1
if σk(U

T
(t)U(t+1)) < ǫ then

break
end if

end while
idx← kmeans(U(t), k)
return idx
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