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Abstract: Most clustering algorithms produce a single clustering for a given dataset even when the data can be clustered
naturally in multiple ways. In this paper, we address the difficult problem of uncovering disparate clusterings from the data in
a totally unsupervised manner. We propose two new approaches for this problem. In the first approach, we aim to find good
clusterings of the data that are also decorrelated with one another. To this end, we give a new and tractable characterization of
decorrelation between clusterings, and present an objective function to capture it. We provide an iterative “decorrelated” k-means
type algorithm to minimize this objective function. In the second approach, we model the data as a sum of mixtures and associate
each mixture with a clustering. This approach leads us to the problem of learning a convolution of mixture distributions. Though
the latter problem can be formulated as one of factorial learning [8,13,16], the existing formulations and methods do not perform
well on many real high-dimensional datasets. We propose a new regularized factorial-learning framework that is more suitable
for capturing the notion of disparate clusterings in modern, high-dimensional datasets. Furthermore, we provide kernelized
version of both of our algorithms. The resulting algorithms do well in uncovering multiple clusterings, and are much improved
over existing methods. We evaluate our methods on two real-world datasets—a music dataset from the text-mining domain, and
a portrait dataset from the computer-vision domain. Our methods achieve a substantially higher accuracy than existing factorial
learning as well as traditional clustering algorithms.  2008 Wiley Periodicals, Inc. Statistical Analysis and Data Mining 1: 195–210,
2008
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1. INTRODUCTION

Clustering data into groups based on similarity is often
one of the most important steps in any data-analysis applica-
tion. Currently, most clustering algorithms partition the data
into groups that are disjoint, while other algorithms extend
this approach to probabilistic or overlapping clustering.
However, in many important applications, it is necessary
to uncover disparate or alternative clusterings1 in order to
reflect the different groupings inherent in the data. As an
example, consider a set of pictures of different persons in
different poses (see Fig. 1). These images can be clustered
by the identity of the person in the picture or by the pose of
the person. Given such a dataset, it would be desirable to
recover two disparate clusterings of the data—one based on
the identity of the person and the other based on their pose.

The above problem arises naturally for many other
widely used datasets, for instance: news articles (can be
clustered by the main topic, or by the news source), reviews

Correspondence to: Prateek Jain (pjain@cs.utexas.edu)
1 Throughout this paper, a clustering will refer to a set of

disjoint clusters of the data.

of various musical albums (can be clustered by composers,
or by other characteristics like genre of the album), and
movies (can be clustered based on actors/actresses or
genre).

Most existing methods to recover alternative clusterings
use semisupervision or side-information about one or more
of the clusterings. Since clustering is generally the first step
in data analysis, such information might not be available
beforehand. For example, news articles change dynamically
and it is infeasible to manually label them by topic and the
source. Thus, completely unsupervised techniques to find
disparate clusterings are immensely useful.

In this paper, we present two novel unsupervised app-
roaches for discovering disparate clusterings in a given
dataset. In the first approach we aim to find multiple cluster-
ings of the data which satisfy two criteria: (i) the clustering
error of each individual clustering is small and (ii) differ-
ent clusterings have small correlation between them. To this
end, we present a new and computationally tractable charac-
terization of correlation (or decorrelation) between different
clusterings. We use this characterization to formulate a k-
means type objective function which contains error terms
for each individual clustering along with a regularization
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Fig. 1 Images of different persons in different poses. Each row has different persons in the same pose. Each column has the same person
in different poses.

term corresponding to the correlation between clusterings.
We provide a computationally efficient k-means type algo-
rithm for minimizing this objective function.

In the second approach, we model the problem of find-
ing disparate clusterings as one of learning the compo-
nent distributions when the given data is sampled from a
convolution of mixture distributions. This formulation is
appropriate when the different clusterings come from inde-
pendent additive components of the data. The problem of
learning a convolution of mixture distributions is closely
related to factorial learning [8,13,16]. However, the meth-
ods of [8,13,16] are not suited for recovering multiple
clusterings. The problem with applying factorial learning
directly is that there are multiple solutions to the problem
of learning a convolution of mixture distributions. Out of
all such possible solutions, the desirable solutions are the
ones that give maximally disparate clusterings. To address
this problem, we propose a regularized factorial-learning
model that intuitively captures the notion of decorrelation
between clusterings and aims to estimate the parameters of
the decorrelated model.

An important aspect of both our approaches is the
notion of decorrelation between clusterings. The decorre-
lation measures that we propose quantify the “orthogonal-
ity” between the mean vectors corresponding to different
clusterings. We show that the characterization of dispar-
ity between different clusterings by the “orthogonality”
between the mean vectors of the respective cluster centers
has a well-founded theoretical basis (see Section 5.1).

Both of our algorithms assume linear separability of the
clusters, which does not hold for various real-life problems.

To overcome this limitation, we provide kernelized versions
of both our algorithms.

We evaluate our methods on synthetic and real-world
datasets that have multiple disparate clusterings. We con-
sider real-world datasets from two different domains—a
music dataset from the text-mining domain and a portrait
dataset from the computer-vision domain. We compare our
methods to two factorial-learning algorithms, cooperative
vector quantization (CVQ) [8] and multiple cause vec-
tor quantization (MCVQ) [16]. We also compare against
traditional single-clustering algorithms like k-means and
nonnegative matrix approximation (NNMA) [15]. On all
the datasets, both of our algorithms significantly outper-
form the factorial learning as well as the single-clustering
algorithms. The factorial-learning methods work reasonably
well on a few synthetic datasets that exactly satisfy their
respective model assumptions. But they are not robust in the
case where model assumptions are even slightly violated.
Because of this, their performance is poor on real-world
datasets and other synthetic datasets. In comparison, our
algorithms are more robust and perform significantly better
on all the datasets. For the music dataset both our algo-
rithms achieve around 20% improvement in accuracy over
the factorial-learning and single-clustering algorithms (k-
means and NNMA). Similarly, for the portrait dataset we
achieve an improvement of 30% over the baseline algo-
rithms.

2. RELATED WORK

Most of the existing work for finding disparate clusterings
has been in the semisupervised setting. The semisupervised
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clustering problem of finding a clustering consistent with a
given set of constraints has been extensively studied [21,
23, 2]. This approach has been applied to the problem
of recovering multiple clusterings by providing appropri-
ate constraints. Must-link and cannot-link constraints have
been extensively used for semisupervised clustering [21,
22, 2]. Recently, Davidson et al. [4] proposed an efficient
incremental algorithm for must-link and cannot-link con-
straints. An alternative approach to the problem is taken by
[1,10,11] where it is assumed that a clustering of the data is
given and the objective is to find a clustering different from
the given one. Our work differs from the above approaches
in that our methods for discovering the disparate clusterings
are completely unsupervised.

A supervised approach to the related problem of dis-
covering two-factor structures from the observed data was
suggested in [20]. Their method, named separable mixture
model (SMM), models the data using a bilinear function of
the factors and can also be used for obtaining two cluster-
ings of the data. An advantage of our methods over SMM is
that our methods are unsupervised compared to the super-
vised approach of SMM. Also, our model can be extended
to more than two factors, whereas it is unclear how SMM
could be extended to a data generated from more than two
factors.

Our second approach (‘sum of parts’ approach) is closely
related to the factorial-learning problem where each data
point is assumed to be generated by combining multiple fac-
tors. Ghahramani [8] introduced a novel architecture named
CVQ, in which a set of multiple vector quantizers (VQ)
combine linearly to generate the input data. However, a
drawback of CVQ is that it can have multiple solutions.
Many of these solutions give poor results for the problem
of discovering disparate clusterings, especially on our real-
world applications. Also, CVQ can be seen as a special
case of our model. Another recent model related to facto-
rial learning is MCVQ (Ross and Zemel [16]). In MCVQ,
it is assumed that the dimensions of the data can be sep-
arated into several disjoint factors, which take on values
independently of each other. The factors are then mod-
eled using a VQ as in CVQ. However, MCVQ also faces
the same drawbacks of CVQ—existence of multiple solu-
tions—which leads to poor performance for our application
of discovering disparate clusterings.

The problem of learning convolutions of distributions
that forms the basis of our second approach has been con-
sidered in the statistics community—see for instance [6],
[18], [17]. However, these methods deal with learning con-
volutions of simple distributions like binomial, Gaussian
and Poisson, and do not consider mixtures of distribu-
tions. A fundamental problem with learning a convolution
of Gaussians, as mentioned in [18], is that the problem is

not well-defined—there exist many solutions to the learn-
ing problem. We face a similar problem in the M-step of
our algorithm for learning the convolution of mixtures of
Gaussians, where the maximum likelihood estimation has
multiple solutions. We deal with this issue by regulariz-
ing the solution space in a way suitable for the purpose
of recovering disparate clusterings so that the problem
becomes well-posed.

We emphasize that though we state the problem of recov-
ering disparate clusterings as one of learning independent
components from the data, the problem we address is com-
pletely different from that of independent component anal-
ysis (ICA) [14]. ICA tries to separate a multivariate signal
into independent additive univariate signals, whereas in our
problem we try to decompose the signal into independent
multivariate signals, each of which may have high correla-
tion between its different dimensions.

For our experiments, we also evaluated various simple
extensions of k-means such as the removal of important fea-
tures of the first clustering to uncover the second clustering,
and projection of the data onto the space orthogonal to the
means of the first clustering. The later heuristic was moti-
vated by principal gene shaving [12]. But, these approaches
are ad hoc and do not perform well in our experiments.

3. METHODOLOGY

For simplicity, we present our methods for uncovering
two disparate clusterings from the data; our techniques can
be generalized to uncover more than two clusterings. We
propose the following approaches:

• Decorrelated k-means approach: In this approach, we
try to fit each clustering to the entire data, while
requiring that different clusterings be decorrelated
with each other. To this end, we introduce a novel
measure for correlation between clusterings. This
measure is motivated by the fact that if the repre-
sentative vectors of two clusterings are orthogonal to
one another, then the labelings generated by nearest-
neighbor assignments for these representative vec-
tors are independent under some mild conditions (see
Section 5.1).

• Sum of parts approach: In this approach, we model
the data as a sum of independent components, each
of which is a mixture model. We then associate
each component with a clustering. Further, as the
distribution of the sum of two independent random
variables is the convolution of the distributions (see
[5]), we model the observed data as being sam-
pled from a convolution of two mixtures. Thus,
our approach leads us to the problem of learning
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a convolution of mixtures. Note that the individual
components uncovered by this approach may not be
good approximations to the data by themselves, but
their sum is. This is in complete contrast to the first
approach where we try to approximate the data indi-
vidually by each component.

3.1. First Approach: Decorrelated k-means

Given a set of data points Z = {z 1, z 2, . . . , z n} ⊆ R
m,

we aim to uncover two clusterings C1 and C2. Specifically,
we wish to partition the set Z into k1 groups for the first
clustering C1 and k2 groups for the second clustering C2.
To achieve this task, we try to find decorrelated clusterings
each of which approximates the data as a whole. We
propose the following objective function:

G(µ1...k1, µ1...k2) = ∑
i

∑
z∈C1

i

‖z − µi‖2

+∑
j

∑
z∈C2

j

‖z − νj‖2

+λ
∑
i,j

(βT
j µi )

2

+λ
∑
i,j

(αT
i νj )

2, (1)

where C1
i is cluster i of the first clustering, C2

j is cluster
j of the second clustering, and λ > 0 is a regularization
parameter. The vector µi is the representative vector of
C1

i , νj is the representative vector of C2
j , αi is the mean

vector of C1
i and βj is the mean vector of C2

j .
The first two terms of Eq. (1) correspond to a k-means

type error term for the clusterings, with a crucial difference
being that the “representative” vector of a cluster may not
be its mean vector. The last two terms are regularization
terms that measure the decorrelation between the two clus-
terings. In order to extend this formulation for T ≥ 2 clus-
terings, we add k-means type error terms for each of the T

clusterings. Furthermore, we add T × (T − 1)/2 terms cor-
responding to the decorrelation between pairs of clusterings.

The decorrelation measure given above is motivated by
the intuition that if the “representative” vectors of two
clusterings are orthogonal to one another, then the labelings
generated by nearest-neighbor assignments for these vectors
are independent. We provide a theoretical basis for the
above intuition in Section 5.1 Also, an important advantage
of the proposed decorrelation measure is that the objective
function remains strictly and jointly convex in the µis and
νj s (assuming fixed C1

i s and C2
j s).

To minimize the objective function in Eq. (1), we present
an iterative algorithm, which we call decorrelated k-means
(Algorithm 1). We fix C1 and C2 to obtain µis and νj s

that minimize Eq. (1) and then assign each point z to C1
i

such that i = argminl ‖z − µl‖2 and to C2
j such that j =

argminl ‖z − νl‖2. We initialize one of the clusterings using
k-means with k = k1 and the other clustering randomly.

For computing the µis and νj s, we need to minimize Eq.
(1). The gradient of the objective function in Eq. (1) w.r.t
µi is given by:

∂G

∂µi

= −2


∑

z∈C1
i

z


 + 2


∑

j

nij


µi + 2λ

∑
j

(βT
j µi )βj ,

where nij is the number of points that belong to C1
i and

C2
j .

Now, (βT
j µi )βj = (βjβ

T
j )µi and αi =

(∑
z∈C1

i
z
)

∑
j nij

. Thus,

∂G

∂µi

= −2
∑

j

nijαi + 2
∑

j

nijµi + 2λ


∑

j

βjβ
T
j


 µi .

Similarly,

∂G

∂νj

= −2
∑

i

nijβj + 2
∑

i

nijνj + 2λ

(∑
i

αiα
T
i

)
νj .

Setting the gradients to zero gives us the following
equations:

µi =

I + λ∑

j nij

∑
j

βjβ
T
j




−1

αi , (2)

νj =
(

I + λ∑
i nij

∑
i

αiα
T
i

)−1

βj . (3)

Since the objective function Eq. (1) is strictly and jointly
convex in both µis and νj s, the above updates lead to a
global minima of the objective function Eq. (1) for fixed
C1 and C2.

3.1.1. Computing the updates efficiently

Computing the updates given by Eqs. (2) and (3) requires
computing the inverse of an m × m matrix, where m is
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the dimensionality of the data. Thus updating all the µis
and νj s directly would seem to require O(k1m

3 + k2m
3)

operations, which is cubic in the dimensionality of the
data. We now give a substantially faster way to compute
the updates in time linear in the dimensionality. Using the
Sherman-Morrison-Woodbury formula (see [9]) for the
inverse in Eq. (2), we get

(
I + ξiV V T

)−1 = I − ξiV
(
I + ξiV

T V
)−1

V T ,

where ξi = λ∑
j nij

and V = [β1, . . . , βk2 ]. Using the eigen-

value decomposition V T V = Q�QT we see that

(
I + ξiV

T V
)−1 = Q (I + ξi�)−1 QT .

Since V T V is a k2 × k2 matrix its eigenvalue decomposi-
tion can be computed in O(k3

2) time. Also, as (I + ξi�)−1 is
a diagonal matrix, calculating its inverse requires just O(k2)
operations. The updates for µis can now be rewritten as,

µi = (
I − ξiV Q (I + ξi�)−1 QT V T

)
αi . (4)

Similarly, the updates for νj s can now be written as,

νj =
(
I − ζjMU

(
I + ζj�

)−1
UT MT

)
βj , (5)

where ζj = λ∑
i nij

, M = [α1, . . . , αk1 ], and U�UT is the

eigenvalue decomposition of MT M .
Using these updates reduces the computational complexity
of computing all the µis and νj s to O(mk2

1 + mk2
2 + k3

1 +
k3

2). If m > k = max(k1, k2), which is typically the case,
the above bound becomes O(mk2).

3.1.2. Determining λ

The regularization parameter λ plays an important role
in the decorrelated k-means algorithm. It determines the
trade-off between minimizing the individual clustering error
of each clustering (first two terms in Eq. (1)) and finding
decorrelated cluster centers for the different clusterings
(last two terms in Eq. (1)). Empirically, we observe that
the clustering accuracies are good when λ ∈ [100, 10000],
which is a large range. But, a different scaling of the
data can change this range for λ. Hence, we determine
λ using a simple heuristic. Note that for small values of
λ, the decorrelated k-means algorithm finds approximately
the same clusters for both the clusterings. While for a high
value of λ, it tries to find clusterings that are orthogonal

to each other, even though both the clusterings may not
fit the data well. Thus, a suitable λ balances out both the
objectives and hence generally there is a large change in
objective function value when λ is perturbed slightly. On
the basis of this intuition, we form a heuristic to determine
λ: start with a large λ and find different clusterings of the
data while decreasing λ, and select a λ for which the drop
in the objective function is the highest. Note that different
variants of the heuristic can be used depending on the data
and domain knowledge. For example, if the data is large,
then a subset of the data can be used for finding clusterings
or if the data is noisy then a more robust measure like
average change in objective function should be preferred
over the maximum change measure for selecting λ.

3.2. Second Approach: Sum of Parts

In this section, we describe our “sum of parts” approach.
Let Z = {z 1, . . . , zn} be the observed m-dimensional data
sampled from a random variable Z. We model Z as a sum
X + Y , where X, Y are independent random variables and
are drawn from mixtures of distributions. Specifically,

pX =
k1∑

i=1

aipXi
, pY =

k2∑
j=1

bjpYj
.

The problem of learning independent components can
now be stated as: Given data sampled according to Z,
recover the parameters of the probability distributions
pXi

, pYj
along with the mixing weights ai, bj .

As Z = X + Y , the probability density function of Z is
the convolution of pX and pY [5, Section A.4.11]. Thus,

pZ(z ) = (pX ∗ pY )(z ) =
k1∑

i=1

k2∑
j=1

(aibj ) · (pXi
∗ pYj

)(z ) ,

(6)

where f1 ∗ f2(z ) = ∫
Rm f1(x) · f2(z − x)dx denotes the

convolution of f1 and f2.
From Eq. (6) it follows that when the distributions pXi

and pYj
belong to a family of distributions closed under

convolution, Z can be viewed as a mixture of k1 × k2 distri-
butions. However, the problem of learning the components
X and Y from Z is harder than that of simply learning
the parameters of a mixture model, as along with learn-
ing the k1 × k2 component distributions one must also be
able to factor them out. In the following section, we give a
generalized expectation maximization (EM) algorithm for
learning the parameters of the component mixtures when
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the base distributions are spherical multivariate Gaussians.
Our techniques can be extended to more general distribu-
tions like nonspherical Gaussians and potentially to other
families closed under convolution.

3.2.1. Learning the convolution of a mixture of Gaussians

Let the components X and Y be mixtures of spher-
ical Gaussians, i.e., pX = ∑k1

i=1 aiN (µi , σ 2) and pY =∑k2
i=1 biN (νi , σ 2). As in our first approach, we initialize

the EM algorithm (Algorithm 2) by k-means for the first
clustering and a random assignment for the second cluster-
ing. We initialize µ0

i s and ν0
j s to be the means of the first

and second clusterings respectively. To initialize σ we use
a heuristic presented in [3],

σ = 1√
2m

min

(
min
i �=j

‖µ0
i − µ0

j‖, min
i �=j

‖ν0
i − ν0

j‖
)

.

E-step:

Let pt
ij (z ) denote the conditional probability that z comes

from the Gaussian pXi
∗ pYj

given the current parameters.
As our main objective is to cluster the data, we use
hard assignments in the E-step to ease the computations
involved. The E-step in this case will be:

pt+1
ij (z ) =




1, if (i, j) =
argmax(r,s){at

rb
t
s · N (

µt
r+

νt
s , 2(σ t )2

)
(z )}

0, otherwise.

(7)

Note that, to uncover T different clusterings from the
data, O(kT ) computational operations are required for each
data point in the E-step. Ghahramani [8] suggested various
approximation methods to reduce the time complexity of
this estimation, and the same can be applied to our setting
as well. In our implementation, we use Gibbs sampling for
approximating the distribution of labels, pt+1

ij (z), when the
parameters of the base distributions are fixed.

M-step:

In the M-step, we use the clusterings updated in the E-
step (specified by pt+1

ij ’s) to estimate the parameters of the
distributions. Formally, we maximize the log-likelihood:

(
µt+1

1...k1
, νt+1

1...k2
, σ t+1, at+1

1...k1
, bt+1

1...k2

)
=

argmax
µ1...k1

,ν1...k2
,σ,

a1...k1 ,b1...k2

∑
i,j,z

pt+1
ij (z ) log

(
aibjN (µi + νj , σ )(z )

)
.

The mixture weights and variance σ can be easily com-
puted by differentiating w.r.t. ais, bj s, σ and setting the
derivatives to zero. This gives us the following expressions:

at+1
i = 1

n

∑
j

∑
z

pt+1
ij (z ), (8)

bt+1
j = 1

n

∑
i

∑
z

pt+1
ij (z ), (9)

(σ t+1)2 = 1

2mn

∑
i,j,z

pt+1
ij (z ) ‖z − µt

i − νt
j‖2. (10)

Computing the means to maximize the log-likelihood is
more involved and it reduces to minimizing the following
objective function:

min
µ1...k1 ,ν1...k2

F(µ1...k1, ν1...k2) =
∑
i,j,z

pt+1
ij (z )‖z − µi − νj‖2.

(11)

Note that multiple solutions exist for the above equation;
since we can translate the means µis by a fixed vector w
and the means νj s by −w to get another set of solutions.
As discussed in Section 2, the CVQ [8] algorithm also suf-
fers from the same problem of multiple solutions. Out of
all the solutions to Eq. (11), the solutions which give max-
imally disparate clusterings are more desirable. To obtain
such solutions, we regularize the µis and νj s to have small
correlation with each other. To this end, we introduce a reg-
ularization term to make the µis and νj s orthogonal to one
another. This correlation measure is similar to the measure
discussed in the previous decorrelated k-means approach
(Section 3.1). Formally, we minimize the following objec-
tive function:

F̃ (µ1...k1, ν1...k2) = ∑
i,j,z pt+1

ij (z )‖z − µi − νj‖2

+λ
∑

i,j (µ
T
i νj )

2, (12)

where λ > 0 is a regularization parameter and can be
selected using a heuristic similar to the one described in
Section 3.1.2.

Observe that the above objective is not jointly convex in
µi and νj but is strictly-convex in µi for fixed νj ’s and
vice versa. To minimize F̃ , we use the block coordinate
descent algorithm [24] where we fix νj ’s to minimize µi

and vice versa. By differentiating Eq. (12) w.r.t. µi and νj

and setting the derivatives to zero we get,
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(
I + λ

∑
j νjν

T
j∑

j nij

)
µi +

∑
j nijνj∑
j nij

= αi ,

(
I + λ

∑
i µiµ

T
i∑

i nij

)
νj +

∑
i nijµi∑

i nij

= βj ,

where nij = ∑
z pt+1

ij (z ) is the number of data points that
belong to cluster i of the first clustering and cluster j of
the second clustering, αi denotes the mean of all points
that are assigned to cluster i in the first clustering and βj

denotes the mean of points assigned to cluster j in the
second clustering, i.e. ,

αi = 1

nai

∑
j

∑
z

zpt+1
ij (z ), (13)

βj = 1

nbj

∑
i

∑
z

pt+1
ij (z ). (14)

To solve for µi and νj in the above equations, we use
an alternative minimization scheme—we iteratively update
the µi and νj as follows:

µi =
(

I + λ
∑

j νjν
T
j∑

j nij

)−1 (
αi −

∑
j nijνj∑
j nij

)
(15)

νj =
(

I + λ
∑

i µiµ
T
i∑

i nij

)−1 (
βj −

∑
i nijµi∑

i nij

)
. (16)

For initialization, we set νj to be βj for each j . Below
we prove that this scheme converges to a local minima of
Eq. (12).

LEMMA 1: The updates for µi and νj given by Eq. (15)
converge to a local minimum of the regularized objective
function given by Eq. (12).

PROOF 1: As the updates Eq. (15) minimize the objec-
tive function at each iteration, the updates converge to a
fixed point [24]. Also, the objective function Eq. (12) is
strictly convex in µi for fixed νj s and vice versa. Thus,
any fixed point of Eq. (12) is also a local minimum. It now
follows that our updates converge to a local minimum of
the objective function. �

THEOREM 1: Algorithm 2 monotonically decreases the
objective function:

F =
∑
i,j,z

pt+1
ij (z )

‖z − µi − νj‖2

2σ 2
+ λ

∑
i,j

(µT
i νj )

2 (17)

PROOF 2: Let Ft be the objective function value at the
start of t-th iteration, FE

t be the objective function value
after the E-step of t-th iteration and FM

t = Ft+1 be the
objective function after M-step of t-th iteration. The E-step
assigns new labels according to Eq. (7), which is equivalent
to minimizing:

∑
i,j,z

pt+1
ij (z )

‖z − µi − νj‖2

2σ 2
,

with µi and νj being fixed.
Thus, the first term of the objective function (17) is

decreased by the E-step while the second term remains
fixed. Hence, Ft ≥ FE

t . Using Lemma 1, FE
t ≥ FM

t , as
only µis and νj s are variables with pij fixed (σ can be
absorbed in λ). Thus, Ft ≥ Ft+1. �

3.2.2. Computing the updates efficiently

Using techniques similar to Section 3.1.1, the update for
µi can be written as:

µi = (
I − ξiV Q (I + ξi�)−1 QT V T

) (
αi −

∑
j nijνj∑
j nij

)
,

(18)

where, ξi = λ∑
j nij

and V = [ν1, . . . , νk2 ] and Q�QT is the

eigenvalue decomposition of V T V .

Similarly, the update for νj can be written as,

νj =
(
I − zetajMU

(
I + zetaj�

)−1
UT MT

)
(βj −

∑
i nijµi∑
i nij

), (19)

where, ζj = λ∑
i nij

, M = [µ1, . . . , µk1 ] and MT M = U�UT .
As in Section 3.1.1, the above updates reduce the compu-

tational complexity of computing all the µis and νj s from
O(k1m

3 + k2m
3) to O(m(k2

1 + k2
2)).

4. KERNELIZATION

In Section 3, we proposed two algorithms for learning
disparate clusterings from the given data. Both of the pro-
posed methods assume that the given data is linearly sep-
arable. This might not hold in general (Fig. 2)—more so
for real-world applications. Over the past decade, kernel
methods have been shown to successfully overcome the

Statistical Analysis and Data Mining DOI:10.1002/sam



202 Statistical Analysis and Data Mining, Vol. 1 (2008)

Fig. 2 A case where multiple clusterings exists in the data but
the data is not linearly separable. Thin and black circles show the
data points, while bold and colored circles show the separating
surfaces for generating two sets of disparate clusters.

limitation of linearly separability in feature space. Typi-
cally, kernel methods map the data into a high-dimensional
hilbert space with a hope that the data will be linearly
separable in the new high-dimensional feature space. Fur-
thermore, it is assumed that the inner product in the new
feature space can be computed efficiently. Thus kernel-
ization of a method involves expressing the algorithm in
terms of inner products between the input data points. In
this section, we provide kernel versions of our methods,
Decorrelated k-means and Convolutional-EM.

4.1. Kernelized Decorrelated k-means

Given a kernel matrix K over the input data points, s.t.

K(i, j) = φ(z i )
T φ(z j ),

where φ(z ) is the (high-dimensional) feature map asso-
ciated with the input data point z . We first provide a sim-
ple result regarding kernelization. Let u = ∑

i aiφ(z i ) and
v = ∑

j bjφ(z j ) with a, b ∈ R
n be two linear combina-

tions of the feature mappings of the input data points. Then

K(u, v) = uT v =
∑
ij

aibjK(i, j), (20)

that is, if the coefficients of linear combination of feature
mappings are known, then the inner product or kernel
value between the linear combinations can be computed
efficiently. Now, we give step by step kernelization of the
Decorrleated k-means algorithm.

Algorithm 1 Decorrelated k-means (Dec. k-means)

Input: Data Z = {z 1, z 2, . . . , z n}
k1: Number of clusters in first clustering (C1)
k2: Number of clusters in second clustering(C2)
λ: regularization parameter

Output: C1, C2: Two different clusterings
1. C1 ← k-means(Z), C2 ← Random assignment

2. repeat

2.1. αi ← ComputeMean(C1
i ), for all 1 ≤ i ≤ k1

2.2. βj ← ComputeMean(C2
j ), for all 1 ≤ j ≤ k2

2.3. Update µi and νj for all i, j using Eqs. (4) and (5)
2.4. ∀z , C1

i ← C1
i ∪ {z },

if i = arg minl ‖z − µl‖2.
2.5. ∀z , C2

j ← C2
j ∪ {z },

if j = arg minl ‖z − νl‖2.

3. until convergence
return C1, C2

Step 1. in Algorithm 1 can be kernelized using Kernel
K-means with K as the input kernel. Random assignment
of C2 clustering can be carried out as before.

Step 2.1, 2.2 compute means of the clusters for cluster-
ings C1 and C2. We do not compute the explicit mappings
for the mean vectors (αi , βj ), but just store the contributing
weight of each input point to each mean vector.

Similarly, we do not compute explicit mappings for
representative vectors (µi , νj ), rather we show that the
representative vectors are linear combinations of the feature
mapping of input points and find out the corresponding
weight of each input point in the linear combination. Recall
that the update for µi is given by:

µi = (
I − ξiV Q (I + ξi�)−1 QT V T

)
αi , (21)

where V = [β1, . . . , βk2], V T V = Q�QT . Now
(V T V )ij = βT

i βj can be computed in the new feature space
or kernel space using Eq. (20), as the mean of a cluster can
be written as a linear combination of the input data points.
Thus V T V matrix can be computed in the kernel space.
Similarly V T αi can be computed in the kernel space using
Eq. (20). Thus µi can be written as a linear combination
of feature mappings of the input points (z i) and we can
compute the weights of each input point efficiently.

Now, to assign a cluster from clustering C1 for an input
point z we need to solve the following problem:

i = arg min
l

‖z − µl‖2 = K(z , z ) + K(µ, µ) − 2K(z , µ).

Thus, label assignment for clustering C1 (Step 2.4, Algo-
rithm 1) can be performed in the kernel space. A similar
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method can be used to perform label assignment for cluster-
ing C2 as well (Step 2.5, Algorithm 1). Thus, Algorithm 1
can be kernelized.

4.2. Kernelized Convolutional-EM

As for decorrelated k-means, we give step by step ker-
nelization of the Convolution-EM algorithm (Algorithm 2).
We assume an input kernel matrix K over the input data
points, s.t.

K(i, j) = φ(z i )
T φ(z j ).

Note that the update for σ (Eq. (10)) uses dimensionality
of the feature mapping (m) which might not be available
in general. Thus, we give kernelized Convolutional-EM
algorithm for the case of fixed σ 2 = c, where c is a
constant.

As in Kernelized Decorrelated-k-means, we show that
µi and νj computed by Step 4.5 (Algorithm 2) are linear
combination of feature mappings of the input data points.

CLAIM 1: Let µi and νj be computed using Step 4.5
(Algorithm 2), then:

µi =
∑

l

qlφ(z l ), νj =
∑

l

glφ(z l ),

where q ∈ R
n and g ∈ R

n.

Algorithm 2 Convolutional-EM (Conv-EM)

Input: Data Z = {z 1, z 2, . . . , z n}
k1: Number of clusters in first clustering (C1)
k2: Number of clusters in second clustering(C2)
λ: regularization parameter

Output: C1, C2: Two different clusterings
1. C1 ←k-means(Z), C2 ←Random assignment

2. µi ←ComputeMean(C1
i ), νj ←ComputeMean(C2

j )
3. ai= 1

k1
, bj = 1

k2
4. repeat

E Step:
4.1 For each z , assign pij (z ) using Eq. (7).
M Step:
4.2 Assign ai , bj and σ using (8), (9), (10).
4.3 Assign αi and βj using (13), (14).
4.4 νj ← βj

4.5 repeat until convergence
• Update µi using (18).
• Update νj using (19).

5. until convergence
6. C1

i = {z |pij (z ) = 1,∀j}, C2
j = {z |pij (z ) = 1,∀j}

return C1, C2

PROOF 3: We prove this claim using principle of math-
ematical induction. µi is initialized to 0, hence µi is a linear
combination of φ(z l ). νj is intialized using βj and since
mean of a cluster is a linear combination of input points
within the cluster, νj is also a linear combination of input
points. Thus the base case holds.

Let hypothesis hold for iteration iter = t , then updates at
iteration t + 1 are given by:

µ
(t+1)
i = (

I − ξiV
T Q (I + ξi�)−1 QT V T

)
(

αi −
∑

j nijν
(t)
j∑

j nij

)
, (22)

where, ξi = λ∑
j nij

and V = [νt
1, . . . , νt

k2
] and Q�QT is the

eigenvalue decomposition of V T V .
Using induction hypothesis, νt

j is a linear combination

of the input points. And,

(
αi −

∑
j nij ν

(t)
j∑

j nij

)
is again a linear

combination of the input points. Thus, V T

(
αi −

∑
j nij ν

(t)
j∑

j nij

)
can be calculated efficiently using Eq. (20). Hence, µt+1

i is
a linear combination of the input points. Similarly it can be
shown that νt+1

j is a linear combination of the input points.

Now for given µt
r + νt

s and σ 2 = c, consider the follow-
ing probability density function:

N
(
µt

r + νt
s , 1

)
(z ) = 1√

2π
exp (−‖z − µr

−νs‖2/σ 2
)

(23)

Note that ‖z − µr − νs‖2 = K(z , z ) + K(µr + νs, µr + νs) −
2K(z , µr + νs). Now using Claim 1, µt

r + νt
s is a lin-

ear combination of the input points. Thus using Eq. (20),
N

(
µt

r + νt
s , 1

)
(z ) can be computed efficiently. This in turn

implies that the E-step of Algorithm 2 can be computed
efficiently in the kernel space. Thus Algorithm 2 can be
kernelized efficiently.

5. DISCUSSION

5.1. Decorrelation Measure

Now we motivate the decorrelation measures used in
Eqs. (1) and (12). For this, we will need the following
two lemmas about uniqueness of projection and multivariate
Gaussians. In the following lemmas, for a subspace S of
R

m let PS : R
m → R

m be the orthogonal projection (OP)
operator onto the subspace S.
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LEMMA 2: Let S1, S2 be subspaces of R
m such that

S1 ∩ S2 = {0}. Then, for all x ∈ S1, and y ∈ S2, there exists
a unique u ∈ S1 + S2 such that PS1(u) = x and PS2(u) = y.

PROOF 4: Let x ∈ S1 and y ∈ S2. Also, let P1, P2 be
the projection matrices for the projection operators PS1

and PS2 respectively. We first formulate the hypothesis that
S1 ∩ S2 = {0} in terms of the matrices P1, P2 by showing
that I − P1P2 and I − P2P1 are invertible. Suppose, on
the contrary that I − P1P2 is not invertible. Then, for some
nonzero z we must have, (I − P1P2)z = 0, i.e., z = P1P2z.
Recall that for a projection matrix P into a subspace S we
always have ‖Pu‖ ≤ ‖u‖ with equality if and only if u ∈ S.
Thus, we have

‖z‖ = ‖P1P2z‖ ≤ ‖P2z‖ ≤ ‖z‖.

Therefore, z = P1P2z = P2z, which is possible only if
z ∈ S1 and z ∈ S2. This contradicts the assumption that
S1 ∩ S2 = {0}, I − P1P2 must be invertible. Similarly, we
can also show that I − P2P1 is invertible.

Now, to prove the lemma we need to show that there
exists a unique u ∈ S1 + S2 such that “x = P1u and y =
P2u”. Since, S1 ∩ S2 = {0}, solving the above system of
equations is equivalent to solving for v ∈ S1, and w ∈ S2

such that

x = P1(v + w), y = P2(v + w).

Manipulating the above equations, we get:

(I − P1P2)v = x − P1y, (I − P2P1)w = y − P2x.

The existence and uniqueness of v, w follow from the fact
that I − P1P2 and I − P2P1 are invertible. �

LEMMA 3: Let Z ∈ R
m denote a random variable with

spherical Gaussian distribution. Let S1, S2 ⊆ R
m be two

subspaces such that S1 ∩ S2 = {0} and let Z1 = PS1(Z),
Z2 = PS2(Z) be the random variables obtained by project-
ing Z onto S1, S2 respectively. Then, the random variables
Z1 and Z2 are independent if and only if the subspaces S1

and S2 are orthogonal.

PROOF 5: ⇐� If S1 and S2 are orthogonal, then for
u1 ∈ S1 and u2 ∈ S2, Pr[Z = u1 + u2] = Pr[Z1 = u1,

Z2 = u2]. Further, since Z has a spherical Gaussian dis-
tribution so do Z1 and Z2. The independence of Z1 and Z2

follows easily from the above observations.
�⇒ Let the random variables Z1 and Z2 be independent.

Note that without loss of generality we can assume that
Z has mean 0 (as else we can translate Z). Furthermore,
we can also assume that the support of Z is contained in

S1 + S2. This is because, PS1 = PS1
◦PS1+S2 and PS1+S2(Z)

is also distributed as a spherical multivariate Gaussian.
For the rest of the proof, we will suppose that S1 + S2 =
support (Z) = R

m and that Z has mean 0.
Using Lemma 2, for u ∈ R

m, we have

Pr[Z = u] = Pr[PS1(Z) = PS1(u), PS2(Z) = PS2(u)].

As Z1 and Z2 are independent, the above can be rewritten
as

Pr[Z = u] = Pr[PS1(Z) = PS1(u)]

·Pr[PS2(Z) = PS2(u)].

Now, since the projection of a spherical multivariate
Gaussian is also a spherical multivariate Guassian, substi-
tuting probability density formulae in the above equation
we get the following:

1

(2π)m/2
e− 1

2 ‖u‖2 = 1

(2π)m1/2
e− 1

2 ‖u1‖2 · 1

(2π)m2/2
e− 1

2 ‖u2‖2
,

where, m1, m2 denote the dimensions of S1, S2 respectively
and u1 = PS1(u), u2 = PS2(u). Noting that m = m1 + m2

(since S1 ∩ S2 = {0}) the above equation can be simplified
to

‖u‖2 = ‖PS1(u)‖2 + ‖PS2(u)‖2.

As the above equation holds for all u it also holds in
particular for u ∈ S1. Now, for u ∈ S1 we have PS1(u) = u,
thus we get

∀u ∈ S1, PS2(u) = 0.

The above condition can easily be shown to be equivalent
to S1 and S2 being orthogonal. �

We now give the motivation for our decorrelation mea-
sures. Let µ1, . . . , µk1 and ν1, . . . , νk2 be vectors in R

m

such that µi and νj are orthogonal for all i, j . Let S1 be
the space spanned by µis and S2 be the space spanned
by νj s. Define the “nearest-neighbor” random variables,
NN1(Z), NN2(Z) as follows:

NN1(Z) = argmin{‖Z − µi‖ : 1 ≤ i ≤ k1},
NN2(Z) = argmin{‖Z − νj‖ : 1 ≤ j ≤ k2}. (24)
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Then as S1 and S2 are orthogonal to each other, it follows
from Lemma 3 that when Z is a spherical multivariate
Gaussian, the random variables NN1(Z) and NN2(Z) are
independent. Similarly, it can be shown that when Z is a
spherical multivariate Gaussian, the random variables NN1,
and NN2 defined by,

(NN1(Z), NN2(Z)) = argmin
(i,j)

{‖Z − µi − νj‖}, (25)

are independent. Note that in Eqs. (1) and (12) we use
inner products involving the mean vectors of different clus-
terings as the correlation measure. Thus, minimizing the
correlation measure ideally leads to the mean vectors of
different clusterings being orthogonal. Also, observe that
we use nearest-neighbor assignments of the form Eqs. (24)
and (25) in our algorithms in Decorrelated k-means and
Convolutional-EM. Thus, the decorrelation measures spec-
ified in Eqs. (1) and (12) intuitively correspond to the
labelings of the clusterings being independent.

5.2. Decorrelated k-means versus Convolutional-EM

Decorrelated k-means (Algorithm 1) has a three-fold advan-
tage over the “sum of the parts” approach (Algorithm 2):

• Computing the E-step exactly in the “sum of the
parts” approach requires O(kT ) computation for each

data point, where T is the number of alternative clus-
terings. On the other hand, in Decorrelated k-means,
each label assignment step requires just O(kT ) com-
putations as the error terms for different clusterings
are independent in Eq. (1). Thus, Decorrelated k-
means is more scalable than Convolutional-EM with
respect to the number of alternative clusterings.

• The M-step in the “sum of the parts” approach solves
a nonconvex problem and requires an iterative pro-
cedure to reach a local minimum. In the decorrelated
k-means approach, computing the representative vec-
tors (the equivalent of M-step) requires solving a con-
vex problem and the optimal solution can be written
in closed form. Hence, estimation of representative
vectors is more accurate and efficient for decorrelated
k-means.

• Decorrelated k-means is a discriminative approach,
while Convolutional-EM is a generative model based
approach. Thus, the model assumptions are more
stringent for the latter approach. This is observed
empirically also, where Decorrelated k-means works
well for all the datasets, but Convolutional-EM suf-
fers on one of the real-life datasets.

On the flip side, there is no natural interpretation of the
“representative” vectors given by decorrelated k-means. On
the other hand, the means given by Convolutional-EM can
naturally be interpreted as giving a part-based representa-
tion of the data. This argument is illustrated by Fig. 3. The
representative vectors obtained from decorrelated k-means

–3 –2 –1 0 1 2 3
–4

–3

–2

–1

0

1

2

3
Dec–Kmeans Representative Vectors 1
Dec–Kmeans Representative Vectors 2
Parts Recovered by Conv–EM

Fig. 3 Representative vectors obtained by Dec. k-means and the parts obtained by Conv-EM. The bold line represents the separating
hyperplane for the first clustering, while the dotted line represents the separating hyperplane for the second clustering. Conv-EM produced
mean vectors {µ1, µ2, ν1, ν2} and subsequently each of the four parts are obtained by µi + νj (i ∈ {1, 2},j ∈ {1, 2}).
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partition the data into two clusters accurately. But, they do
not give any intuitive characterization of the data. In con-
trast, Convolutional-EM is able to recover the four clusters
in the data generated by the addition of two mixtures of
Gaussians.

6. EXPERIMENTS

We now provide experimental results on synthetic as well
as real-world datasets to show the applicability of our meth-
ods. For real-world datasets, we consider a music dataset
from the text-mining domain and a portrait dataset from the
computer-vision domain. We compare our methods against
the factorial-learning algorithms CVQ [8] and MCVQ [16].
We also compare against single-clustering algorithms such
as k-means and NNMA. We will refer to the methods of
Sections 3.1 and 3.2 as Dec. k-means (for Decorrelated k-
means) and Conv-EM (for Convolutional-EM) respectively.

We also compare our methods against two simple heuris-
tics:

1. Feature Removal (FR): In this approach, we first
cluster the data using k-means. Then, we remove
the coordinates that have the most correlation with
the labels in the obtained clustering. Next, we cluster
the data again using the remaining features to obtain
the alternative clustering. The correlation between a
feature and the labels is taken to be proportional to the
total weight of the mean vectors for the feature and
inversely proportional to the entropy of the particular
feature in the mean vectors. Formally:

C(i) =
∑

j µi
j

− ∑
j

(
µi

j∑
l µi

l

log
µi

j∑
l µi

l

) ,

where µi
j is the i-th dimension of the j -th cluster.

2. Orthogonal Projection (OP): This heuristic is moti-
vated by principal gene shaving [12]. The heuristic
proceeds by projecting the data onto the subspace
orthogonal to the means of the first clustering and
uses the projected data for computing the second clus-
tering.

(a) Cluster the data using a suitable method of clus-
tering.

(b) Let the means of the obtained clustering be
m1, . . . , mk . Project the input matrix X onto
the space orthogonal to the one spanned by the
means m1, . . . , mk to get X′.

(c) Cluster the columns of X′ to obtain a new
set of labels, and compute the cluster means
m̃1, . . . , m̃k .

(d) Repeat steps (b),(c) with means m̃1, . . . , m̃k .

(e) Until convergence, repeat steps (a)-(d).

6.1. Implementation Details

All the methods have been implemented in MATLAB.
The implementation of MCVQ was obtained from the
authors of [16]. Lee and Seung’s algorithm [15] is used for
NNMA. Experiments were performed on a Linux machine
with a 2.4 GHz Pentium IV processor and 1 GB main mem-
ory. For the real-world datasets, we report results in terms
of accuracy with the true labels. As the number of clusters
can be high in the synthetic datasets, we report results in
terms of normalized mutual information (NMI) [19]. For all
the experiments, accuracy/NMI is averaged over 100 runs.

6.2. Synthetic Datasets

For our experiments we generate synthetic datasets as
a sum of independent components. Let X and Y be sam-
ples drawn from two independent mixtures of multivariate
Gaussians. To evaluate our methods in various settings, we
generate the final dataset Z by combining X and Y in three
different ways. By viewing X and Y as the components of
the datasets, and clustering based on these components we
get two different clusterings of the data.

1. Concatenated dataset: This dataset is produced by
simply concatenating the features of X and Y , i.e.,

Z =
[

X
Y

]
.

2. Partial overlap dataset: In this dataset we allow a few
of the features of X and Y to overlap. Specifically,

let X =
[

X1

X2

]
and Y =

[
Y1

Y2

]
, where X1, X2, Y1

and Y2 all have the same dimensionality. Then, we

form Z =

 X1

X2 + Y1

Y2


.

3. Sum dataset: In this dataset, all of the features of X
and Y overlap, i.e., Z = X + Y .

In our experiments, the dimensionality of X and Y was
set to 30 and there were 3000 data points. We label each
xi and yj according to the Gaussian from which they were
sampled. Thus, each z is associated with two true labels.
Both our methods produce two disparate clusterings, and
we associate each clustering with a unique true-labeling
and report NMI with respect to that true-labeling. We use
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Fig. 4 NMI achieved by various methods on the concatenated
dataset. Top figure shows NMI for the first clustering and bottom
figure shows NMI for the second clustering. Overall, Dec. k-means
achieves the highest NMI, while MCVQ also performs well on this
dataset.

the same procedure for CVQ and MCVQ. For k-means and
NNMA2, which produce just one clustering, we report the
NMI of the clustering with respect to the true-labelings.

Figure 4 compares the NMI achieved by various meth-
ods on the Concatenated dataset. It can be seen from the
figure that Conv-EM and Dec. k-means outperform k-means
and NNMA for both the clusterings, achieving an aver-
age improvement of 50 − 60% in NMI. Similarly, both
Conv-EM and Dec. k-means achieve significantly higher
NMI than CVQ. Note that the Concatenated dataset satis-
fies MCVQ’s assumption that each dimension of the data is
generated from one of the two factors. This is empirically
confirmed by the results, as MCVQ not only outperforms
CVQ but also performs competitively with Conv-EM and
Dec. k-means.

2 As NNMA is useful for the nonnegative data only, we made
the data nonnegative by choosing the means sufficiently far away
from origin.

Figure 5 compares the NMI for various methods on
the Overlap dataset. Clearly, Conv-EM and Dec. k-means
perform better than both CVQ and MCVQ. Note that when
the number of clusters is small, NMI of MCVQ with respect
to both the clusterings drops to around 0.6. This is probably
because the Overlap dataset does not satisfy the model
assumptions of MCVQ.

Figure 6 shows the NMI achieved by various methods
on the Sum dataset. For this dataset also, both Conv-EM
and Dec. k-means perform comparably and both the meth-
ods achieve significantly higher NMI than other methods.
Interestingly, NMI for MCVQ is even lower than the single-
clustering algorithms (k-means and NNMA). This could be
because the modeling assumption of MCVQ—each dimen-
sion in the data is generated by exactly one factor—is
completely violated in the Sum dataset. Note that, although
CVQ is designed to model the Sum datasets, it performs
poorly compared to Conv-EM and Dec. k-means. This trend
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Fig. 5 NMI achieved by various methods on the overlap dataset.
Top figure shows NMI for the first clustering and bottom figure
shows NMI for the second clustering. Dec.k-means and Conv-EM
achieves similar NMI. Both achieve higher NMI than MCVQ or
CVQ.
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Fig. 6 NMI achieved by various methods on the sum dataset.
Top figure shows NMI for the first clustering and bottom figure
shows NMI for the second clustering. Dec.k-means and Conv-EM
achieve similar NMI. NMI achieved by MCVQ is very low.

can be attributed to the fact that due to the lack of regular-
ization CVQ selects one of the many possible solutions to
its optimization problem, which may or may not correspond
to good disparate clusterings.

Also note that Conv-EM does not perform significantly
better than Dec. k-means, even though the datasets fit the
Conv-EM model well. This is probably because of the
nonconvex nature of the optimization problem for the M-
step in Conv-EM, due to which the maximum likelihood
estimation gets stuck in a local minimum.

6.3. Real-world Datasets

6.3.1. Music dataset

The music dataset is a collection of 270 documents, with
each document being a review of a classical music piece
taken from amazon.com. Each music piece is composed by
one of Beethoven, Mozart or Mendelssohn and is in one of
symphony, sonata or concerto forms. Thus, the documents
can be clustered based on the composer or the genre of

the musical piece. For the experiments, a term-document
matrix was formed with dimensionality 258 after stop word
removal and stemming.

Table 1 shows that although all the methods are able
to recover the true clustering for composer, most of the
algorithms perform poorly for the genre-based clustering.
In particular, k-means and NNMA perform very poorly
for the clustering based on genre as they produce just
one clustering, which has high NMI with the clustering
based on composers. Note that in this dataset, the sets of
features (words) that determine clustering with respect to
composer and genre respectively are almost disjoint. Hence,
methods like FR and OP, which try to identify disjoint sets
of features for the clusterings work fairly well. But, both
MCVQ and CVQ algorithms achieve very low accuracy as
they do not try to find decorrelated clusterings. Both our
methods outperform the baseline algorithms.

6.3.2. Portrait dataset

The portrait dataset consists of 324 images obtained from
Yale face dataset B [7]. Each image in the dataset is a
portrait of one of three people, in one of three poses in
different backgrounds. The dimensionality of each image
is 64 × 64. As a first step, we reduce the dimensionality of
the data to 300 by using principal component analysis. As
in the music dataset, the current dataset can be clustered
in two natural ways—by the person in the picture or the
pose. Table 2 shows that both k-means and NNMA perform
poorly with respect to both the clusterings. This shows
that in the datasets where there is more than one natural
clustering, traditional clustering algorithms could fail to find
even one good clustering. Hence, it can be beneficial to use
alternative clustering methods even if one is interested in
obtaining a single clustering.

Our hypothesis is that unlike the music dataset, there
are no dominant features for any of the clusterings in this
dataset. This hypothesis can be justified by observing the
poor accuracies of methods like FR and OP. Conv-EM

Table 1. Accuracy achieved by various methods on the
music dataset, which is a collection of text documents.
Dec. k-means performs the best on this dataset. CVQ and
MCVQ perform very poorly compared to Conv-EM.

Method\Type Composer Genre

NNMA 1.00 0.40
k-Means 0.89 0.41
Feature removal 0.97 0.64
Orthogonal projection 0.99 0.66
CVQ 0.97 0.57
MCVQ 0.91 0.53
Conv-EM 1.00 0.65
Dec. k-means 1.00 0.69
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Table 2. Accuracy achieved by various methods on the
portrait dataset, which is a collection of images. Dec.k-
means outperforms all other methods by a significant margin.
Conv-EM achieves better accuracy than all other methods,
especially, CVQ and MCVQ.

Method\Type Person Pose

NNMA 0.51 0.49
k-means 0.66 0.56
Feature Removal 0.56 0.48
Orthogonal projection 0.66 0.70
CVQ 0.53 0.51
MCVQ 0.64 0.51
Conv-EM 0.69 0.72
Dec.k-means 0.84 0.78

outperforms baseline algorithms CVQ and MCVQ signif-
icantly, but interestingly Dec. k-means achieves an even
higher accuracy of 84 and 78% for the two clusterings.

7. CONCLUSIONS AND FUTURE WORK

We address the difficult problem of uncovering dis-
parate clusterings from the data in a totally unsupervised
setting. We present two novel approaches for the prob-
lem—a decorrelated k-means approach and a sum of parts
approach. In the first approach, we introduce a new regu-
larization for k-means to uncover decorrelated clusterings.
We provide theoretical justification for using the proposed
decorrelation measure. The sum of parts approach leads us
to the interesting problem of learning a convolution of mix-
ture models and we present a regularized EM algorithm for
learning a convolution of mixtures of spherical Gaussians.
We address the problem of identifiability for learning a con-
volution of mixtures of Gaussians by using a regularization
geared for providing disparate clusterings. We demonstrate
the effectiveness and robustness of our algorithms on syn-
thetic and real-world datasets. On each of these datasets, we
significantly improve upon the accuracy achieved by exist-
ing factorial-learning methods such as CVQ and MCVQ.
Our methods also outperform the traditional clustering algo-
rithms like k-means and NNMA.

For future work, it would be of interest to study the
problem of learning a convolution of mixtures for a more
general class of distributions and look for other settings
where learning convolutions of mixtures could be useful.
We also plan to further investigate the properties of the
decorrelation measure, especially for more general distribu-
tions of the data. A problem that we do not address in this
paper is model selection—choosing the number of clusters
and the number of clusterings. Good heuristics for choos-
ing these parameters would be very useful. Also, a more
detailed comparison of Conv-EM and Dec. k-means would

be useful; it would be interesting to understand the com-
parable performance of Conv-EM and Dec.k-means for the
synthetic datasets that fit the convolution model well.
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