
Chapter 1

EFFICIENT CLUSTERING OF VERY LARGE
DOCUMENT COLLECTIONS

Inderjit S. Dhillon, James Fan and Yuqiang Guan

Abstract An invaluable portion of scientific data occurs naturally in text form.
Given a large unlabeled document collection, it is often helpful to orga-
nize this collection into clusters of related documents. By using a vector
space model, text data can be treated as high-dimensional but sparse
numerical data vectors. It is a contemporary challenge to efficiently
preprocess and cluster very large document collections. In this paper
we present a time and memory efficient technique for the entire clus-
tering process, including the creation of the vector space model. This
efficiency is obtained by (i) a memory-efficient multi-threaded prepro-
cessing scheme, and (ii) a fast clustering algorithm that fully exploits
the sparsity of the data set. We show that this entire process takes time
that is linear in the size of the document collection. Detailed experi-
mental results are presented — a highlight of our results is that we are
able to effectively cluster a collection of 113,716 NSF award abstracts
in 23 minutes (including disk I/O costs) on a single workstation with
modest memory consumption.

Keywords: clustering, large document collections, hash tables, spherical k-means,
vector space model

1. Introduction

Large collections of documents are becoming increasingly common.
The public internet currently has more than 1.5 billion web pages, while
private intranets also contain an abundance of text data. A vast amount
of important scientific data appears as technical abstracts and papers.
Given such large document collections it is important to organize them
into structured ontologies. This organization facilitates navigation and
search, and at the same time provides a framework for continual main-
tenance as document repositories grow in size.

1

2

Manual construction of structured ontologies is one possible solution
and has been adopted to organize the internet (www.yahoo.com) and to
structure library content. However, this process has the obvious disad-
vantage of being too labor intensive, and is viable only in large corpo-
rations. Thus it is desirable to seek automatic methods for organizing
unlabeled document collections. Given a collection of unlabeled data
points, clustering refers to the problem of automatically assigning class
labels to the data and has been widely studied in statistical pattern
recognition and machine learning [DH73, Mit97].

A starting point for applying clustering algorithms to unstructured
text data is to create a vector space model, alternatively known as a bag-
of-words model [SM83]. The basic idea is (a) to extract unique content-
bearing words from the set of documents treating these words as features
and (b) to then represent each document as a vector of certain weighted
word frequencies in this feature space. Observe that we may regard
the vector space model of a text data set as a word-by-document matrix
whose rows are words and columns are document vectors. Typically, a
large number of words exist in even a moderately sized set of documents
where a few thousand words or more are common. Thus for large doc-
ument collections, both the row and column dimensions of the matrix
are quite large. However, as we will discuss later in greater detail, this
matrix is typically very sparse with almost 99% of the matrix entries
being zero.

Using the vector space model various classical clustering algorithms
such as the k-means algorithm and its variants, hierarchical agglom-
erative clustering, and graph-theoretic methods have been explored in
the text mining literature; for detailed reviews, see [Ras92, Wil88]. Re-
cently, there has been a flurry of activity in this area, see [BGG+98,
CKPT92, SS97, ZE98]. A substantial amount of this work has concen-
trated on clustering web search results where the document collections
to be clustered are not very large.

In this paper, our main concern is in obtaining a highly efficient pro-
cess for clustering very large document collections. Our main motiva-
tion is that we want to cluster collections in excess of more than 100,000
documents in a reasonable amount of time on a single processor. Thus
our main emphasis is on high speed and scalability with modest main
memory consumption. The clustering process involves reading the text
documents from disk, and preprocessing them to form the vector space
model before using a particular clustering algorithm. It turns out that
main memory consumption and disk I/O costs in this process can be
prohibitive. In order to alleviate these problems, we employ a memory-
efficient multi-threaded approach to reading and preprocessing the docu-

Efficient Clustering of Very Large Document Collections 3

ments. For creating the vector space model, we use efficient and scalable
data structures such as local and global hash tables. Finally, we use the
highly efficient and effective spherical k-means algorithm that fully ex-
ploits the sparsity of the data [DM01]. The above steps lead to a highly
efficient clustering process — as a result we are able to preprocess and
cluster a collection of 113,716 NSF award abstracts documents in 23
minutes on a Sun workstation with modest memory consumption.

This paper is organized as follows. In Section 2 we highlight the
challenges in obtaining an efficient and effective process for clustering
large document collections. Section 3 describes our multi-threaded al-
gorithm for creating the vector space model. In Section 4 we present
the spherical k-means algorithm which is ideally suited for clustering
high-dimensional sparse text data. Section 5 presents speed and mem-
ory consumption results on some document collections, in particular we
examine the results on a collection of 113,716 NSF award abstracts. Fi-
nally, Section 6 concludes with a short summary and discussion of future
work.

A quick word about notation. Lower case bold letters such as x, c will
denote vectors while ‖x‖ will denote the 2-norm of the corresponding
vector. Thus when we say that ‖x‖ = 1 we mean that xTx = 1.

2. Challenges

As mentioned above, the preprocessing phase leads to the creation of
the vector space model. Given a large document collection, the following
steps are involved in this phase: (a) read all input documents from
disk, (b) parse into word tokens using efficient regular expression pattern
matching, (c) lookup words rapidly in hash tables to track the number
of occurrences of each word, and finally, (d) output the vector space
model.

Efficient parsing using regular expression pattern matching is a well-
studied problem. Existing software tools such as FLEX provide a quick
and easy way to construct the required parser [Pax96]. Also, efficient
hash table indexing and access is provided in public-domain software
[MS96]. Thus effective solutions to steps (b) and (c) above are easy to
obtain.

However I/O costs in steps (a) and (d) can be substantial, espe-
cially if the documents need to be accessed from a Network File Sys-
tem(NFS) [Cal99]. In such a case, the time taken by these steps can
be quite large and often unpredictable depending on other traffic on
the NFS. Our approach to solve this problem is to use multiple threads
[NBF96] so that input documents can be read in a parallel fashion.

4

Another challenge is main memory consumption. After all the docu-
ments have been read and processed there is a final phase which involves
a sweep and modification of the entire vector space model. One simple
approach to facilitate this phase is to retain the partially formed vector
space model in main memory while the rest of the documents are being
processed. We implemented such an approach and on our test collection
of 113,716 documents, this required nearly 500 MBytes of main mem-
ory. Extrapolating this memory requirement to 1 million documents,
we can see that this main-memory based implementation will require
several gigabytes of memory. This cost is unacceptable since our goal is
to preprocess and cluster a million documents on current workstations
consuming less than 256 MBytes of main memory. In Section 3 we in-
troduce such a memory efficient algorithm that allows us to preprocess
a large number of documents without sacrificing much speed.

In our test collection of 113,716 documents there are a total of more
than 150,000 unique words. After a pruning step, we retain 26,000
unique words in the vector space model. Thus, the document vectors
are very high-dimensional. However, typically, most documents contain
only a small subset of the total number of words. Hence, the document
vectors are very sparse — a sparsity of 99% is common. The major
challenge is to find a clustering algorithm that can yield good effective
solutions for very high-dimensional data and at the same time, exploit
the sparsity of the vector space model. Since we are interested in clus-
tering very large document collections we seek algorithms that consume
time and memory that is linear in the size of the document collection.

3. Efficient Preprocessing

In this section, we describe our preprocessing algorithm for creating
the vector space model. Before we describe the details we give a high
level description of the task at hand.

3.1. Vector Space Model

The basic idea is to represent each document as a vector of certain
weighted word frequencies. In order to do so, the following parsing and
extraction steps are needed.

1 Ignoring case, extract all unique words from the entire set of doc-
uments.

2 Eliminate non-content-bearing “stopwords” such as “a”, “and”,
“the”, etc. For sample lists of stopwords, see [FBY92, Chapter 7].

3 For each document, count the number of occurrences of each word.

Efficient Clustering of Very Large Document Collections 5

4 Using heuristic or information-theoretic criteria, eliminate non-
content-bearing “high-frequency” and “low-frequency” words [SM83].

5 After the above elimination, suppose w unique words remain. As-
sign a unique identifier between 1 and w to each remaining word,
and a unique identifier between 1 and d to each document.

The above steps outline a simple preprocessing scheme. In addition, one
may extract word phrases such as “New York,” and one may reduce each
word to its “root” or “stem”, thus eliminating plurals, tenses, prefixes,
and suffixes [FBY92, Chapter 8].

The above preprocessing yields the number of occurrences of word j
in document i, say, fji, and the number of documents which contain the
word j, say, dj . Using these counts, we can represent the i-th document
as a w-dimensional vector xi as follows. For 1 ≤ j ≤ w, set the j-th
component of xi, to be the product of three terms

xji = tji · gj · si,

where tji is the term weighting component and depends only on fji,
while gj is the global weighting component and depends on dj , and si is
the normalization component for xi. Intuitively, tji captures the rela-
tive importance of a word in a document, while gj captures the overall
importance of a word in the entire set of documents. The objective of
such weighting schemes is to enhance discrimination between various
document vectors for better retrieval effectiveness [SB88].

There are many schemes for selecting the term, global, and normal-
ization components, see [Kol97] for various possibilities. In this paper
we use the popular tfn scheme known as normalized term frequency-
inverse document frequency. This scheme uses tji = fji, gj = log(d/dj)

and si =
(∑w

j=1(tjigj)
2
)−1/2

. Note that this normalization implies that

‖xi‖ = 1, i.e., each document vector lies on the surface of the unit sphere
in Rw. Intuitively, the effect of normalization is to retain only the pro-
portion of words occurring in a document. This ensures that documents
dealing with the same subject matter (that is, using similar words), but
differing in length lead to similar document vectors.

3.2. Preprocessing Algorithm

The input to the preprocessing step is a data directory that contains
all the documents to be processed. The documents may also be contained
within subdirectories of the input directory. The output is the vector
space model described in the above section, which can be represented as

6

2. Recursively walk through the input
directory to obtain the list of documents
to be processed.

1.Initialize global vocabulary hash table.

3. Process a document. Output each 3. Process a document. Output each

4. Remove words that are too common
or too rare from the global vocabulary

5. Output the final vocabulary along

results as a sparse matrix in CCS format.

in the document to a temporary file. in the document to a temporary file.

6. Reprocess the temporary files to assign

word id and its frequency of occurrence word id and its frequency of occurrence

hash table, and reassign word ids.

with their ids and total frequencies. the correct word ids, and output the

Figure 1.1. Outline of the preprocessing algorithm

a highly sparse word-by-document matrix. We store this sparse matrix
by using the Compressed Column Storage(CCS) format [DGL89]. In
this format, we record the value of each non-zero element, along with
its row and column index. The column indices represent the input doc-
uments, the row indices represent ids of distinct words present in the
document collection, and the non-zero entries in the matrix represent
the frequencies of words in documents.

Figure 1.1 gives an outline of the preprocessing algorithm. The al-
gorithm first initializes a global hash table. To resolve whether a word
has been encountered previously, a local and a global hash table are
used. Both these hash tables use words as keys and store the corre-
sponding row indices and frequencies as values. As the names suggest,
the global hash table keeps track of words and their occurrences in the
entire document collection while the local hash table does so for just
one document. After initializing the global hash table, the algorithm
recursively walks through the input directory to obtain the list of docu-
ments to be processed. The preprocessing algorithm then creates several
threads of computation. The purpose of each thread is to process a set
of documents independently and output its results into temporary files.
Details of this processing are given in Figure 1.2 which we discuss in
the next paragraph. After all the threads have finished, the global hash
table is examined, and words that are too common or too rare are re-
moved from the global hash table. Unique word ids are assigned to the

Efficient Clustering of Very Large Document Collections 7

1 Initialize the local hash table (this hash table uses words as keys,
and stores row indices and frequencies as values).

2 Get a token from the document, and convert the token to lower-
case.

3 Discard the token if it is too long or too short or is a non-content
“stopword” such as “a”, “and”, “the”, etc.

4 If the word already exists in the local hash table, increment the
frequency of that entry, otherwise insert the word into the local
hash table with row index −1 and frequency 1.

5 After the whole document has been processed, set the row indices
in the local hash table to the corresponding ones in the global hash
table. If a word in the local hash table does not exist in the global
hash table, assign a new row index to the word and add to the
global hash table (note that this requires locking the global hash
table to prevent simultaneous modification by another thread).

6 Output the contents of the local hash table (row indices and fre-
quencies) to a temporary file, and discard the local hash table.

Figure 1.2. Details on the processing of a document by each thread (step 3 of Fig-
ure 1.1)

words that still remain in the global hash table. The temporary files are
then reloaded, the word ids are resolved and then the final vocabulary
and word-by-document matrix are output.

Figure 1.2 describes the various steps performed by each preprocess-
ing thread. Two decisions warrant further explanation — the use of
temporary files for storing the partial vector space model and the way
in which the local and global hash tables are accessed. As mentioned in
the last section, storing the partial vector space model in main memory
would require a few gigabytes of main memory and is thus prohibitive for
modern workstations. Hence to reduce main memory consumption we
store the contents of the local hash table onto temporary files. Since this
only leads to local disk access, the resulting overhead is not substantial.

The global hash table is accessed and modified by all processing
threads and hence is a shared resource. In order to achieve maximum
parallelism, we need to minimize the number of times the global hash
table is locked and modified by each processing thread. We achieve this

8

by using a local hash table to process the entire document first, and then
making a block access to the global hash table. This access involves re-
solving the word ids and possible modification of the global hash table,
at which time this data structure needs to be locked. See Figure 1.2 for
details, especially step 5.

The major main memory consumption in our preprocessing algorithm
is due to the global vocabulary table. The partial vector space model is
stored in temporary files instead of main memory. Thus the overall main
memory requirement is O(W), where W is the number of distinct words
that appear in the document collection. It is well known that W grows
slower than linearly with the size of the document collection — Heaps’
Law states that the number of unique words in a text of size d grows
as O(dβ), where β is a positive number less than one[Hea78]. Thus the
main memory consumption grows slower than linearly with the size of
the document collection. The computation time for the preprocessing
step is approximately linear with respect to the input data size since each
word in a document is processed in O(1) amortized time. Performance
results on large document collections that validate these claims are given
in Section 5.

4. Efficient Clustering of High-Dimensional Text
Data

Given the vector space model, the document vectors may be repre-
sented by x1,x2, . . . ,xd, where each xi ∈ Rw. Recall that w stands
for the number of unique words in the vector space model and d is the
total number of documents. A clustering of the document collection is
its partitioning into the disjoint subsets π1, π2, ..., πk, i.e.,

k⋃

j=1

πj = {x1,x2, ...,xd} and πj ∩ πl = φ, j 6= l.

The most important and challenging characterisitics of the vector
space models that arise from text data are high dimensionality and spar-
sity. Typically, w is in the thousands and a sparsity of 99% is common.
For purposes of efficiency, it is important that the clustering algorithm
exploit the sparsity of the data while giving meaningful results at the
same time. The spherical k-means algorithm satisfies both these proper-
ties and hence is our algorithm of choice. We now briefly formalize this
algorithm highlighting its salient features. More details may be found
in [DM01].

Any text clustering algorithm needs an objective notion of similarity
between documents. A widely used measure of similarity is the cosine

Efficient Clustering of Very Large Document Collections 9

of the angle between two document vectors [FBY92, SM83]. Cosine
similarity is easy to interpret and simple to compute for sparse vectors
and has been used in other information retrieval applications, such as
query retrieval. Based on cosine similarity, we can define the “goodness”
or “coherence” of cluster πj as

∑

xi∈πj
xTi cj , (4.1)

where each xi is assumed to be normalized such that ‖xi‖ = 1 and cj is
the normalized centroid of cluster πj ,

cj =

∑
xi∈πj xi

‖∑xi∈πj xi‖
.

By the Cauchy-Schwarz inequality,
∑

xi∈πj
xTi z ≤

∑

xi∈πj
xTi cj , ∀z ∈ Rw,

and thus the normalized centroid is the vector that is closest in cosine
similarity (in an average sense) to all the document vectors in the clus-
ter πj . As a result, we also call the vector cj ’s as concept vectors.

Aggregating (4.1) over all clusters, we can measure the goodness of

any given partitioning {πj}kj=1 using the following objective function:

Q({πj}kj=1) =
k∑

j=1

∑

xi∈πj
xTi cj . (4.2)

Intuitively, the objective function measures the combined coherence of
all the k clusters. Having posed the objective function, we now present
an algorithm that attempts to maximize its value.

4.1. Spherical k-means Algorithm

It is well known that finding the partitioning that maximizes (4.2) is
NP-Complete [KPR98, Theorem 3.1]; also, see [GJW82]. Thus we seek
a heuristic algorithm that can quickly find a good local maximum. For
this purpose, we use a variant of the classical k-means algorithm [DH73]
that uses the cosine similarity measure. Since both the document and
concept vectors lie on the surface of a high-dimensional sphere, we call
this variant the spherical k-means algorithm. This algorithm proceeds
as follows.

10

1 Initialize clustering. Start with some initial partitioning of the

document vectors, namely {π(0)
j }

k

j=1
. Let {c(0)

j }
k

j=1
be the concept

vectors of the associated partitioning. Set the iteration count t
to 0.

2 Re-assign document vectors. For each document vector xi, 1 ≤
i ≤ d, do the following:

a. Compute xTi c
(t)
l for all l = 1, 2, . . . , k.

b. From among all xTi c
(t)
l computed above, find j = arg maxl x

T
i c

(t)
l

(break ties arbitrarily if xi has largest cosine similarity with
more than one concept vector).

This induces the new partitioning

π
(t+1)
j = {xi : j = arg max

l
xTi c

(t)
l }, 1 ≤ j ≤ k.

3 Update concept vectors. Compute the concept vectors correspond-
ing to the new partitioning:

sj =
∑

xi∈πj
xi, c

(t+1)
j =

sj
‖sj‖

, 1 ≤ j ≤ k.

4 Check the stopping criterion. If the stopping criterion is satisfied,
then exit. Otherwise increase t by 1 and go to step 2 above.

In our implementation, the stopping criterion is:

|Q({π(t)
j }

k

j=1
)−Q({π(t+1)

j }
k

j=1
)| ≤ 10−3 · |Q({π(t)

j }
k

j=1
)|.

It can be shown that the above algorithm yields a gradient-ascent
scheme. In particular, we can show that the objective function value
in (4.2) does not decrease from one iteration to the next, i.e.,

Q({π(t)
j }

k

j=1
) ≤ Q({π(t+1)

j }
k

j=1
).

Like any other gradient-ascent scheme, the spherical k-means algo-
rithm is prone to local maxima. A careful selection of initial partitions

Efficient Clustering of Very Large Document Collections 11

{π(0)
j }kj=1 is important. One can either (a) randomly assign each docu-

ment to one of the k clusters, (b) first compute the concept vector for
the entire document collection and randomly perturb this vector to get
k starting concept vectors or (c) try several initial clusterings and select
the best in terms of the largest objective function. We use strategy (b)
in our implementation.

We now examine the time and memory complexity of the above al-
gorithm. We assume that the number of non-zero entries in the sparse
matrix is nz, and that the above algorithm iterates τ times before stop-
ping. Using our initialization strategy, step 1 of the algorithm costs
O(nz + k · w) operations. For each iteration, step 2a costs O(nz · k)
operations while 2b costs O(k · d) comparisons. Step 3 updates the con-
cept vectors and costs O(nz + k · w) operations. Thus the total time
complexity for τ iterations is

O((nz · k + k · d+ k · w) · τ).

Typically nz À max(d,w), hence it is clear that step 2a is the most
computationally expensive step in the algorithm and the overall com-
plexity of the algorithm is O(nz · k · τ).

The main memory consumed by the algorithm is for storing the docu-
ment vectors and for old and new copies of the concept vectors. Storing
the document vectors in the CCS sparse matrix form requires 4(2nz+d+
4) bytes while the concept vectors require 8kw bytes; hence the memory
consumption is modest.

4.2. Similarity Estimation

The computational bottleneck in the spherical k-means algorithm is
the dot product computation between all the document vectors and con-
cept vectors (see step 2a). During the course of the algorithm it turns out
that the first few iterations lead to a lot of movement of documents be-
tween clusters. However, just after a few iterations the clusters become
more stable, see the solid line in the left plot of Figure 1.3. Consequently,
the overall objective function value also settles down after 4-5 iterations
as seen in the right plot of Figure 1.3.

When the clusters become stable, there are potential savings if we can
somehow avoid computing unnecessary dot products between document
vectors and ‘far away’ concept vectors. We now introduce a technique for
estimating cosine similarities which allows us to avoid such dot product
computations.

12

1 2 3 4 5 6 7 8 9 10 11 12
0

2

4

6

8

10

12
x 10

4

Iteration count (t)

P
ot

en
tia

l v
s

ac
tu

al
 n

um
be

r
of

 d
oc

um
en

t a
ss

ig
nm

en
t c

ha
ng

es

potential changes
actual changes

k=12

0 2 4 6 8 10 12 14 16

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3
x 10

4

Iteration count (t)

O
bj

ec
tiv

e
fu

nc
tio

n

k=68

k=20

 k=12

Figure 1.3. Clusters stabilize after just a few iterations.

Suppose c
(t)
l is the concept vector of cluster l at iteration t and x is a

document vector. Then,

|xT c
(t)
l − xT c

(t+1)
l | ≤ ‖x‖‖c(t)

l − c
(t+1)
l ‖ = ‖c(t)

l − c
(t+1)
l ‖,

⇒ xTc
(t)
l − ‖c

(t)
l − c

(t+1)
l ‖ ≤ xT c

(t+1)
l ≤ xTc

(t)
l + ‖c(t)

l − c
(t+1)
l ‖ (4.3)

The right side of inequality (4.3) gives a similarity upper bound which
can be used profitably in the (t + 1)-st iteration to avoid computing

xTc
(t+1)
l . The idea is to store in memory the quantities ‖c(t)

l − c
(t+1)
l ‖

and upper bounds for xT c
(t)
l . Suppose x belongs to the cluster j at the

t-th iteration. Then, at iteration t+ 1, we can update in O(1) time the

similarity upper bound for xT c
(t+1)
l , l 6= j. If this similarity upper bound

is smaller than xT c
(t+1)
j (which is computed exactly) there is no need

to explicitly compute xT c
(t+1)
l , otherwise the exact value needs to be

computed. As the clusters become more and more stable, this similarity
estimation can dramatically cut down on computation (see Figure 1.4).

In our implementation, we store the similarity upper bounds in the
d× k matrix U . We obtain the new algorithm by replacing step 2 of the
spherical k-means algorithm by the following step (here we assume that
similarity estimation is started after tmin iterations).

Efficient Clustering of Very Large Document Collections 13

1 2 3 4 5 6 7 8 9 10 11 12
3

4

5

6

7

8

9

10

11

12

13

14
x 10

5

Iteration count (t)

N
um

be
r

of
 d

ot
 p

ro
du

ct
s

co
m

pu
te

d

With similarity estimation
Original algorithm

Figure 1.4. Computational Savings due to Similarity Estimation

2. Re-assign document vectors. For each document vector xi, 1 ≤ i ≤ d,
do the following:

a. If t ≤ tmin, do step 2a as in Section 4.1.

else if t = tmin, set U(i, l) = xTi c
(t)
l for all l = 1, 2, . . . , k.

else if t > tmin, do the following steps for all l = 1, 2, . . . , k,

a1. Set U(i, l) = U(i, l) + ‖c(t)
l − c

(t−1)
l ‖.

a2. Compute xTi c
(t)
j where xi belongs to cluster j at itera-

tion t− 1.
If U(i, l) > xTi c

(t)
j , compute xTi c

(t)
l and set U(i, l) =

xTi c
(t)
l .

b. From among all xTi c
(t)
l computed above, find j = arg maxl x

T
i c

(t)
l .

Figure 1.4 shows the considerable savings in the number of dot product
computations as the iteration count increases in a typical run of the
algorithm. To obtain these savings, an extra storage requirement of 4dk
bytes is required to store the matrix U . Additionally, an extra O(dk)
operations to update the matrix U are required (see step a1 above).

14

However, these extra costs are small compared to the resulting savings
in computation time, see Section 5.1.2 for an example.

4.3. Clustering for Dimensionality Reduction

We now highlight another use of our clustering algorithm. Using
the vector space model, each document may be represented as a high-
dimensional vector of words. Clearly the occurrence of one word in a
document is not independent of other words. Thus there is a great
deal of redundancy in this collection of vectors. Dimensionality reduc-
tion is a technique that tries to represent each document as a vector
with fewer dimensions that are more independent. It turns out that the
above clustering algorithm also yields a fast and effective technique for
dimensionality reduction.

Let {cj}kj=1 denote the concept vectors corresponding to a clustering
of the document vectors. The concept matrix Ck is defined to be a d× k
matrix such that, for 1 ≤ j ≤ k, the j-th column of the matrix is the
concept vector cj , i.e,

Ck = [c1, c2, ..., ck].

An approximation Xk to the word-document matrix X may be obtained
by taking the least squares projection of X onto the column space of Ck,
i.e., the linear subspace spanned by the concept vectors. This may be
expressed as

Xk = CkZ
∗
k ,

where Z∗k is a k × d matrix that is to be determined by solving the
following least-squares problem:

Z∗k = arg min
Z

‖X − CkZ‖2F .

It is well known that a closed form solution exists for this least-squares
problem, namely,

Z∗k = (CTk Ck)
−1CTk X. (4.4)

The i-th column of Z∗k gives the reduced k-dimensional representation
of the i-th document vector. Typically the original dimensionality w is
in the thousands while k is much smaller. In previous work, we have
shown that empirically, the quality of the reduced dimensional represen-
tation given by (4.4) is comparable to the “best” possible, namely the
k-truncated SVD, see [DM01] for details. Thus our clustering process
followed by dimensionality reduction can be used in various applications,
such as query retrieval, text classification, etc.

Efficient Clustering of Very Large Document Collections 15

5. Experimental Results

In this section, we give experimental results for the entire clustering
process — this includes time and memory consumed by the preprocessing
phase as well as by the clustering algorithm. In addition, we need to
evaluate the goodness of the clustering produced.

Evaluating clustering results is a tricky business. However, in situa-
tions where documents are already categorized(labelled), we can com-
pare the clusters with the “true” class labels. For this comparison we use
the measures of purity and entropy as defined below, see also [SGM00].

Suppose we are given c categories (true class labels) while the clus-
tering algorithm produces k clusters. Cluster πl’s purity can be defined
as

P (πl) =
1

nl
max
h

(n
(h)
l),

where nl = |πl| and n
(h)
l is the number of documents in πl that belong

to class h, h = 1, . . . , c. Note that each cluster may contain samples
from different classes. Purity gives the ratio of the dominant class size
in the cluster to the cluster size itself. A high purity value implies that
the cluster is a “pure” subset of the dominant class.

Additionally, we also use entropy as a quality measure, which is de-
fined as follows:

H(πl) = − 1

log c

c∑

h=1

n
(h)
l

nl
log

(
n

(h)
l

nl

)
.

Entropy is a more comprehensive measure than purity. It considers
the distribution of classes in a cluster. Note that we have normalized
entropy to take values between 0 and 1. An entropy value of 0 means the
cluster is comprised entirely of one class, while an entropy value near 1
is bad since it implies that the cluster contains a uniform mixture of
classes.

We now examine these quality measures on a sample collection. We
formed a collection of 3893 documents by merging the popular MED-
LINE, CISI, and CRANFIELD sets. MEDLINE consists of 1033 ab-
stracts from medical journals, CISI consists of 1460 abstracts from in-
formation retrieval papers, while CRANFIELD consists of 1400 abstracts
from aeronautical systems papers (ftp://ftp.cs.cornell.edu/pub/smart). We
preprocessed this collection by proceeding as in Section 3. After remov-
ing common stopwords, the collection contained 22149 unique words
from which we eliminated 17839 low-frequency words appearing in less
than 8 documents (roughly 0.2% of the documents), and 7 high-frequency

16

words appearing in more than 585 documents (roughly 15% of the doc-
uments). We were finally left with 4303 words using which we created
3893 document vectors using the tfn scheme. Each document vector has
dimension 4303, however, on an average, each document vector is about
99% sparse.

For this contrived collection, we used our clustering algorithm to form
3 clusters. The following table shows the “confusion matrix” for this
clustering, from which we can see that the clusters can be easily identified
with the three classes — ‘MEDLINE’, ‘CISI’ and ‘CRANFIELD’.

MEDLINE CRANFIELD CISI

patients(1023) 1020 2 1

boundary(1388) 1 1383 4

library (1481) 12 14 1455

In the above table the rows denote clusters. Note that we have denoted
the clusters by the most frequently occurring word in the cluster from
among the words in the vector space model — ‘patients’, ‘boundary’ and
‘library’. The above table says that the cluster ‘patients’ has 1023 doc-
uments of which 1020 belong to the ‘MEDLINE’ class, the ‘boundary’
cluster has 1388 documents while the ‘library’ cluster has 1481 docu-
ments. Notice that the confusion matrix is almost diagonal which shows
that the clustering algorithm nearly recovered the three classes. This
fact is also reflected by the high purity and low entropy values of the
three clusters shown below.

Cluster# Purity Entropy

0 .996094 .0252647

1 .996398 .0233619

2 .982444 .0914646

5.1. Case Study on a Large Scientific Collection

To show the efficiency and effectiveness of our algorithms, we now
present results on a large real-life collection of NSF award abstracts. We
obtained the NSF data set by downloading abstracts of grants awarded
by the National Science Foundation between Jan 1958 and August 1999
from www.nsf.gov. For our experiments we extracted titles and abstracts
(ignoring fields such as ‘Type’, ‘NSF Org’, ‘Date’, etc.) of awards
made in the 8 NSF organizations: Directorate for Biological Sciences
(BIO), Directorate for Computer and Information Science and Engineer-
ing (CISE), Directorate for Education and Human Resources (EHR),
Directorate for Engineering (ENG), Directorate for Geosciences (GEO),
Directorate for Mathematical and Physical Sciences (MPS), Office of

Efficient Clustering of Very Large Document Collections 17

Polar Programs (OPP) and Directorate for Social, Behavioral, and Eco-
nomic Sciences (SBE). This results in a total of 113716 abstracts. The
number of documents per NSF organization is as follows:

Class label ENG CSE MPS BIO GEO EHR SBE OPP

documents 19365 8275 23037 16768 15667 14112 13725 2767

The most populous class is MPS with over 23000 awards, with ENG
being second. On the other hand, OPP contains the fewest (2767) num-
ber of documents. Both the mean and median class size is about 142000.

We preprocessed this NSF collection by proceeding as in Section
3. After removing common stopwords, the collection contained 153527
unique words from which we eliminated 127103 low-frequency and high-
frequency words. We were finally left with 26424 words using which we
created 113716 document vectors using the tfn scheme. Each document
vector has dimension 26424, however, on an average, each document vec-
tor contains only about 72 nonzero components and thus is more than
99% sparse.

In terms of the words contained in these documents, Table 1.1 shows
the top ten most common words in the NSF data set. Note that we
refer to the most frequently occurring word as having rank 1, the second
most frequent word as having rank 2, and so on. As is common in
most document collections the majority of the words occur in very few
documents. Figure 1.5 shows the distribution of all the word frequencies
versus their rank on a log-log scale. This distribution approximately fits
the so-called Zipf’s law [Zip49].

Rank Word Frequency

1 abstract 154467

2 research 152134

3 title 143257

4 project 73720

5 study 51178

6 data 43703

7 system 40314

8 university 39491

9 program 39203

10 science 38530

Table 1.1. Top 10 most common words in the NSF data set

As mentioned above, there are a total of 153527 unique word in the
NSF collection. In general, the number of unique words W grows slower

18

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Word rank

W
or

d
fr

eq
ue

nc
y

Top 10 most common words
1. abstract
2. research
3. title
4. project
5. study
6. data
7. systems
8. university
9. program
10. science

Figure 1.5. Distribution of word frequencies on a log-log scale (Zipf’s Law)

0 2 4 6 8 10 12

x 10
4

0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

5

Number of documents

N
um

be
r

of
 d

is
tin

ct
 w

or
ds

Figure 1.6. Vocabulary size vs. number of documents (Heap’s Law)

Efficient Clustering of Very Large Document Collections 19

0 50 100 150
8

9

10

11

12

13

14

15

16

17

18

Size of data (MBytes)

M
ai

n
m

em
or

y
co

ns
um

ed
 (

M
B

yt
es

)

Figure 1.7. Main memory consumed vs. size of data

than linearly with the number of documents, i.e., W = O(dβ) where
0 < β < 1. This behaviour known as Heap’s law [Hea78] is seen in
Figure 1.6.

5.1.1 Preprocessing Results. We now show the results of our
clustering process on this large NSF collection. The preprocessing phase
takes time that grows linearly with the size of the data set, while the
main memory consumed also grows linearly with the number of unique
words. Experiments on subsets of the NSF collection validate these
claims, see Figures 1.7 and 1.8.

Figure 1.7 shows that we consume less than 18 MBytes of main mem-
ory to preprocess the entire NSF collection of 113716 documents. Ex-
trapolating this number to a collection of one million documents, we
see that 160 MBytes of main memory would be sufficient, which implies
that our algorithms can carry out this large task on a single workstation
with just 256 MBytes of main memory. From Figure 1.8 we see that the
entire NSF data set is preprocessed in less than 20 minutes. Note that
this includes disk I/O time. Our implementation is multi-threaded and
hence the time taken is not very sensitive to the traffic over the Network
File Server.

5.1.2 Clustering Results. In this section, we examine the
speed and quality of the clustering algorithm. As discussed in Sec-

20

0 50 100 150
0

200

400

600

800

1000

1200

Size of data (MBbyes)

C
om

pu
ta

tio
n

tim
e

(s
ec

on
ds

)

Figure 1.8. Computation time vs. size of data

tion 4.1, the spherical k-means algorithm forms k clusters in O(nz · k)
time. Figure 1.9 gives the time taken to cluster the NSF data set (113716
documents, 26424 words, 8141987 non-zero entries) into a varied number
of clusters. Times for both the original clustering algorithm and its mod-
ification that uses similarity estimation are shown (see Section 4.2). The
similarity estimation technique yields considerable savings in computa-
tion time when the number of clusters is large. The running time of the
algorithm is also seen to increase linearly with the number of clusters k.
To form 100 clusters, 1400 seconds of computational time is needed. On
the other hand, to form 12 clusters only 200 seconds are needed. Thus,
combined with the preprocessing time of about 1190 seconds, the entire
clustering process for 12 clusters is seen to take only about 23 minutes.

We now present a sample clustering obtained by the spherical k-means
algorithm. We clustered the entire set of 113716 documents into 12
clusters. In the following table, we have listed the 10 dominant words
and their weights in each of the concept vectors that correspond to the
12 clusters. Note that we have denoted each of the 12 clusters by the
dominant word, e.g., ‘theory’, ‘chemistry’, ‘physics’, etc.

By examining the top 10 words it is easy to see the ‘concept’ contained
in each cluster. For example, the ‘conference’ cluster containing 6652
documents appears to be about NSF awards that support conferences,
meetings, workshops and symposiums for international scientists and
researchers.

Efficient Clustering of Very Large Document Collections 21

0 20 40 60 80 100 120 140
0

1000

2000

3000

4000

5000

6000

Number of clusters

C
om

pu
ta

tio
n

T
im

e(
se

co
nd

s)

With similarity estimation
Original algorithm

Figure 1.9. Time required to cluster the NSF collection

We now see the extent to which our clustering algorithm is able to
recover the 8 NSF classes: BIO, CSE, EHR, ENG, GEO, MPS, OPP and
SBE. The following gives the confusion matrix between the 12 clusters
and 8 classes.

Note that the largest number in each row of the above table is bold-
faced. We have ordered the clusters and classes so that the confusion
matrix has large numbers near the diagonal. The fact that the numbers
near the diagonal are larger than those away from the diagonals implies
that many of the clusters can be identified with NSF organizations. For
example, the ‘theory’ and ‘chemistry’ clusters can be identified with
MPS, the ‘social’ cluster with SBE, the ‘protein’ and ‘species’ clusters
with BIO and the ‘ocean’ cluster can be identified with GEO. Interest-
ingly, some of the clusters indicate the multidisciplinary nature of some
NSF organizations. The ‘conference’ cluster is seen to have many awards
from MPS, ENG, SBE and BIO but no particular organization is dom-
inant. Also, organizations such as MPS are seen to have subcategories
— ‘mathematical theory’, ‘chemistry reactions’ and ‘quantum physics’.
The numbers in the confusion matrix also indicate the inter-relationships
between various NSF orgainzations. For example, the ‘materials’ clus-
ter indicates closeness between MPS and ENG while the ‘design’ cluster
shows the closeness between ENG and CSE.

The quality measures of purity and entropy for this clustering are
given in the following table.

22

theory(7442) theory(.339),mathematical(.295),equations(.25),geometry(.192),
problems(.186),sciences(.177),differential(.168)
algebraic(.165),manifolds(.126),spaces(.114)

chemistry(7420) chemistry(.448),reactions(.217),organic(.21),nmr(.194),
molecules(.182),metal(.169),chemical(.151),compounds(.142),
spectroscopy(.122),reaction(.12)

physics (9835) physics(.189),quantum(.166),magnetic(.166),particle(.144),
electron(.135),stars(.13),solar(.129),energy(.123),
laser(.115),theoretical(.112)

materials(11589) materials(.292),phase(.192),properties(.156),films(.14),
polymer(.135),surface(.125),thin(.116),optical(.114),
temperature(.11),liquid(.107)

design(13255) design(.243),algorithms(.216),control(.18),parallel(.175),
performance(.149),problems(.144),software(.118),models(.115),
computer(.112),optimization(.1)

conference(6652) conference(.47),workshop(.399),international(.23),held(.207),
meeting(.181),symposium(.178),travel(.135),participants(.112),
scientists(.107),researchers(.096)

mathematics(7374) mathematics(.342),teachers(.333),school(.259),education(.177),
college(.151),year(.150),teacher(.132),summer(.125),
schools(.12)

laboratory(11302) laboratory(.303),equipment(.241),undergraduate(.225),
computer(.186),engineering(.185),courses(.175),student(.132),
biology(.126),faculty(.124),projects(.124)

social(8267) social(.27),economic(.180),political(.167),policy(.143),
dissertation(.13),language(.126),public(.104),cultural(.103),
decision(.1),market(.087)

protein(9212) protein(.273),cell(.258),cells(.235),proteins(.22),gene(.196),
genes(.179),dna(.153),expression(.138),molecular(.131),
regulation(.119)

species(8822) species(.326),plant(.167),populations(.151),plants(.133),
population(.125),evolutionary(.125),evolution(.101),
variation(.098),ecological(.096)

ocean(12546) ocean(.232),ice(194),climate(.153),mantle(.147),sea(.134),
water(.118),seismic(.106),circulation(.097),pacific(.096),
isotopic(.092)

Table 1.2. Top 10 words associated with each cluster (the numbers in the right
column give the word’s weight in the concept vector)

Despite the above quality measures, it is sometimes best to have an in-
formal way of examining a clustering. For this purpose, we have created
a sequence of web pages to browse through the clusters, and the docu-
ments and keywords contained in them. The clustering presented above
is available at http://www.cs.utexas.edu/users/dml/demos/nsfbrowser/.

Efficient Clustering of Very Large Document Collections 23

MPS ENG CSE EHR SBE OPP BIO GEO

theory(7442) 6502 196 240 92 336 0 43 33

chemistry(7420) 4747 572 8 991 363 24 377 338

physics(9835) 4901 1649 31 146 849 147 176 1936

materials(11589) 3257 7094 33 171 541 12 89 392

design(13255) 952 4754 5850 357 840 5 349 148

conference(6652) 1149 1767 544 383 1176 146 947 540

mathematics(7374) 410 208 772 5658 143 21 65 97

laboratory(11302) 767 1344 541 5658 209 410 1036 1337

social(8267) 84 438 221 317 6686 126 326 69

protein(9212) 164 784 20 162 383 25 7578 96

species(8822) 61 153 7 121 1690 252 5602 936

ocean(12546) 43 406 8 56 509 1599 180 9745

Table 1.3. Confusion matrix between the 8 “true” classes and 12 clusters for the
entire NSF collection

Cluster Purity Entropy

theory .87369 .275307

chemistry .639757 .585657

physics .498322 .670075

materials .612132 .499253

design .441343 .643922

conference .265634 .911829

mathematics .76729 .429274

laboratory .500619 .766223

social .808758 .397713

protein .822623 .347316

species .635003 .535591

ocean .776742 .389061

Table 1.4. Purity and entropy results for the computed clusters of the entire NSF
collection

6. Conclusions and Future Work

In this paper, we have presented a time and memory efficient scheme
for clustering very large document collections. We employ a multi-
threaded approach to reading and preprocessing the documents to miti-
gate disk I/O costs, and use the effective spherical k-means algorithm to
cluster the documents. Our experimental results show that we are able
to preprocess and cluster 113, 716 NSF award abstracts in 23 minutes
on a Sun workstation with modest memory consumption. We have also

24

demonstrated that the quality of the clustering is good. Based on the
experiments we have done in this paper, we predict that we can use our
scheme to cluster a million documents into 12 clusters in less than 4
hours on a Sun workstation.

In future work, we will continue our focus on improving the efficiency
and scalability of our scheme. The dot product computation between all
the document vectors and concept vectors is the computational bottle-
neck in the spherical k-means algorithm. To cut down on this compu-
tation, techniques like “truncation” which project each document vec-
tor onto a small subspace of the total word space will be investigated,
see [SS97]. Meanwhile, more sophisticated handling of I/O threads will
be studied in order to cut down the I/O cost which is the bottleneck
for preprocessing. Parallelizing the whole process can be one of the ap-
proaches. Hierarchical clustering will also be studied in future work to
discover the inherent hierarchical structure and the ‘correct’ number of
clusters in the data set.

References

[BGG+98] D. Boley, M. Gini, R. Gross, E.-H. Han, K. Hastings,
G. Karypis, V. Kumar, B. Mobasher, and J. Moore. Docu-
ment categorization and query generation on the World Wide
Web using WebACE. AI Review, 1998.

[Cal99] Brent Callaghan. NFS Illustrated. Addison-Wesley, 1999.

[CKPT92] D. R. Cutting, D. R. Karger, J. O. Pedersen, and J. W.
Tukey. Scatter/gather: A cluster-based approach to browsing
large document collections. In ACM SIGIR, 1992.

[DGL89] I. Duff, R. Grimes, and J. Lewis. Sparse matrix test prob-
lems. ACM Trans Math Soft, pages 1–14, 1989.

[DH73] R. O. Duda and P. E. Hart. Pattern Classification and Scene
Analysis. Wiley, 1973.

[DM01] I. S. Dhillon and D. S. Modha. Concept decompositions for
large sparse text data using clustering. Machine Learning,
42(1):143–175, January 2001. Also appears as IBM Research
Report RJ 10147, July 1999.

[FBY92] W. B. Frakes and R. Baeza-Yates. Information Retrieval:
Data Structures and Algorithms. Prentice Hall, Englewood
Cliffs, New Jersey, 1992.

[GJW82] M. R. Garey, D. S. Johnson, and H. S. Witsenhausen. The
complexity of the generalized Lloyd-Max problem. IEEE
Trans. Inform. Theory, 28(2):255–256, 1982.

REFERENCES 25

[Hea78] J. Heaps. Information Retrieval - Computational and Theo-
retical Aspects. Academic Press, 1978.

[Kol97] T. G. Kolda. Limited-Memory Matrix Methods with Appli-
cations. PhD thesis, The Applied Mathematics Program,
University of Maryland, College Park, Mayland, 1997.

[KPR98] Jon Kleinberg, C. H. Papadimitriou, and P. Raghavan. A mi-
croeconomic view of data mining. Data Mining and Knowl-
edge Discovery, 2(4):311–324, December 1998.

[Mit97] Tom M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[MS96] D. Musser and A. Saini. STL Tutorial and Reference Guide.
Addison-Wesley, 1996.

[NBF96] Bradford Nichols, Bick Buttlar, and Jackie Proulx Farrell.
Pthreads Programming. O’Reilly & Associates, Inc., 981
Chestnut Street, Newton, MA 02164, USA, 1996.

[Pax96] Vern Paxson. Flex user manual, November 1996.

[Ras92] E. Rasmussen. Clustering algorithms. In William B. Frakes
and Ricardo Baeza-Yates, editors, Information Retrieval:
Data Structures and Algorithms, pages 419–442. Prentice
Hall, Englewood Cliffs, New Jersey, 1992.

[SB88] G. Salton and C. Buckley. Term-weighting approaches in
automatic text retrieval. Information Processing & Manage-
ment, 4(5):513–523, 1988.

[SGM00] A. Strehl, J. Ghosh, and R. Mooney. Impact of similar-
ity measures on web-page clustering. In Proceedings of
the AAAI2000 Workshop on Artificial Intelligence for Web
Search, pages 58–64, Austin, Texas, July 2000. AAAI/MIT
Press.

[SM83] G. Salton and M. J. McGill. Introduction to Modern Re-
trieval. McGraw-Hill Book Company, 1983.

[SS97] H. Schütze and C. Silverstein. Projections for efficient docu-
ment clustering. In ACM SIGIR, 1997.

[Wil88] P. Willet. Recent trends in hierarchic document clustering:
a critical review. Information Processing & Management,
24(5):577–597, 1988.

[ZE98] O. Zamir and O. Etzioni. Web document clustering: A fea-
sibility demonstration. In ACM SIGIR, 1998.

[Zip49] G. K. Zipf. Human Behavior and the Principle of Least Ef-
fort. Addison Wesley, Reading, MA, 1949.

