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Abstract

Mixture of exponential family models are
among the most fundamental and widely used
statistical models. Stochastic variational in-
ference (SVI), the state-of-the-art algorithm
for parameter estimation in such models is
inherently serial. Moreover, it requires the
parameters to fit in the memory of a single
processor; this poses serious limitations on
scalability when the number of parameters
is in billions. In this paper, we present ex-
treme stochastic variational inference (ESVI),
a distributed, asynchronous and lock-free algo-
rithm to perform variational inference for mix-
ture models on massive real world datasets.
ESVI overcomes the limitations of SVI by re-
quiring that each processor only access a sub-
set of the data and a subset of the parameters,
thus providing data and model parallelism
simultaneously. Our empirical study demon-
strates that ESVI not only outperforms VI
and SVI in wallclock-time, but also achieves
a better quality solution. To further speed up
computation and save memory when fitting
large number of topics, we propose a variant
ESVI-TOPK which maintains only the top-k
important topics. Empirically, we found that
using top 25% topics suffices to achieve the
same accuracy as storing all the topics.
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1 Introduction

Mixture of exponential family models generalize a
wide collection of popular latent variable models such
as Latent Dirichlet Allocation (LDA), Gaussian Miz-
ture Models (GMM), and Mized Membership Stochastic
Block Models (MM-SBM). In recent years, variational
inference (VI) has emerged as a powerful technique for
parameter estimation in these Bayesian models [14],
[3]. One attractive property of VI is that it reduces
parameter estimation to the task of optimizing a ob-
jective function, often with a well defined “structure”.
This opens up the possibility of bringing to bear ma-
ture tools from optimization to tackle massive problems.
Traditionally, VI in mixture models involves alternating
between updating global variables and local variables.
Both these operations involve accessing all the data
points. Large datasets are usually stored on disk, and
the cost of accessing every datapoint to perform up-
dates is prohibitively high.

The first approach to tackle this, is to divide the data
across multiple machines and use a distributed frame-
work such as map-reduce to aggregate the computations
[11]. The second approach, is to exploit the underlying
structure of the optimization problem to reduce the
number of iterations (and therefore the correspond-
ing data access) [7]. The key observation here is that
the optimization problem corresponding to the local
variables is separable, that is, it can be written as a
sum of functions, where each function only depends
on one data point. Therefore, one can use stochastic
optimization to update the local variables. Moreover,
in Stochastic Variational Inference (SVI) [7], even be-
fore one pass through the dataset, the global variables
are updated multiple times, and therefore the model
parameters converge rapidly towards their final values.
The argument is similar in spirit to how stochastic op-
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timization outperforms batch algorithms for maximum
aposteriori (MAP) estimation [4].

With the advent of the big-data era, we now routinely
deal with industry-scale problems involving billions of
documents and tokens. Such massive datasets pose
another challenge, which, unfortunately neither VI nor
SVI are able to address; namely, the set of parameters
is so large that all the parameters do not fit on a single
processor'. For instance, if we have D dimensional
data and K mixture components, then the parameter
size is O (DK). If D is of the order of millions and K
is in the 100’s or 1000’s, modest numbers by todays
standards, the parameter size is a few 100s of GB (see
our experiments in Section 5).

In this paper, we propose a new framework, Extreme
Stochastic Variational Inference (ESVI) to address
these challenges. The main contributions of this paper
are:

1. We develop a novel approach to achieve simultane-
ous data and model parallelism in mizture models
by exploiting the following key idea: instead of up-
dating all the K coordinates of a local variable and
then updating all K global variables, we propose
updating a small subset of the local variables and
the corresponding global variables (see Theorem 1
for proof of correctness). The global variables are
exchanged across the processors, and this ensures
mixing (see Section 4.2 for more details). This
seemingly simple idea has some powerful conse-
quences. It allows multiple processors to simulta-
neously perform parameter updates independently.

2. Using a classic owner-computes paradigm, we
make ESVI asynchronous and lock-free, and thus
avoid expensive bulk synchronization between pro-
cessors. We present an extensive empirical study
to evaluate the performance of ESVI by applying
it to GMM and LDA models on several large real-
world datasets. We find that ESVI outperforms
VI and SVI both in terms of time as well as the
quality of solutions obtained. For practitioners,
ESVI offers the advantage of not having to tune a
learning rate, since it makes closed form parameter
updates unlike SVI.

3. We develop a variant ESVI-LDA-TOPK to speed
up computation and save memory when fitting large
number of topics. Empirically, we found that using
the most frequent 25% of the topics was enough
to obtain the same level of accuracy as storing all
the topics.

!The discussion in this paper applies to the shared mem-
ory, distributed memory, as well as hybrid settings, and
therefore we will use the term processor to denote either a
thread or a machine.

To the best of our knowledge there is no existing algo-
rithm for VI that sports these desirable properties.

The rest of the paper is structured as follows: We
present an exhaustive study of related work in Section 2.
We briefly review VI and SVI in Section 3. We present
our new algorithm ESVI in Section 4, and discuss
its advantages. Empirical evaluation is presented in
Section 5 and Section 6 concludes the paper.

2 Related Work

Recent research on VI has focused on extending it to
non-conjugate models [15] and developing variants that
can scale to large datasets such as SVI [7]. Other than
the fact that SVI is inherently serial, it also suffers
from another drawback: storage of the entire D x K
matrix € on a single machine. On the other hand,
our method, ESVI, exhibits model parallelism; each
processor only needs to store 1/P fraction of 6. Black-
box variational inference (BBVI) [12] generalizes SVI
beyond conditionally conjugate models. The paper
proposes a more generic framework by observing that
the expectation in the ELBO can be exploited directly
to perform stochastic optimization. We view this line
of work as complementary to our research. It would be
interesting to verify if an ESVI like scheme can also be
applied to BBVI.

There has been a flurry of work in the past few years
in developing data-parallel distributed methods for
Approximate Bayesian Inference. One such popular
work includes a classic Map-Reduce style inference
algorithm [11], where the data is divided across several
worker nodes and each of them perform VI updates
in parallel until a final synchronization step during
which the parameters from the slaves are combined
to produce the final result. This method suffers from
the well-known curse of the last reducer, that is, a
single slow machine can dramatically slow down the
performance. ESVI does not suffer from this problem,
because our asynchronous and lock-free updates avoid
bulk synchronization altogether.

[5] presents an algorithm that applies VI to the stream-
ing setting by performing asynchronous Bayesian up-
dates to the posterior as batches of data arrive con-
tinuously, which is similar in spirit to Hogwild [13].
Their approach uses a parameter server to enable asyn-
chronous local updates. Unlike ESVI, their work cannot
guarantee that - (a) each worker works on the latest
parameters, (b) the global parameters are all parallely
updated. In [1] the authors present Incremental Varia-
tional Inference which is also a distributed variational
inference algorithm, however it is also only data-parallel.
Besides, it requires tuning of a step-size and sequen-
tial access of global parameters. ESVI avoids these
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drawbacks.

A number of data-parallel approaches exist in the Exact
Bayesian Inference literature as well. [6] is a distributed
MCMC based approach where workers perform MCMC
updates locally and these are aggregated by maintain-
ing a posterior server. [17] proposed a distributed asyn-
chronous algorithm for parameter estimation in LDA
[2]. However, the algorithm is specialized to collapsed
Gibbs sampling for LDA, and it is unclear how to ex-
tend it to other, more general, mixture models. ESVI
in contrast is a purely VI based method and provides
model-parallelism in addition to data-parallelism.

Somewhat close to our ESVI-TOPK approach is Memo-
ized Online Variational Inference for DP Mixture Mod-
els [8]. This paper describes the application of Expec-
tation Truncation to mixture models. In their L-sparse
method, unused dimensions are set to zero and used
dimensions are shifted. In ESVI-TOPK, unused dimen-
sions are averaged (1-sum of used dimensions).

Another related line of work is Sparse EM [10]. There
are some high-level similarities to ESVI in that both
the methods update a subset of latent variables at any
given time while keeping others frozen. However there
are some crucial differences: (a) Sparse EM is not a par-
allel algorithm while ESVI is, (b) Sparse EM needs to
iterate between sparse EM update and full EM update
(to select active dimensions occasionally) while each
ESVI worker’s job queue will continuously distribute
Z’s dimensions to ensure a good mixing, (c¢) Sparse EM
selects active dimensions based on values of Z, while
ESVI is designed to ensure the active dimensions of
each worker is an unbiased sample of all dimensions.

Since the coordinate-ascent algorithm in VI can be
formulated as a message passing scheme applied to gen-
eral graphical models, we believe ESVTI is also related
to Variational Message Passing [16]. This connection
could be made more concrete if we assume a Mixture
Model setup in both cases. Both the d-VMP algorithm
(Algorithm 2 in [9]) and ESVI de-couple the global
parameters to make the updates scalable, however they
differ in some fundamental aspects. d-VMP defines a
disjoint partitioning of the global parameters based on
their markov-blankets. In contrast, ESVI completely
decentralizes the global parameter updates by requir-
ing that the local variables (or assignment vector z;)
need to only satisfy local summation constraints (as
discussed in Theorem 1 in Section 4). As a side-note,
the local updates in d-VMP algorithm do not seem to
be de-coupled across the mixture components, whereas
this holds true in the case of ESVI.

3 Parameter Estimation for Mixture
of Exponential Families
3.1 Generative Model

The following data generation scheme underlies a mix-
ture of exponential family model (Table 1 defines the
notations):

Prior:

p (m|a) = Dirichlet (a) (1)

P Ok |k, vi) = exp ((ng - vk, Ok) — 1 - g (Ok) — h (ng, )

(2)

where, n, and vy, are the parameters of the conjugate
prior p (O |ng, vi).

Likelihood:

p (z;|7) = Multinomial () (3)
p(wilzi,0) = exp ((¢ (25, 2i) , 0=,) — g (6))  (4)
where, ¢ denotes the sufficient statistics. Observe

that p (Ok|ng, vk) is conjugate to p (x;|z; = k, 0y), while
p(m|a) is conjugate to p (z;|m).

Joint Distribution:

P(9577T>Za9|04»n71/) :p(ﬂ"a) p(9k|nkvyk)'

>

k=1

N

[Ip Gl - p(ilz0) ©)

=1

3.2 Variational Inference and Stochastic
Variational Inference

The goal of inference is to estimate p (7, z, 0|z, o, n, v).
This however, involves an intractable marginalization.
Therefore, variational inference [3] approximates this
distribution with a fully factorized distribution 2:

N K

q (7r, z,0|7, 2, 9~> =q(w|7)- Hq (2:)2) - H q (Gk\§k> .
i=1 k=1

(6)

Note that z; € Ak and z; , = ¢ (2 = k|Z;). Moreover,
each of the factors in the variational distribution is
assumed to belong to the same exponential family as
their full conditional counterparts in (5). The vari-
ational parameters are estimated by maximizing the

2A ~ over a symbol is used to denote that it is a param-
eter of the variational distribution. See Table 1.
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‘ Symbol ‘ Definition ‘
N total number of observations
D total number of dimensions
K total number of mixture components
Ak K-dimensional simplex
z={x1,...,zn}y, x; € RP | observations
z={z1,...,2n}, 2z € Ag | the component data point z; was drawn from (local variable)
0=1{61,...,0x}, 0pcRP | sufficient statistics of the exponential family distribution (global variable)
me Ak mixing coeflicients (global variable)
z={%,...,2n}, % € Ak | variational parameter for z (local variable)
) = {51, 0k 0, € RP | variational parameter for § (global variable)
T e Ak variational parameter for 7 (global variable)

Table 1: Notations for Mixture of Exponential Family Model. ~ denotes variational parameters.

following evidence lower-bound (ELBO) [3]:
L (fr, z, 9) = Eq(mZﬂ‘%jﬁ) [logp (z, 7, 2, 0|, n, V)]

_Eq(mz,elfr,%,é) [log q (7‘(‘, z,0|7, z, é)}
(7)

VI performs coordinate ascent updates on £ by opti-
mizing each set of variables, one at a time.

Update for 7;:
7~Tk=a+25@k (8)

Update for 6;: The components of 6, namely 7y
and 7 are updated as follows:
i = ng + N (9)

Up =Nk - Vg + Ni - T (].0)

N - - N -
where N, = >"." | % and Zy, = Nik Y oict Zie @ (x4, k).

Update for z;: Let u; be a K dimensional vector
whose k-th component is given by

K
wig = () — (Z fw)

k'=1

+ <¢ (i k) Eyo,10,) [Qk]> ~E,(0,10,) 19 (0k)]

~exp(uik)
Zi,k_ K
2 rr—1 XD (i)
It has to be noted that the summation term
0 25:1 Ty ) cancels out during the Z; , update in
(12).

The VI algorithm [14, 3] iteratively updates all the local
variables z; before updating the global variables 75, and

0) (see Algorithm 1). In contrast, SVI |7], updates
Z; corresponding to one data point z;, followed by
updating the global parameters 7 and 6 (see Algorithm
2).

Algorithm 1 VI
fori=1,...,N do
Update z; using (12)
end for
for k=1,... K do
Update 7% using (8)
Update 6;, using (9) and (10)
end for

Algorithm 2 SVI
Generate step size sequence n; € (0, 1)
Pick an 7 € {1,..., N} uniformly at random
Update Z; using (12)
for k=1,...K do
Update 7 + (1 — ’17,5)77'19 + Mt (a + N - éi,k)
Gk:{nk + N -Z;, ng - v + NA' 21’,1@' o) (JZZ', /{3)}
Update 0 < (1 — ;)0 + 1.0
end for

4 Extreme Stochastic Variational
Inference (ESVI)

Algorithm 3 ESVI

Sample ¢ € {1,...,N}
Select K C {1,...,K}
Update z; i, for all k € K (see below)
Update 7, for all k € K using (8)
Update 0, for all k € K using (9), (10)

Algorithm 3 illustrates our proposed updates in ESVI.
Before we discuss why this update is advantageous
for parallelization, let us first study why updating
a subset of coordinates of z; is justified. Plugging
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~ - (—re—
Y e L s
z x z x z x

] (| H H

(a) 7 update (b) 6 update (c) Z update

Figure 1: Access pattern during ESVI updates. Green
indicates the variable or data point being read, while
Red indicates it being updated.

in (5) and (6) into (7), and restricting our atten-
tion to the terms in the above equation which de-
pend on z;, substitute (4), Z;r = ¢(z = k|Z;) and

Byt llogp (25 = k|m)] = ¥ (7)) — ¢ (Sh i 7w ), to
obtain the following objective function,

£ (a17.0) = ézk <w (7x) =¥ (i ﬁk’))

k'=1

=1

k
“Eq(ou10.) g (0x)] — log 51‘,;3) : (13)

Now using the definition of u; s in (11), one can com-
pactly rewrite the above objective function as

K
L <§Z|7~T,9~) = Z gi,k . (ui,k — log gi,k) . (14)
k=1

Moreover, to ensure that z; , is a valid distribution,
one needs to enforce the following constraints:

k=1 0<zZip<l (15)
k

Theorem 1 shows that one can find a closed form solu-
tion to maximizing (14) even if we restrict our attention
to a subset of coordinates.

Theorem 1 For2 < K' < K, let K C {1,...,K} be
s.t. |[K| = K'. For any C > 0, the problem

max, Lx = E Zik - Uik — Zik - lO0g Zi
z; ER kekC
s.t. E Zik=C and 0<Zy, (16)
kek

has the closed form solution:

exp (ui k)

zZ.=C
ok > ek XD (Wi k)

, fork e K. (17)

Proof Proof is given in Appendix A.

Theorem 1 suggests the following strategy: start with a
feasible Z;, pick, say, a pair of coordinates Z; ;, and Z; i
and let Z; +2; p» = C. Solve (16), which has the closed
form solution (17). Clearly, if Z; satisfied constraints
(15) before the update, it will continue to satisfy the
constraints even after the update. On the other hand,
the conditional ELBO (14) increases as a result of the
update. Therefore, ESVI is a valid coordinate ascent
algorithm for improving the ELBO (7).

4.1 Access Patterns

In this section we compare the access patterns of vari-
ables in the three algorithms to gain a better under-
standing of their abilities to be parallelized efficiently.
In VI, the updates for 7 and 0 requires access to all z;,
while update to z; requires access to 7 and all 0. On
the other hand, in case of SVI, the access pattern is
somewhat different. The updates for 7 and 6 require
access to only the Zz; that was updated, however the
update to Z; still requires access to © and all the 0.
This is a crucial bottleneck to model parallelism. Refer
to Figure 9 and Figure 10 in the Appendix for a visual
illustration.

In contrast, the following access pattern of ESVI al-
lows multiple processors to access and update mutually
exclusive subsets of coordinates K independently (See
Figure 1 for an illustration):

e The update for & (8) requires access to the coor-
dinates Z; j, for k € K.

e The update for 6 (9) and (10) requires access to
21’,1@ for k € K.

e The update to Z; ;, for k£ € K requires access to 7y
and 6y, for k € K.

4.2 Parallelization

In this sub-section, we describe the parallel asyn-
chronous algorithm of ESVI. Let P denote the num-
ber of processors, and let Z, C {1,..., N} denote in-
dices of the data points owned by processor p. z; for
i € 7, are local variables assigned to processor p. The
global variables are split across the processors. Let
K, € {1,...,K} denote the indices of the rows of 0
currently residing in processor p. Then processor p can
update any Z;  for ¢ € 7, and k € K,,. Finally, we need
to address the issue of how to communicate 5k across
processors. For this, we follow the asynchronous com-
munication scheme outlined by [19] and [18]. Figure
2 is an illustration of how this works pictorially. We
partition the data and the corresponding z;. variables
across the processors. Each processors maintains its
own queue. Once partitioned, the z variables never
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Algorithm 4 Parallel-ESVI Algorithm

P: total number of workers,
ing time
Z,: data points owned by worker p,
Kp: global parameters owned by worker p (concur-
rent queue)
Initialize global parameters 60, 70
for worker p =1... P asynchronously do
while Stop criteria not satisfied do
Pick a subset ky C I,
for All data point ¢ € Z,, do
for k €k, do
Compute Zz}; using (17)
T+ = 2, — Zik
N+ = 2, — Zik
U+ = (2;6 — gzk) X (,25(1'2, k)
Pick a random worker p’ and send 7, and
05, push k to Ky
end for
end for
end while
end for

T: maximum comput-

move. On the other hand, the 6 variables move nomad-
ically? between processors. Each processor performs
ESVI updates using the current subset of 6 variables
that it currently holds. Then the variables are passed
on to the queue of another randomly chosen proces-
sor as shown in the second sub-figure in Figure 2. It
is this nomadic movement of the # variables that en-
sures proper mixing and convergence. The complete
algorithm for parallel-ESVI is outlined in Algorithm 4.

4.3 Comparison and Complexity

ESVI updates are stochastic w.r.t. the coordinates,
however the update in each coordinate is exact using
(17). In contrast, SVI stochastically samples the data
and performs inexact or noisy updates and does not
guarantee each step to be an ascent step. Moreover,
given a N x D dataset and fixing K clusters, by simple
calculation we can see that to u~pdate all z;; once,

VI requires O(DK) updates on 0, while SVI needs
O(NDK) and parallel ESVI needs O(PDK).

5 Experiments

In our experiments®, we compare our proposed ESVI-
GMM and ESVI-LDA methods against VI and SVI.

3Nomadic movement [19] refers to the distributed setup,
where the ownership of parameters rapidly keeps changing
after every update. Figure 2 illustrates this.

40ur code and scripts will be made publicly available.

To handle large number of topics in LDA, we also imple-
mented a more efficient version ESVI-LDA-TOPK.
We use real-world datasets of varying scale as described
in Table 2. We used a large-scale parallel computing
platform with node configuration of 20 Intel Xeon E5-
2680 CPUs and 256 GB memory. We implemented
ESVI-LDA in C++ using MPICH, OpenMP and Intel
TBB. For Distributed-VI and SVI implementations, we
modified the authors’ original code in C°. More details
on the parameter settings and update equations are
available in Appendix C, D, E.

# documents | # vocabulary #words
AP-DATA 2,246 10,473 912,732
NIPS 1,312 12,149 1,658,309
Enron 37,861 28,102 6,238,796
Ny Times 298,000 102,660 98,793,316
PubMed 8,200,000 141,043 737,869,083
UMBC-3B 40,599,164 3,431,260 3,013,004,127

Table 2: Data Characteristics

5.1 ESVI-GMM

We first compare ESVI-GMM with SVI and VI in the
Single Machine Single thread setting. We use a TOY
dataset which consists of N = 29,983 data points,
D = 128 dimensions and the AP-DATA dataset which
consists of N = 2,246 data points, D = 10,473 dimen-
sions. In both cases, we set the number components
K = 256. We plot the performance of the methods
(ELBO) as a function of time. ESVI-GMM outper-
forms SVI and VI by quite some margin. For Multi
Machine case, we use the NIPS and NY Times datasets
and only compare against VI (SVI does not apply; it
needs to update all its K global parameters which is
infeasible when K is large). Although typically these
datasets do not demand running on multiple machines,
out intention here is to demonstrate scalability to very
large number of components (K = 1024) and dimen-
sions, which is typically the case in large scale text
datasets with millions of word count features. Tradi-
tionally, GMM inference methods have not been able
to handle such a scale. Figure 3 clearly indicates that
ESVI-GMM is able to outperform VI by a good margin.

5.2 ESVI-LDA

5.2.1 Single Machine Single thread

We compare serial versions of the methods on Enron
and NY Times datasets which are medium sized and
fit on a single-machine. On both datasets, we run with
single machine and single thread. For Enron, we set #

Shttp://www.cs.princeton.edu/blei/lda-c/.
Distributed-VI was implemented in Map-Reduce style
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(b) Worker 1 finishes pro-
cessing {2,4} € K, it
sends them over to a random
worker. Here, 02 is sent from
worker 1 to 4 and 54 from 1

(a) Initial assignment of 6 and
. We plot diagonal initializa-
tion while in real case random
initialization is used.

(¢) Upon receipt, the col-
umn is processed by the new
worker. Here, worker 4 can
now operate on 62 and 3 on
04

(d) During the execution of
the algorithm, the ownership
of the global parameters O
changes.

to 3.

Figure 2: Illustration of the communication pattern in ESVI (asynchronous) algorithm. Parameters of same
color are in memory of the same worker. Horizontal and Vertical lines indicate the two directions of partitioning
data and parameters. Data z is partitioned horizontally along N and vertically along D. Local parameter Z is
partitioned horizontally along N and vertically along K. Global parameters - 7 is partitioned vertically along K,

and 0 is partitioned horizontally along K and vertically along D. 7 and 6 are nomadically exchanged.
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Figure 3: Comparison of ESVI-GMM, SVI and VI.

of topics K = 8,16, 20, 32,64, 128,256. For NY Times,
we set K = 8,16, 32,64. To keep the plots concise, we
only show results with K = 16,64, 128 in Figure 4 (two
left-most plots). ESVI-LDA performs better than VI
and SVI in both the datasets for all values of K.

5.2.2 Single Machine Multi Core

We evaluate the performance of distributed ESVI-LDA
against a map-reduce based distributed implementation
of VI, and the streaming SVI method [5]. We vary the
number of cores as 4,8,16. This is shown in Figure
4 (two right-most plots). For Enron dataset, we use
K =128 and for NY Times dataset, we use K = 64.
ESVI-LDA outperforms VI and SVI consistently in
all scenarios. In addition, we observe that both the
methods benefit reasonably when we provide more
cores to the computation. We observe that ESVI-
LDA-TOPK, which stores only top 1/4-th of K topics
performs the best on both datasets.

5.2.3 Multi Machine Multi Core

We stretch the limits of ESVI-LDA method and
compare it against distributed VI on large datasets:
PubMed and UMBC-3B. UMBC-3B is a massive

= VI
—8—ESVI
.
10%

time

L L L
10° 10t 10

time

L
102

P = N x n denotes N machines each with n threads.

dataset with 3 billion tokens and a vocabulary of 3
million. We use 32 nodes and 16 cores, and fit X = 128
topics. As the results in Figure 5 demonstrate, ESVI-
LDA achieves a better solution than distributed VI in
all cases. On the largest dataset UMBC-3B, ESVI-LDA
is also much faster than VI. In PubMed, VI has a slight
initial advantage, however eventually ESVI progresses
much faster towards a better ELBO. ESVI-LDA-TOPK
is particularly better than the other two methods on
both the datasets, especially on PubMed.

5.2.4 Predictive Performance

We evaluate the predictive performance of ESVI-LDA
comparing against distributed VI on Enron and NY
Times datasets on multiple cores. As shown in Figure
6, ESVI typically reaches comparable test perplexity
scores as VI but in much shorter wallclock time.

5.3 Handling large # of topics in ESVI-LDA

In VI for LDA, the linear dependence of the model
size on K prevents scaling to large K due to mem-
ory limitations. Our ESVI-LDA-TOPK approach
addresses this: instead of storing all K components of
the assignment parameter, we only store the most im-
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Figure 5: Multi Machine Multi Core experiments for
ESVI-LDA. TOPK is our ESVI-TOPK method
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Figure 6: Predictive Performance of ESVI-LDA

portant top-k topics, which we denote using C. Using
a min-heap of size C'; we maintain only C < K topics
and we get performance very close to storing all the
topics with much lesser memory footprint.

5.3.1 Vary C (cutoff for K), Fix K

While the approximation of ELBO must get more accu-
rate as C' — K, there might exist a choice of C << K,
which gives a good enough approximation. This will
give us a significant boost in speed. On Enron dataset,
we varied C as 1,8, 32,64, 128 with true K = 128 as
our baseline. On NY Times dataset, we varied C' as
1,4,16, 32,64 with the true K = 64 as baseline. As we
expected, setting the cutoff to a value too low leads
to very slow convergence. However, it is interesting to
note that at a cut off value of roughly % (32 on Enron
and 16 on NY Times), we get a good result on par
with the baseline. On the larger datasets - PubMed
and UMBC-3B, setting C' = 16 was enough to achieve
a similar ELBO as the baseline. (See Figure 7).

Enron dataset: P=1x16 K-128 CO={1, 8, 82, 64, 128} Ny Times dataset: P=1x16 K=64 C{1, 4, 16, 32, 64}

ELBO

—— ESVI-TOPK C=64
—— ESVI-TOPK C=128

—— ESVI-TOPK C=1
—— ESVI-TOPK C=4

92|

—~— ESVI-TOPK C~16
——ESVI-TOPK C-32
—— ESVI-TOPK C=64

L
10%
time time

Figure 7: Effect of varying C' in ESVI-LDA-TOPK

5.3.2 Fix C (cutoff for K), Scale to large K

UMB(‘I—SI]% dataset: P=32x16 K—{128, 256, 512} C~16

By tuning C, ESVI-LDA-
TOPK can be run on large
number of topics such as _
K =256 and K = 512 on & =
the largest dataset UMBC-
3B (See Figure 8).

—224

—=— ESVI-TOPK K=128
—=— ESVI-TOPK K-256
—=— ESVI-TOPK K=512
10" 1012 104
time

.
1053 1046

6 Conclusion _
Figure 8: Effect of

In this paper, we propose varying K by fixing C
Extreme Stochastic Varia-

tional Inference (ESVI), a distributed, asynchronous
and lock-free algorithm to perform inference for mixture
of exponential families. ESVI exhibits simultaneous
model and data parallelism, allowing us to handle real-
world datasets with large number of documents as well
as learn sufficiently large number of parameters. For
practitioners, we show how to use ESVI to fit GMM
and LDA models on large scale real-world datasets con-
sisting of millions of terms and billions of documents.
In our empirical study, ESVI outperforms VI and SVI,
and in most cases achieves a better quality solution.
ESVI framework is very general and can be extended to
several other latent variable models such as Stochastic
Block Models.
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A Proof of Theorem 1

Proof We prove that Z; is a stationary point by
checking the KKT conditions for (16). Let h(Z;) =
(Zkelc 22-7;6) — C and g (%;) = —zi . It is clear that
Z¥ satisfies the primal feasibility. Now consider KKT
multipliers:

C
Zk/elc exp (Ui,k/)

A =log , and pr = 0.

We have

Vil (2]) = ui . — log(Z ;) — 1

= Ui — <Ui,k + log

C

Zk'elc exp(ui k)
C

Zk'elc exp(ui, k)

o)
Zk/elc eXP(Ui,k/)

= log

AV h(Z) = log

e Vigr (27) = 0.

Then it is easy to verify that VipLi(ZF) = A =

AVih(Zf). Thus, zF satisfies the stationarity condi-
tion:
K
VLi(E) = AVA(Z) + > mkVe(Z).
k=1

Due to choice of uiy = 0, complementary slackness
and dual feasibility are also satisfied. Thus, z} is the
optimal solution to (16). |

B Access Patterns

In this section, we outline the access patterns of VI
and SVI in Figure 9 and Figure 10 respectively.

(a) 7 update (b) 6 update (¢) Z update

Figure 9: Access pattern of variables during Variational
Inference (VI) updates. Green indicates that the vari-
able or data point is being read, while red indicates
that the variable is being updated.

Bottleneck to Model Parallelism: The local vari-
able Z; needs to be normalized in order to be maintained
on the k-dimensional simplex A, after the update (12).

Figure 10: Access pattern of variables during Stochastic
Variational Inference (SVI) updates. Green indicates
that the variable or data point is being read, while red
indicates that the variable is being updated.

This is the primary bottleneck to model parallelism in
both VI and SVI, since this requires access to all K
components. In ESVI, we propose a novel way to over-
come this barrier, leading to completely independent
local and global variable updates.

C ESVI-LDA

In this section, we show how to apply ESVI to Latent
Dirichlet Allocation (LDA). Recall the standard LDA
model by Blei et al.[2]. Each topic i,k € [K] is a
distribution over the vocabulary with size V' and each
document is a combination of K topics. The generative
process is:

e Draw topic weights 8y ~ Dirichlet(n), k=1... K

e For every document d; € {dy,ds...dp}:

— Draw 6; ~ Dirichlet(a)
— For each word n € [N]:

x Draw topic assignment z;, ~ Multi(6;)
* Draw word w;, ~ Multi(j;,,)

where o € RX and 1 € RV are symmetric Dirichlet
priors. The inference task for LDA is to characterize
the posterior distribution p(3, 6, z|w). While the pos-
terior is intractable to compute, many methods have
been developed to approximate the posterior. Here we
use the idea in previous sections to develop extreme
stochastic variational inference for LDA.

We denote the assignment of word n in document d;
as %y, where z; € RE. Also w;, denotes the n-th
word in i-th document. Thus in LDA, the local hidden
variables for a word is the word assignment vector z;,
and local hidden variable for a document is z; and the
topic mixture 6;. The global hidden variable are the
topics Bg. Given these, we can formulate the complete
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conditional of the topics By 6; and z;, as:

D N
p(Bk|z, w) = Dirichlet(n + Z Z 28 win)

1=1n=1

N
p(0;]z;) = Dirichlet(a + Z Zin)

n=1
p(2E, = 110;, Br.1c, win) o exp (log 0y, + log A1)

. . k k
We denote multinomial parameter for z; as ¢;,,

Dirichlet parameter for 8 and 6; as A\ and ;. The
update rules for these three variational parameters are:

N
Vi =+ E Zin
n=1

D N
)\k =n+ Z Z le‘cnwina

i=1n=1

|4
i O exp (‘I’(’Yf) +OOP) = () AZ))

v=1

where ¥ is the digamma function and we denote
T = Zq‘;/:l Ap. Traditional VI algorithms infer all
the local variables 6, z and then update the global
variable 5. This is very inefficient and not scalable.
Notice that when updating ¢¥ we only need to access
vE, AP and mg. And similarly, once ¢, is modified,
the parameters that need to be updated are v, A"
and 7. Therefore, as long as m, can be accessed, the
updates to these parameters can be parallelized. Based
on the ideas we introduced in Section 4, we propose an
asynchronous distributed method ESVI-LDA, which is
outlined in Algorithm 5. Besides working threads, each
machine also has a sender thread and a receiver thread,
which enables the non-locking send /recv of parame-
ters. One key issue here is how to keep 7. up-to-date
across multiple processors. For this, we follow [1§],
who present a scheme for keeping a slowly changing K
dimensional vector, approximately synchronized across
multiple machines. Succinctly, the idea is to commu-
nicate the changes in 7 using a round robin fashion.
Since 7 does not change rapidly, one can tolerate some
staleness without adversely affecting convergence.

In order to update gzbfn we need only to access q/f AR
and 7. And similarly, once ¢¥, is modified, only param-
eters V¥, A, and 7, need to be updated. Following
that, for each word token, these parameters can be
updated independently. In our setting, each machine
loads its own chunk of the data, and also has local
model parameters v and ¢. Each machine maintains
a local job queue that stores global parameters A that
is now owned by this machine. After updating with
each AV, the machine sends it to another machine

Algorithm 5 ESVI-LDA Algorithm

Load {d; ...dp} into P machines
Initialize ¢, v, A using priors a,n
Initialize job queue Q: distribute A"V in P machines
Initialize sender queue g5
for every machine asynchronously do
if receiver thread then
while receive \V do
push (Q¢, A?) for some ¢
end while
end if
if sender thread then
while not ¢s.empty () do
send ¢s.pop() to next random machine
end while
end if
if worker thread t then
pop from Q;: \Y,
for all local word token s.t. wg, = v do
for k=1...K do
Oy, o exp (¥ (75) + 9 (A) =9 (3, M)
end for
for k=1...K do
A;:dn—’— = ¢§n - ¢§n(01d)
end for
Update global > A}
end for
gs-push (A?)
end if
end for

while pushing v into the job queue of that machine.
This leads to a fully asynchronous and non-locking
distributed algorithm.

D ESVI-GMM

Since the distribution of computation in ESVI-GMM
method also works in a similar manner as ESVI-LDA
Algorithm 5 (only the local and global updates need to
be replaced), in this section, we only present the update
rules for the local and global variational parameters
for Gaussian Mixture Models (GMM).

D.1 VI updates for GMM

The generative process for this model assumes that
data © = (z1,...,zyN) is generated by a mixture of K
gaussian distributions whose mean and precision are
given by u = {ux} and A = {Ay}. © € Ay denotes
the mixing coefficient, where Ay, is defined to be the
K-dimensional simplex. These are the global variables.
As usual, z = (21,...,2n), 2; € Ay denotes the latent
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variable to keep track of the component assignments
to the data points. These are the local variables.

The conditional distributions for the data x and z
(likelihood) can be written as:

N K
(@lz, m A) =TT TNV (il A )™
1=1k=1
N K
pelm) =[] I] =i*
1=1k=1

We now introduce the following conjugate priors to
simplify the bayesian inference.

p (m) = Dirichlet (7|ag)
p (s A) =p(plA)-p(A)

K
H (Mk|m0a BOAk) (Ak|W0,I/0))

Gaussian-Wishart

where, mg, ag, By, 1o, Wy are hyper-parameters that
can be initialized to some suitable value.

Given this setup, we can express the joint distribution
of all our random variables as:

(1“Z7M,A) 'p(:u’7A) p

conjugate pair

(z|m) - p ()

conjugate pair

p(x, z,mpuA)=p

Clearly, the corresponding posterior distribution
p(z,m, p, Alz) involves computing expensive high-
dimensional integrals and therefore a simpler varia-
tional distribution ¢ is used as an approximation:

H (ke k)
k=1

K

= q(2)- g (vla) - TT a (suclms, (3e40) ™)

k=1

q(z,m ) =q(z

Dirichlet
q (Ak| Wy, vi,)
—_——

Wishart

Gaussian

Optimizing the ELBO, leads to the following local and
global variable updates.

Update rules for local variables:

1
pik = exp | E [log 7] +§ E [log |Ag]]
—_—— —_————
tl ta
D
G log2m = S B, (o — ) T Ak (o — )]

t3

where, the terms tq, t2 and t3 are given by:

(i

t2_zw<uk+2l

Jj=1

t1 =9 (ax

> + Dlog2 + log |Wy|

ts = DB~ + vy (2 — ) Wi (zi — )

Using these, the local updates can be written as:

Pi,k
K
Zkle Pi k'

Zik =

Update rules for global variables:
For these, first we define some intermediate quantities
that are used in the global updates.

_ 1 -
xkzﬁzzi,k'xi
k7

k ng Z Zi, k
Using these, the global updates can be written as:

q(Ag) ~ W (Mg |[Wy, 1)

q (pelAx) ~ N (Nkl (ﬁkl\k)_l)
~ Dirichlet (7|a)

— Tk ( — i’k)T

q(7le)

where the above parameters are given by:

Br = Po + Ni,
1
my = — (Bo - mo + N - Zy)
Br
_ _ N _
WkIZWO 1+Nk-5k+ﬁ(xk—mo)(xk)—mg

v, = v + Ny,

D.2 Scaling to large dimensions

When the dimensions D are large, GMM becomes com-
putationally heavy since it involves the storage and
inversion of a large O(D x D) matrix. To overcome
this problem, we make the assumption of diagonal co-
variance matrix X = diag (J%, e 70’%) for each com-
ponent k, which intuitively means that the dimensions
are independent within each mixture component. This
lets us run ESVI-GMM on larger datasets.
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E Parameter Settings used in the
empirical study

We used the following hyper-parameter settings:

e In Gaussian Mixture Models (GMM) experiments,
we used ay = 5, 50 = 1, moy = 0. 140) and WO
were turned per dataset based on the best perfor-
mance. We set {vg, Wy} as {300000,0.1} for TOY,
{300000,0.1} for AP-DATA, {500000,0.5} for
NIPS and {500000,0.5} for NYTIMES datasets.

e For the SVI methods, we used a batch size of 100
(we tried various batch sizes and picked the value
we found to provide the best results). The step-size
in SVI was decayed following the recommendation
in [7], namely, n; = %, where ng was carefully
tuned and set to 0.1. Here, ¢ denotes the iteration
index.



