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Abstract

Verifying the robustness property of a general
Rectified Linear Unit (ReLU) network is an NP-
complete problem. Although finding the exact
minimum adversarial distortion is hard, giving a
certified lower bound of the minimum distortion is
possible. Current available methods of computing
such a bound are either time-consuming or deliver
low quality bounds that are too loose to be useful.
In this paper, we exploit the special structure of
ReLU networks and provide two computationally
efficient algorithms (Fast-Lin,Fast-Lip) that are
able to certify non-trivial lower bounds of mini-
mum adversarial distortions. Experiments show
that (1) our methods deliver bounds close to (the
gap is 2-3X) exact minimum distortions found by
Reluplex in small networks while our algorithms
are more than 10,000 times faster; (2) our meth-
ods deliver similar quality of bounds (the gap is
within 35% and usually around 10%; sometimes
our bounds are even better) for larger networks
compared to the methods based on solving linear
programming problems but our algorithms are 33-
14,000 times faster; (3) our method is capable of
solving large MNIST and CIFAR networks up to
7 layers with more than 10,000 neurons within
tens of seconds on a single CPU core. In addi-
tion, we show that there is no polynomial time
algorithm that can approximately find the mini-
mum �1 adversarial distortion of a ReLU network
with a 0.99 lnn approximation ratio unless NP=P,
where n is the number of neurons in the network.
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1. Introduction
Since the discovery of adversarial examples in deep neural
network (DNN) image classifiers (Szegedy et al., 2013),
researchers have successfully found adversarial examples
in many machine learning tasks applied to different areas,
including object detection (Xie et al., 2017), image caption-
ing (Chen et al., 2018a), speech recognition (Cisse et al.,
2017), malware detection (Wang et al., 2017) and reading
comprehension (Jia & Liang, 2017). Moreover, black-box
attacks have also been shown to be possible, where an at-
tacker can find adversarial examples without knowing the
architecture and parameters of the DNN (Chen et al., 2017;
Papernot et al., 2017; Liu et al., 2017b).

The existence of adversarial examples poses a huge threat to
the application of DNNs in mission-critical tasks including
security cameras, self-driving cars and aircraft control sys-
tems. Many researchers have thus proposed defensive or de-
tection methods in order to increase the robustness of DNNs.
Notable examples are defensive distillation (Papernot et al.,
2016), adversarial retraining/training (Kurakin et al., 2017;
Madry et al., 2018) and model ensembles (Tramèr et al.,
2018; Liu et al., 2017a). Despite many published contribu-
tions that aim at increasing the robustness of DNNs, theo-
retical results are rarely given and there is no guarantee that
the proposed defensive methods can reliably improve the ro-
bustness. Indeed, many of these defensive mechanism have
been shown to be ineffective when more advanced attacks
are used (Carlini & Wagner, 2017c;a;b; He et al., 2017).

The robustness of a DNN can be verified by examining a
neighborhood (e.g. �2 or �∞ ball) near a data point x0. The
idea is to find the largest ball with radius r0 that guarantees
no points inside the neighborhood can ever change classifier
decision. Typically, r0 can be found as follows: given
R, a global optimization algorithm can be used to find an
adversarial example within this ball, and thus bisection on R
can produce r0. Reluplex (Katz et al., 2017) is one example
using such a technique but it is computationally infeasible
even on a small MNIST classifier. In general, verifying
the robustness property of a ReLU network is NP-complete
(Katz et al., 2017; Sinha et al., 2018).

On the other hand, a lower bound βL of radius r0 can be
given, which guarantees that no examples within a ball of ra-
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dius βL can ever change the network classification outcome.
(Hein & Andriushchenko, 2017) is a pioneering work on
giving such a lower bound for neural networks that are con-
tinuously differentiable, although only a 2-layer MLP net-
work with differentiable activations is investigated. (Weng
et al., 2018) has extended theoretical result to ReLU activa-
tion functions and proposed a robustness score, CLEVER,
based on extreme value theory. Their approach is feasible
for large state-of-the-art DNNs but CLEVER is an estimate
of βL without certificates. Ideally, we would like to obtain
a certified (which guarantees that βL ≤ r0) and non-trivial
(a trivial βL is 0) lower bound βL that is reasonably close
to r0 within reasonable amount of computational time.

In this paper, we develop two fast algorithms for obtaining
a tight and certified lower bound βL on ReLU networks. In
addition, we also provide a complementary theoretical result
to (Katz et al., 2017; Sinha et al., 2018) by further showing
there does not even exist a polynomial time algorithm that
can approximately find the minimum adversarial distortion
with a 0.99 lnn approximation ratio. Our contributions are:

• We fully exploit the ReLU networks to give two computa-
tionally efficient methods of computing tighter and guaran-
teed robustness lower bounds via (1) linear approximation
on the ReLU units (see Sec 3.3, Algorithm 1, Fast-Lin) and
(2) bounding network local Lipschitz constant (see Sec 3.4,
Algorithm 2, Fast-Lip). Unlike the per-layer operator-norm-
based lower bounds which are often very loose (close to
0, as verified in our experiments) for deep networks, our
bounds are much closer to the upper bound given by the
best adversarial examples, and thus can be used to evaluate
the robustness of DNNs with theoretical guarantee.
• We show that our proposed method is at least four or-
ders of magnitude faster than finding the exact minimum
distortion (with Reluplex), and also around two orders of
magnitude (or more) faster than linear programming (LP)
based methods. We can compute a reasonable robustness
lower bound within a minute for a ReLU network with up to
7 layers or over ten thousands neurons, which is so far the
best available result in the literature to our best knowledge.
• We show that there is no polynomial time algorithm that
can find a lower bound of minimum �1 adversarial distortion
with a (1− o(1)) lnn approximation ratio (where n is the
total number of neurons) unless NP=P (see Theorem 3.1).

2. Background and related work
2.1. Solving the minimum adversarial distortion

For ReLU networks, the verification problem can be trans-
formed into a Mixed Integer Linear Programming (MILP)
problem (Lomuscio & Maganti, 2017; Cheng et al., 2017;
Fischetti & Jo, 2017) by using binary variables to encode
the states of ReLU activation in each neuron. (Katz et al.,

2017) proposed Reluplex based on satisfiable modulo theory,
which encodes the network into a set of linear constraints
with special rules to handle ReLU activations and splits the
problem into two LP problems based on a ReLU’s activa-
tion status on demand. Similarly, (Ehlers, 2017) proposed
Planet, another splitting-based approach using satisfiability
(SAT) solvers. These approaches guarantee to find the exact
minimum distortion of an adversarial example, and can be
used for formal verification. However, due to NP-hard na-
ture of the underlying problem, these approaches only work
on very small networks. For example, in (Katz et al., 2017),
verifying a feed-forward network with 5 inputs, 5 outputs
and 300 total hidden neurons on a single data point can take
a few hours. Additionally, Reluplex can find the minimum
distortion only in terms of �∞ norm (�1 is possible via an
extension) and cannot easily generalize to �p norm.

2.2. Computing lower bounds of minimum distortion

(Szegedy et al., 2013) gives a lower bound on the minimum
distortion in ReLU networks by computing the product of
weight matrices operator norms, but this bound is usually
too loose to be useful in practice, as pointed out in (Hein
& Andriushchenko, 2017) and verified in our experiments
(see Table F.1). A tighter bound was given by (Hein &
Andriushchenko, 2017) using local Lipschitz constant on
a network with one hidden layer, but their approach re-
quires the network to be continuously-differentiable, and
thus cannot be directly applied to ReLU networks. (Weng
et al., 2018) further provide the lower bound guarantee to
non-differentiable functions by Lipschitz continuity assump-
tion and propose the first robustness score, CLEVER, that
can evaluate the robustness of DNNs and scale to large
ImageNet networks. As also shown in our experiments in
Section 4, the CLEVER score is indeed a good robustness
estimate close to the true minimum distortion given by Relu-
plex, albeit without providing certificates. Recently, (Wong
& Kolter, 2018) propose a convex relaxation on the MILP
verification problem discussed in Sec 2.1, which reduces
MILP to LP when the adversarial distortion is in �∞ norm.
They focus on adversarial training, and compute layer-wise
bounds by looking into the dual LP problem.

2.3. Hardness and approximation algorithms

NP �= P is the most important and popular assumption in
computational complexity in the last several decades. It
can be used to show that the decision of the exact case
of a problem is hard. However, in several cases, solving
one problem approximately is much easier than solving it
exactly. For example, there is no polynomial time algorithm
to solve the MAX-CUT problem, but there is a simple 0.5-
approximation polynomial time algorithm. Previous works
(Katz et al., 2017; Sinha et al., 2018) show that there is no
polynomial time algorithm to find the minimum adversarial
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distortion r0 exactly. A natural question to ask is: does there
exist a polynomial time algorithm to solve the robustness
problem approximately? In other words, can we give a
lower bound of r0 with a guaranteed approximation ratio?

From another perspective, NP �= P only rules out the poly-
nomial running time. Some problems might not even have a
sub-exponential time algorithm. To rule out that, the most
well-known assumption used is the “Exponential Time Hy-
pothesis” (Impagliazzo et al., 1998). The hypothesis states
that 3SAT cannot be solved in sub-exponential time in the
worst case. Another example is that while tensor rank calcu-
lation is NP-hard (Håstad, 1990), a recent work (Song et al.,
2017b) proved that there is no 2o(n

1−o(1)) time algorithm
to give a constant approximation of the rank of the tensor.
There are also some stronger versions of the hypothesis than
ETH, e.g., Strong ETH (Impagliazzo & Paturi, 2001), Gap
ETH (Dinur, 2016; Manurangsi & Raghavendra, 2017), and
average case ETH (Feige, 2002; Razenshteyn et al., 2016).

3. Robustness guarantees for ReLU networks
Overview of our results. We begin with a motivating
theorem in Sec 3.1 showing that there does NOT exist a
polynomial time algorithm able to find the minimum adver-
sarial distortion with a (1− o(1)) lnn approximation ratio.
We then introduce notations in Sec 3.2 and state our main
results in Sec 3.3 and 3.4, where we develop two approaches
that guarantee to obtain a lower bound of minimum adver-
sarial distortion. In Sec 3.3, we first demonstrate a general
approach to directly derive the output bounds of a ReLU net-
work with linear approximations when inputs are perturbed
by a general �p norm noise. The analytic output bounds
allow us to develop a fast algorithm Fast-Lin to compute
certified lower bound. In Sec 3.4, we present Fast-Lip to
obtain a certified lower bound of minimum distortion by
deriving upper bounds for the local Lipschitz constant. Both
methods are highly efficient and allow fast computation of
certified lower bounds on large ReLU networks.

3.1. Finding the minimum distortion with a 0.99 lnn
approximation ratio is hard

(Katz et al., 2017) shows that verifying robustness for ReLU
networks is NP-complete; in other words, there is no effi-
cient (polynomial time) algorithm to find the exact minimum
adversarial distortion. Here, we further show that even ap-
proximately finding the minimum adversarial distortion with
a guaranteed approximation ratio can be hard. Suppose the
�p norm of the true minimum adversarial distortion is r0,
and a robustness verification program A gives a guarantee
that no adversarial examples exist within an �p ball of ra-
dius r (r is a lower bound of r0). The approximation ratio
α := r0

r > 1. We hope that α is close to 1 with a guarantee;
for example, if α is a constant regardless of the scale of the

network, we can always be sure that r0 is at most α times as
large as the lower bound r found by A. Here we relax this
requirement and allow the approximation ratio to increase
with the number of neurons n. In other words, when n
is larger, the approximation becomes more inaccurate, but
this “inaccuracy” can be bounded. However, the following
theorem shows that no efficient algorithms exist to give a
0.99 lnn approximation in the special case of �1 robustness:
Theorem 3.1. Unless P = NP, there is no polynomial time
algorithm that gives (1 − o(1)) lnn-approximation to the
�1 ReLU robustness verification problem with n neurons.

Our proof is based on a well-known in-approximability re-
sult of SET-COVER problem (Raz & Safra, 1997; Alon
et al., 2006; Dinur & Steurer, 2014) and a novel reduction
from SET-COVER to our problem. We defer the proof
into Appendix A. The formal definition of the �1 ReLU
robustness verification problem can be found in Defini-
tion A.7. Theorem 3.1 implies that any efficient (polyno-
mial time) algorithm cannot give better than (1− o(1)) lnn-
approximation guarantee. Moreover, by making a stronger
assumption of Exponential Time Hypothesis (ETH), we can
state an explicit result about running time using existing
results from SET-COVER (Moshkovitz, 2012a;b),
Corollary 3.2. Under ETH, there is no 2o(n

c) time al-
gorithm that gives (1 − o(1)) lnn-approximation to the
�1 ReLU robustness verification problem with n neurons,
where c ∈ (0, 1) is some fixed constant.

3.2. ReLU Networks and Their Activation Patterns

Let x ∈ Rn0 be the input vector for an m-layer neural
network with m − 1 hidden layers and let the number of
neurons in each layer be nk, ∀k ∈ [m]. We use [n] to denote
set {1, 2, · · · , n}. The weight matrix W(k) and bias vector
b(k) for the k-th layer have dimension nk × nk−1 and nk,
respectively. Let φk : Rn0 → Rnk be the operator mapping
from input layer to layer k and σ(y) be the coordinate-
wise activation function; for each k ∈ [m− 1], the relation
between layer k − 1 and layer k can be written as φk(x) =
σ(W(k)φk−1(x)+b(k)), where W(k) ∈ Rnk×nk−1 , b(k) ∈
Rnk . For the input layer and the output layer, we have
φ0(x) = x and φm(x) = W(m)φm−1(x) + b(m). The
output of the neural network is f(x) = φm(x), which is a
vector of length nm, and the j-th output is its j-th coordinate,
denoted as fj(x) = [φm(x)]j . For ReLU activation, the
activation function σ(y) = max(y,0) is an element-wise
operation on the input vector y.

Given an input data point x0 ∈ Rn0 and a bounded �p-
norm perturbation � ∈ R+, the input x is constrained in
an �p ball Bp(x0, �) := {x | �x − x0�p ≤ �}. With all
possible perturbations in Bp(x0, �), the pre-ReLU activa-
tion of each neuron has a lower and upper bound l ∈ R
and u ∈ R, where l ≤ u. Let us use l

(k)
r and u

(k)
r to de-
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note the lower and upper bound for the r-th neuron in the
k-th layer, and let z(k)

r be its pre-ReLU activation, where
z
(k)
r = W

(k)
r,: φk−1(x) + b

(k)
r , l(k)r ≤ z

(k)
r ≤ u

(k)
r , and

W
(k)
r,: is the r-th row of W(k). There are three categories of

possible activation patterns – (i) the neuron is always acti-
vated: I+

k := {r ∈ [nk] | u(k)
r ≥ l

(k)
r ≥ 0}, (ii) the neuron

is always inactivated: I−
k := {r ∈ [nk] | l(k)r ≤ u

(k)
r ≤ 0},

and (iii) the neuron could be either activated or inacti-
vated: Ik := {r ∈ [nk] | l(k)r < 0 < u

(k)
r }. Obviously,

{I+
k , I−

k , Ik} is a partition of set [nk].

3.3. Approach 1 (Fast-Lin): Certified lower bounds via
linear approximations

3.3.1. DERIVATION OF THE OUTPUT BOUNDS VIA
LINEAR UPPER AND LOWER BOUNDS FOR RELU

In this section, we propose a methodology to directly derive
upper bounds and lower bounds of the output of an m-
layer feed-forward ReLU network. The central idea is to
derive an explicit upper/lower bound based on the linear
approximations for the neurons in category (iii) and the
signs of the weights associated with the activations.

We start with a 2-layers network and then extend it to m
layers. The j-th output of a 2-layer network is:

fj(x) =
�

r∈I+
1 ,I−

1 ,I1

W
(2)
j,rσ(W

(1)
r,: x+ b(1)r ) + b

(2)
j .

For neurons r ∈ I+
1 , we have σ(W(1)

r,: x+b
(1)
r ) = W

(1)
r,: x+

b
(1)
r ; for neurons r ∈ I−

1 , we have σ(W
(1)
r,: x+ b

(1)
r ) = 0.

For the neurons in category (iii), we propose to use the
following linear upper bound and a linear lower bound to
replace the ReLU activation σ(y):

u

u− l
y ≤ σ(y) ≤ u

u− l
(y − l). (1)

Let d(1)
r :=

u(1)
r

u
(1)
r −l

(1)
r

, we have

d(1)
r (W(1)

r,: x+ b(1)r ) ≤ σ(W(1)
r,: x+ b(1)r ) (2)

≤ d(1)
r (W(1)

r,: x+ b(1)r − l(1)r ).

To obtain an upper bound and lower bound of fj(x) with (1),
set d(1)

r = 1 for r ∈ I+
1 , and we have

fU
j (x) =

�

r∈I+
1 ,I1

W
(2)
j,rd

(1)
r (W(1)

r,: x+ b(1)r ) (3)

−
�

r∈I1,W
(2)
j,r>0

W
(2)
j,rd

(1)
r l(1)r + b

(2)
j ,

fL
j (x) =

�

r∈I+
1 ,I1

W
(2)
j,rd

(1)
r (W(1)

r,: x+ b(1)r ) (4)

−
�

r∈I1,W
(2)
j,r<0

W
(2)
j,rd

(1)
r l(1)r + b

(2)
j ,

where fL
j (x) ≤ fj(x) ≤ fU

j (x). To obtain fU
j (x), we take

the upper bound of σ(W(1)
r,: x+ b

(1)
r ) for r ∈ I1,W(2)

j,r > 0

and its lower bound for r ∈ I1,W(2)
j,r ≤ 0. Both cases share

a common term of d(1)
r (W

(1)
r,: x+ b

(1)
r ), which is combined

into the first summation term in (3) with r ∈ I1. Similarly
we get the bound for fL

j (x).

For a general m-layer ReLU network with the linear approx-
imation (1), we will show in Theorem 3.5 that the network
output can be bounded by two explicit functions when the
input x is perturbed with a �-bounded �p noise. We start
by defining the activation matrix D(k) and the additional
equivalent bias terms T(k) and H(k) for the k-th layer in
Definition 3.3 and the two explicit functions in 3.4.

Definition 3.3 (A(k),T(k),H(k)). Given matrices W(k) ∈
Rnk×nk−1 and vectors b(k) ∈ Rnk , ∀k ∈ [m]. We define
D(0) ∈ Rn0×n0 as an identity matrix. For each k ∈ [m−1],
we define matrix D(k) ∈ Rnk×nk as follows

D(k)
r,r =





u(k)
r

u
(k)
r −l

(k)
r

if r ∈ Ik;
1 if r ∈ I+

k ;

0 if r ∈ I−
k .

(5)

We define matrix A(m−1) ∈ Rnm×nm−1 to be
W(m)D(m−1), and for each k ∈ {m − 1,m − 2, · · · , 1},
matrix A(k−1) ∈ Rnm×nk−1 is defined recursively as
A(k−1) = A(k)W(k)D(k−1). For each k ∈ [m − 1], we
define matrices T(k),H(k) ∈ Rnk×nm , where

T
(k)
r,j =

�
l
(k)
r if r ∈ Ik, A(k)

j,r > 0;

0 otherwise .

H
(k)
r,j =

�
l
(k)
r if r ∈ Ik, A(k)

j,r < 0;

0 otherwise .

Definition 3.4 (Two explicit functions : fU (·) and fL(·)).
Let matrices A(k), T(k) and H(k) be defined as in Defini-
tion 3.3. We define two functions fU , fL : Rn0 → Rnm as
follows. For each input vector x ∈ Rn0 ,

fU
j (x) =A

(0)
j,: x+ b

(m)
j +

m−1�

k=1

A
(k)
j,: (b

(k) −T
(k)
:,j ),

fL
j (x) =A

(0)
j,: x+ b

(m)
j +

m−1�

k=1

A
(k)
j,: (b

(k) −H
(k)
:,j ).

Now, we are ready to state our main theorem,
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W(1)

f1
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f3

x1+δ1

x2+δ2

x3+δ3
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f3
U
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L

W(2) W(3) W(4)

input

output

𝑙

𝑢

Linear upper 
bound

Linear lower 
bound

: activated

: inactivated

: uncertain

: linear bounds

Figure 1. Illustration of deriving output bounds for ReLU networks in Section 3.3. The final output upper bounds (fU
j ) and lower bounds

(fL
j ) can be derived by considering the activation status of the neurons with input perturbation �δ�p ≤ �. For neurons in I+

k , their outputs
are identical to their inputs; for neurons in I−

k , they can be removed during computation as their outputs are always zero; for neurons in
Ik, their outputs can be bounded by corresponding linear upper bounds and lower bounds considering the signs of associated weights.

Theorem 3.5 (Explicit upper and lower bounds). Given an
m-layer ReLU neural network function f : Rn0 → Rnm ,
there exists two explicit functions fL : Rn0 → Rnm and
fU : Rn0 → Rnm (see Definition 3.4) such that ∀j ∈
[nm], fL

j (x) ≤ fj(x) ≤ fU
j (x), ∀x ∈ Bp(x0, �).

The proof of Theorem 3.5 is in Appendix B. Since the input
x ∈ Bp(x0, �), we can maximize (3) and minimize (4)
within this set to obtain a global upper and lower bound of
fj(x), which has analytical solutions for any 1 ≤ p ≤ ∞
and the result is formally shown in Corollary 3.7 (proof
in Appendix C). In other words, we have analytic bounds
that can be computed efficiently without resorting to any
optimization solvers for general �p distortion, and this is the
key to enable fast computation for layer-wise output bounds.

We first formally define the global upper bound γU
j and

lower bound γL
j of fj(x), and then obtain Corollary 3.7.

Definition 3.6 (γL
j , γ

U
j ). Given a point x0 ∈ Rn0 , a neural

network function f : Rn0 → Rnm , parameters p, �. Let
matrices A(k), T(k) and H(k), ∀k ∈ [m− 1] be defined as
in Definition 3.3. We define γL

j , γ
U
j , ∀j ∈ [nm] as

γL
j = µ−

j + νj − ��A(0)
j,: �q and γU

j = µ+
j + νj + ��A(0)

j,: �q,

where 1/p+ 1/q = 1 and νj , µ
+
j , µ

−
j are defined as

µ+
j = −

m−1�

k=1

A
(k)
j,: T

(k)
:,j , µ−

j = −
m−1�

k=1

A
(k)
j,: H

(k)
:,j (6)

νj = A
(0)
j,: x0 + b

(m)
j +

m−1�

k=1

A
(k)
j,: b

(k) (7)

Corollary 3.7 (Two side bounds in closed-form). Given
a point x0 ∈ Rn0 , an m-layer neural network function
f : Rn0 → Rnm , parameters p and �. For each j ∈ [nm],
there exist two fixed values γL

j and γU
j (see Definition 3.6)

such that γL
j ≤ fj(x) ≤ γU

j , ∀x ∈ Bp(x0, �).

3.3.2. COMPUTING PRE-ReLU ACTIVATION BOUNDS

Theorem 3.5 and Corollary 3.7 give us a global lower bound
γL
j and upper bound γU

j of the j-th neuron at the m-th layer

if we know all the pre-ReLU activation bounds l(k) and
u(k), from layer 1 to m − 1, as the construction of D(k),
H(k) and T(k) requires l(k) and u(k) (see Definition 3.3).
Here, we show how this can be done easily and layer-by-
layer. We start from m = 1 where A(0) = W(1), fU (x) =
fL(x) = A(0)x+ b(1). Then, we can apply Corollary 3.7
to get the output bounds of each neuron and set them as
l(1) and u(1). Then, we can proceed to m = 2 with l(1)

and u(1) and compute the output bounds of second layer by
Corollary 3.7 and set them as l(2) and u(2). Repeating this
procedure for all m− 1 layers, we will get all the l(k) and
u(k) needed to compute the output range of the m-th layer.

Note that when computing l(k) and u(k), the constructed
W(k)D(k−1) can be saved and reused for bounding the next
layer, which facilitates efficient implementations. Moreover,
the time complexity of computing the output bounds of an
m-layer ReLU network with Theorem 3.5 and Corollary 3.7
is polynomial time in contrast to the approaches in (Katz
et al., 2017) and (Lomuscio & Maganti, 2017) where SMT
solvers and MIO solvers have exponential time complexity.
The major computation cost is to form A(0) for the m-th
layer, which involves multiplications of layer weights in a
similar cost of forward propagation. See the “ComputeT-
woSideBounds” procedure in Algorithm 1 in Appendix D.

3.3.3. DERIVING MAXIMUM CERTIFIED LOWER BOUNDS
OF MINIMUM ADVERSARIAL DISTORTION

Suppose c is the predicted class of the input data point x0

and the class is j. With Theorem 3.5, the maximum possible
lower bound for the targeted attacks ��j and un-targeted
attacks �� are

��j = max
�

� s.t. γL
c (�)− γU

j (�) > 0 and �� = min
j �=c

��j .

Though it is hard to get analytic forms of γL
c (�) and γU

j (�)
in terms of �, fortunately, we can still obtain ��j via a binary
search. This is because Corollary 3.7 allows us to efficiently
compute the numerical values of γL

c (�) and γU
j (�) given �.

It is worth noting that we can further improve the bound
by considering g(x) := fc(x)− fj(x) at the last layer and
apply the same procedure to compute the lower bound of
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g(x) (denoted as �γL); this can be done easily by redefining
the last layer’s weights to be a row vector w̄ := W

(m)
c,: −

W
(m)
j,: . The corresponding maximum possible lower bound

for the targeted attacks is ��j = max � s.t. �γL(�) > 0. We
list our complete algorithm, Fast-Lin, in Appendix D.

3.3.4. DISCUSSIONS

We have shown how to derive explicit output bounds of
ReLU network (Theorem 3.5) with the proposed linear ap-
proximations and obtain analytical certified lower bounds
(Corollary 3.7), which is the key of our proposed algorithm
Fast-Lin. (Wong & Kolter, 2018) presents a similar al-
gorithmic result on computing certified bounds, but our
framework and theirs are entirely different – we use di-
rect computation of layer-wise linear upper/lower bounds
in Sec 3.3 with binary search on �, while their results is
achieved via the lens of dual LP formulation with Newton’s
method. Interestingly, when we choose a special set of lower
and upper bounds as in (2) and they choose a special dual
LP variable in their equation (8), the two different frame-
works coincidentally produce the same procedure for com-
puting layer-wise bounds (the “ComputeTwoSideBounds”
procedure in Fast-Lin and Algorithm 1 in (Wong & Kolter,
2018)). However, our choice of bounds (2) is due to com-
putation efficiency, while (Wong & Kolter, 2018) gives a
quite different justification. We encourage the readers to
read Appendix A.3 in their paper on the justifications for
this specific selection of dual variables and understand this
robustness verification problem from different perspectives.

3.4. Approach 2 (Fast-Lip): Certified lower bounds via
bounding the local Lipschitz constant

(Weng et al., 2018) shows a non-trivial lower bound of
minimum adversarial distortion for an input example x0

in targeted attacks is min
�
g(x0)/L

j
q,x0

, �
�
, where g(x) =

fc(x)−fj(x), L
j
q,x0

is the local Lipschitz constant of g(x)
in Bp(x0, �), j is the target class, c is the original class, and
1/p + 1/q = 1. For un-targeted attacks, the lower bound
can be presented in a similar form. (Weng et al., 2018) uses
sampling techniques to estimate the local Lipschitz constant
and compute an estimated lower bound without certificates.

Here, we propose a new algorithm to compute a certified
lower bound of the minimum adversarial distortion by upper
bounding the local Lipschitz constant. To start with, let us
rewrite the relations of subsequent layers in the following
form: φk(x) = Λ(k)(W(k)φk−1(x) + b(k)), where σ(·) is
replaced by the diagonal activation pattern matrix Λ(k) that
encodes the status of neurons r in k-th layer:

Λ(k)
r,r =





1 or 0 if r ∈ Ik
1 if r ∈ I+

k

0 if r ∈ I−
k

(8)

and Λ(m) = Inm
. With a slight abuse of notation, let

us define Λ
(k)
a as a diagonal activation matrix for neurons

in the k-th layer who are always activated, i.e. the r-th
diagonal is 1 if r ∈ I+

k and 0 otherwise, and Λ
(k)
u as the

diagonal activation matrix for k-th layer neurons whose
status are uncertain, i.e. the r-th diagonal is 1 or 0 (to be
determined) if r ∈ Ik, and 0 otherwise. Therefore, we have
Λ(k) = Λ

(k)
a +Λ

(k)
u . We can obtain Λ(k) for x ∈ Bp(x0, �)

by applying Algorithm 1 and check the lower and upper
bounds for each neuron r in layer k.

3.4.1. A GENERAL UPPER BOUND OF LIPSCHITZ
CONSTANT IN �q NORM

The central idea is to compute upper bounds of Lj
q,x0

by ex-
ploiting the three categories of activation patterns in ReLU
networks when the allowable inputs are in Bp(x0, �). Lj

q,x0

can be defined as the maximum norm of directional deriva-
tive as shown in (Weng et al., 2018). For the ReLU network,
the maximum directional derivative norm can be found by
examining all the possible activation patterns and take the
one (the worst-case) that results in the largest gradient norm.
However, as all possible activation patterns grow exponen-
tially with the number of the neurons, it is impossible to
examine all of them in brute-force. Fortunately, comput-
ing the worst-case pattern on each element of ∇g(x) (i.e.
[∇g(x)]k, k ∈ [n0]) is much easier and more efficient. In
addition, we apply a simple fact that the maximum norm
of a vector (which is ∇g(x),x ∈ Bp(x0, �) in our case)
is upper bounded by the norm of the maximum value for
each components. By computing the worst-case pattern on
[∇g(x)]k and its norm, we can obtain an upper bound of the
local Lipschitz constant, which results in a certified lower
bound of minimum distortion.

Below, we first show how to derive an upper bound of the
Lipschitz constant by computing the worst-case activation
pattern on [∇g(x)]k for 2 layers. Next, we will show how
to apply it repeatedly for a general m-layer network, and the
algorithm is named Fast-Lip. Note that for simplicity, we
will use [∇fj(x)]k to illustrate our derivation; however, it
is easy to extend to [∇g(x)]k as g(x) = fc(x)− fj(x) by
simply replacing last layer weight vector by W

(m)
c,: −W

(m)
j,: .

Bounds for a 2-layer ReLU Network. The gradient is:

[∇fj(x)]k = W
(2)
j,: Λ

(1)
a W

(1)
:,k +W

(2)
j,: Λ

(1)
u W

(1)
:,k .

The first term W
(2)
j,: Λ

(1)
a W

(1)
:,k is a constant and all we need

to bound is the second term W
(2)
j,: Λ

(1)
u W

(1)
:,k . Let C(1)

j,k =

W
(2)
j,: Λ

(1)
a W

(1)
:,k , L

(1)
j,k and U

(1)
j,k be the lower and upper

bounds of the second term, we have

L
(1)
j,k =

�

i∈I1,W
(2)
j,i W

(2)
i,k<0

W
(2)
j,i W

(2)
i,k , U

(1)
j,k =

�

i∈I1,W
(2)
j,i W

(2)
i,k>0

W
(2)
j,i W

(2)
i,k
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max
x∈Bp(x0,�)

|[∇fj(x)]k| ≤ max(|C(1)
j,k+L

(1)
j,k |, |C

(1)
j,k+U

(1)
j,k |).

Bounds for 3 layers or more. For 3 or more layers, we
can apply the above 2-layer results recursively, layer-by-
layer. For example, for a 3-layer ReLU network,

[∇fj(x)]k = W
(3)
j,: Λ

(2)W(2)Λ(1)W
(1)
:,k ,

if we let Y(1)
:,k = W(2)Λ(1)W

(1)
:,k , then [∇fj(x)]k is re-

duced to the following form that is similar to 2 layers:

[∇fj(x)]k = W
(3)
j,: Λ

(2)Y
(1)
:,k (9)

= W
(3)
j,: Λ

(2)
a Y

(1)
:,k +W

(3)
j,: Λ

(2)
u Y

(1)
:,k (10)

To obtain the bound in (9), we first need to obtain a lower
bound and upper bound of Y

(1)
:,k , where we can directly

apply the 2-layer results to get an upper and an lower bound
for each component i as C(1)

i,k+L
(1)
i,k ≤ Y

(1)
i,k ≤ C

(1)
i,k+U

(1)
i,k .

Next, the first term W
(3)
j,: Λ

(2)
a Y

(1)
:,k in (10) can be lower

bounded and upper bounded respectively by
�

i∈I+
2

W
(3)
j,i C

(1)
i,k +

�

i∈I+
2 ,W

(3)
j,i >0

W
(3)
j,i L

(1)
i,k +

�

i∈I+
2 ,W

(3)
j,i <0

W
(3)
j,i U

(1)
i,k

(11)
�

i∈I+
2

W
(3)
j,i C

(1)
i,k +

�

i∈I+
2 ,W

(3)
j,i >0

W
(3)
j,i U

(1)
i,k +

�

i∈I+
2 ,W

(3)
j,i <0

W
(3)
j,i L

(1)
i,k

(12)

whereas the second term W
(3)
j,: Λ

(2)
u Y

(1)
:,k in (10) is bounded

by
�

i∈P W
(3)
j,i (C

(1)
i,k +L

(1)
i,k )+

�
i∈Q W

(3)
j,i (C

(1)
i,k +U

(1)
i,k )

with lower/upper bound index sets PL,QL and PU ,QU :

PL = {i | i ∈ I2,W(3)
j,i > 0,C

(1)
i,k + L

(1)
i,k < 0},

QL = {i | i ∈ I2,W(3)
j,i < 0,C

(1)
i,k +U

(1)
i,k > 0}; (13)

PU = {i | i ∈ I2,W(3)
j,i < 0,C

(1)
i,k + L

(1)
i,k < 0},

QU = {i | i ∈ I2,W(3)
j,i > 0,C

(1)
i,k +U

(1)
i,k > 0}. (14)

Let C(2)
j,k =

�
i∈I+

2
W

(3)
j,i C

(1)
i,k , U(2)

j,k+C
(2)
j,k and L(2)

j,k+C
(2)
j,k

be the upper and lower bound of [∇fj(x)]k, we have

U
(2)
j,k+C

(2)
j,k = (12)+(14) and L

(2)
j,k+C

(2)
j,k = (11)+(13),

max
x∈Bp(x0,�)

|[∇fj(x)]k|≤max(|L(2)
j,k+C

(2)
j,k |, |U

(2)
j,k+C

(2)
j,k |).

Thus, this technique can be used iteratively to solve
maxx∈Bp(x0,�) |[∇fj(x)]k| for a general m-layer network,
and we can easily bound any q norm of ∇fj(x) by the q
norm of the vector of maximum values. For example,

max
x∈Bp(x0,�)

�∇fj(x)�q ≤
��

k

( max
x∈Bp(x0,�)

|[∇fj(x)]k|)q
� 1

q

We list our full procedure, Fast-Lip, in Appendix D.

Further speed-up. Note that in the 3-layer example, we
compute the bounds from right to left, i.e. we first get the
bound of W(2)Λ(1)W

(1)
:,k , and then bound W

(3)
j,: Λ

(2)Y
(1)
:,k .

Similarly, we can compute the bounds from left to right
– get the bound of W

(3)
j,: Λ

(2)W(2) first, and then bound

Y
(2)
j,: Λ

(1)W
(1)
:,k , where Y

(2)
j,: = W

(3)
j,: Λ

(2)W(2). Since the
dimension of the output layer (nm) is typically far less
than the dimension of the input vector (n0), computing the
bounds from left to right is more efficient as the matrix Y
has a smaller dimension of nm × nk rather than nk × n0.

4. Experiments
In this section, we perform extensive experiments to eval-
uate the performance of our proposed two lower-bound
based robustness certificates on networks with different sizes
and with different defending techniques during training pro-
cess. Specifically, we compare our proposed bounds1 (Fast-
Lin, Fast-Lip) with Linear Programming (LP) based meth-
ods (LP, LP-Full), formal verification methods (Reluplex),
lower bound by global Lipschitz constant (Op-norm), es-
timated lower bounds (CLEVER) and attack algorithms
(Attacks) for toy networks (2-3 layers with 20 neurons in
each layer) and large networks (2-7 layers with 1024 or 2048
neurons in each layer) in Table 1. The evaluation on the
effects of defending techniques is presented in Table 2. All
bound numbers are the average of 100 random test images
with random attack targets, and running time (per image) for
all methods is measured on a single CPU core. We include
detailed setup of experiments, descriptions of each method,
additional experiments and discussions in Appendix F (See
Tables F.1 and F.2). The results suggest that our proposed
robustness certificates are of high qualities and are compu-
tationally efficient even in large networks up to 7 layers or
more than 10,000 neurons. In particular, we show that:

• Our certified lower bounds (Fast-Lin, Fast-Lip) are
close to (gap is only 2-3X) the exact minimum distortion
computed by Reluplex for small networks (Reluplex is only
feasible for networks with less 100 neurons for MNIST),
but our algorithm is more than 10,000 times faster than
Reluplex. See Table 1a and Table F.1.
• Our certified lower bounds (Fast-Lin, Fast-Lip) give
similar quality (the gap is within 35%, and usually around
10%; sometimes our bounds are even better) compared with
the LP-based methods (LP, LP-Full); however, our algo-
rithm is 33 - 14,000 times faster. The LP-based methods are
infeasible for networks with more than 4,000 neurons. See
Table 1b and Table F.2.
• When the network goes larger and deeper, our proposed
methods can still give non-trivial lower bounds comparing
to the upper bounds founded by attack algorithms on large

1https://github.com/huanzhang12/CertifiedReLURobustness
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Table 1. Comparison of methods of computing certified lower bounds (Fast-Lin, Fast-Lip, LP, LP-Full,Op-norm), estimated lower
bound (CLEVER), exact minimum distortion (Reluplex) and upper bounds (Attack: CW for p = 2,∞, EAD for p = 1) on (a) 2, 3
layers toy MNIST networks with 20 neurons per layer and (b) large networks with 2-7 layers, 1024 or 2048 nodes per layer. Differences
of lower bounds and speedup are measured on the best bound from our proposed algorithms and LP-based approaches (the bold numbers
in each row). In (a), we show how close our fast bounds are to exact minimum distortions (Reluplex) and the bounds that are slightly
tighter but very expensive (LP-Full). In (b), LP-Full and Reluplex are computationally infeasible for all the networks reported here.

Toy Networks Average Magnitude of Distortions on 100 Images

Network p Target
Certified Lower Bounds difference Exact Uncertified

Our bounds Our Baselines ours vs. Reluplex CLEVER Attacks
Fast-Lin Fast-Lip LP LP-Full LP(-Full) (Katz et al., 2017) (Weng et al., 2018) CW/EAD

MNIST
2× [20]

∞ rand 0.0309 0.0270 0.0319 0.0319 -3.2% 0.07765 0.0428 0.08060
2 rand 0.6278 0.6057 0.7560 0.9182 -31.6% - 0.8426 1.19630
1 rand 3.9297 4.8561 4.2681 4.6822 +3.7% - 5.858 11.4760

MNIST
3× [20]

∞ rand 0.0229 0.0142 0.0241 0.0246 -6.9% 0.06824 0.0385 0.08114
2 rand 0.4652 0.3273 0.5345 0.7096 -34.4% - 0.7331 1.22570
1 rand 2.8550 2.8144 3.1000 3.5740 -20.1% - 4.990 10.7220

(a) Toy networks. Reluplex is designed to verify �∞ robustness so we omit its numbers for p = 2, 1.

Large Networks Average Magnitude of Distortion on 100 Images Average Running Time per Image

Network p
Certified Bounds diff Uncertified Certified Bounds Speedup

Our bounds LP Op-norm ours CLEVER Attacks Our bounds LP ours
Fast-Lin Fast-Lip (Baseline) (Szegedy et al., 2013) vs. LP (Weng et al., 2018) CW/EAD Fast-Lin Fast-Lip (Baseline) vs. LP

MNIST
2× [1024]

∞ 0.03083 0.02512 0.03386 0.00263 -8.9% 0.0708 0.1291 156 ms 219 ms 20.8 s 133X
2 0.63299 0.59033 0.75164 0.40201 -15.8% 1.2841 1.8779 128 ms 234 ms 195 s 1523X
1 3.88241 5.10000 4.47158 0.35957 +14.1% 7.4186 17.259 139 ms 1.40 s 48.1 s 34X

MNIST
3× [1024]

∞ 0.02216 0.01236 0.02428 0.00007 -8.7% 0.0717 0.1484 1.12 s 1.11 s 52.7 s 47X
2 0.43892 0.26980 0.49715 0.10233 -11.7% 1.2441 2.0387 906 ms 914 ms 714 s 788X
1 2.59898 2.25950 2.91766 0.01133 -10.9% 7.2177 17.796 863 ms 3.84 s 109 s 126X

MNIST
4× [1024]

∞ 0.00823 0.00264 - 0.00001 - 0.0793 0.1303 2.25 s 3.08 s - -
2 0.18891 0.06487 - 0.17734 - 1.4231 1.8921 2.37 s 2.72 s - -
1 1.57649 0.72800 - 0.00183 - 8.9764 17.200 2.42 s 2.91 s - -

CIFAR
5× [2048]

∞ 0.00170 0.00030 - 0.00000 - 0.0147 0.02351 26.2 s 78.1 s - -
2 0.07654 0.01417 - 0.00333 - 0.6399 0.9497 36.8 s 49.4 s - -
1 1.18928 0.31984 - 0.00000 - 9.7145 21.643 37.5 s 53.6 s - -

CIFAR
6× [2048]

∞ 0.00090 0.00007 - 0.00000 - 0.0131 0.01866 37.0 s 119 s - -
2 0.04129 0.00331 - 0.01079 - 0.5860 0.7635 60.2 s 95.6 s - -
1 0.72178 0.08212 - 0.00000 - 8.2507 17.160 61.4 s 88.2 s - -

CIFAR
7× [1024]

∞ 0.00134 0.00008 - 0.00000 - 0.0112 0.0218 10.6 s 29.2 s - -
2 0.05938 0.00407 - 0.00029 - 0.5145 0.9730 16.9 s 27.3 s - -
1 0.86467 0.09239 - 0.00000 - 8.630 22.180 17.6 s 26.7 s - -

(b) Larger networks. “-” indicates the corresponding method is computationally infeasible for that network.

Table 2. Comparison of the lower bounds for �∞ distortion found by our algorithms on models with defensive distillation (DD) (Papernot
et al., 2016) with temperature = 100 and adversarial training (Madry et al., 2018) with � = 0.3 for three targeted attack classes.

runner-up target random target least-likely target
Network Method Undefended DD Adv. Training Undefended DD Adv. Training Undefended DD Adv. Training
MNIST

3*[1024]
Fast-Lin 0.01826 0.02724 0.14730 0.02211 0.03827 0.17275 0.02427 0.04967 0.20136
Fast-Lip 0.00965 0.01803 0.09687 0.01217 0.02493 0.11618 0.01377 0.03207 0.13858

MNIST
4*[1024]

Fast-Lin 0.00715 0.01561 0.09579 0.00822 0.02045 0.11209 0.00898 0.02368 0.12901
Fast-Lip 0.00087 0.00585 0.04133 0.00145 0.00777 0.05048 0.00183 0.00903 0.06015

networks. See Table 1b and Table F.2.
• For defended networks, especially for adversarial train-
ing (Madry et al., 2018), our methods give significantly
larger bounds, validating the effectiveness of this defending
method. Our algorithms can thus be used for evaluating
defending techniques. See Table 2.

5. Conclusions
In this paper we have considered the problem of verifying
the robustness property of ReLU networks. By exploit-
ing the special properties of ReLU networks, we have here
presented two computational efficient methods Fast-Lin
and Fast-Lip for this problem. Our algorithms are two or-

ders of magnitude (or more) faster than LP-based methods,
while obtaining solutions with similar quality; meanwhile,
our bounds qualities are much better than the previously
proposed operator-norm based methods. Additionally, our
methods are efficient and easy to implement: we compute
the bounds layer-by-layer, and the computation cost for each
layer is similar to the cost of matrix products in forward
propagation; moreover, we do not need to solve any inte-
ger programming, linear programming problems or their
duals. Future work could extend our algorithm to handle the
structure of convolutional layers and apply our algorithm
to evaluate the robustness property of large DNNs such as
ResNet on the ImageNet dataset.
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A. Hardness
In this section we show that finding the minimum adversarial distortion with a certified approximation ratio is hard. We first
introduce some basic definitions and theorems in Section A.1. We provide some backgrounds about in-approximability
reduction in Section A.2. Section A.3 gives a warmup proof for boolean case and then Section A.4 provides the proof of our
main hardness result (for network with real inputs).

A.1. Definitions

We provide some basic definitions and theorems in this section. First, we define the classic 3SAT problem.
Definition A.1 (3SAT problem). Given n variables and m clauses in a conjunctive normal form CNF formula with the size
of each clause at most 3, the goal is to decide whether there exists an assignment to the n Boolean variables to make the
CNF formula to be satisfied.

For the 3SAT problem in Definition A.1, we introduce the Exponential Time Hypothesis (ETH), which is a common concept
in complexity field.
Hypothesis A.2 (Exponential Time Hypothesis (ETH) (Impagliazzo et al., 1998)). There is a δ > 0 such that the 3SAT
problem defined in Definition A.1 cannot be solved in O(2δn) time.

ETH had been used in many different problems, e.g. clustering (Ailon et al., 2018; Cohen-Addad et al., 2018), low-rank
approximation (Razenshteyn et al., 2016; Song et al., 2017a;b; 2018). For more details, we refer the readers to a survey
(Lokshtanov et al., 2013).

Then we define another classical question in complexity theory, the SET-COVER problem, which we will use in our proof.
The exact SET-COVER problem is one of Karp’s 21 NP-complete problems known to be NP-complete in 1972:
Definition A.3 (SET-COVER). The inputs are U, S; U = {1, 2, · · · , n} is a universe, P (U) is the power set of U , and
S = {S1, · · · , Sm} ⊆ P (U) is a family of subsets, ∪j∈[m]Sj = U . The goal is to give a YES/NO answer to the follow
decision problem:

Does there exist a set-cover of size t, i.e., ∃C ⊆ [m], such that ∪j∈CSj = U with |C| = t?

Alternatively, we can also state the problem as finding the minimum set cover size t0, via a binary search on t using the
answers of the decision problem in A.3. The Approximate SET-COVER problem is defined as follows.
Definition A.4 (Approximate SET-COVER). The inputs are U, S; U = {1, 2, · · · , n} is a universe, P (U) is the power
set of U , and S = {S1, · · · , Sm} ⊆ P (U) is a family of subsets, ∪j∈[m]Sj = U . The goal is to distinguish between the
following two cases:
(I): There exists a small set-cover, i.e., ∃C ⊆ [m], such that ∪j∈CSj = U with |C| ≤ t.
(II): Every set-cover is large, i.e., every C ⊆ [m] with ∪j∈CSj = U satisfies that |C| > αt, where α > 1.

An oracle that solves the Approximate SET-COVER problem outputs an answer tU ≥ t0 but tU ≤ αt0 using a binary
search, where tU is an upper bound of t0 with a guaranteed approximation ratio α. For example, we can use a greedy (rather
than exact) algorithm to solve the SET-COVER problem, which cannot always find the smallest size of set cover t0, but the
size tU given by the greedy algorithm is at most α times as large as t0.

In our setting, we want to investigate the hardness of finding the lower bound with a guaranteed approximation ration, but an
approximate algorithm for SET-COVER gives us an upper bound of t0 instead of an lower bound of t0. However, in the
following proposition, we show that finding an lower bound with an approximation ratio of α is as hard as finding an upper
bound with an approximation ratio of α.
Proposition A.5. Finding a lower bound tL for the size of the minimal set-cover (that has size t0) with an approximation
ratio α is as hard as finding an upper bound tU with an approximation ratio α.

Proof. If we find a lower bound tL with t0
α ≤ tL ≤ t0, by multiplying both sides by α, we also find an upper bound

tU = αtL which satisfies that t0 ≤ tU ≤ αt0. So finding an lower bound with an approximation ratio α is at least as hard as
finding an upper bound with an approximation ratio α. The converse is also true.

SET-COVER is a well-studied problem in the literature. Here we introduce a theorem from (Raz & Safra, 1997; Alon et al.,
2006; Dinur & Steurer, 2014) which implies the hardness of approximating SET-COVER.
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Theorem A.6 ((Raz & Safra, 1997; Alon et al., 2006; Dinur & Steurer, 2014)). Unless NP = P, there is no polynomial
time algorithm that gives a (1− o(1)) lnn-approximation to SET-COVER problem with universe size n.

We now formally define our neural network robustness verification problems.

Definition A.7 (ROBUST-NET(R)). Given an n hidden nodes ReLU neural network F (x) : Rd → R where all weights
are fixed, for a query input vector x ∈ Rd with F (x) ≤ 0. The goal is to give a YES/NO answer to the following decision
problem:

Does there exist a y with �x− y�1 ≤ r such that F (y) > 0?

With an oracle of the decision problem available, we can figure out the smallest r (defined as r0) such that there exists a
vector y with �x− y�1 ≤ r and F (y) > 0 via a binary search.

We also define a binary variant of the ROBUST-NET problem, denoted as ROBUST-NET(B). The proof for this variant is
more straightforward than the real case, and will help the reader understand the proof for the real case.

Definition A.8 (ROBUST-NET(B)). Given an n hidden nodes ReLU neural network F (x) : {0, 1}d → {0, 1} where
weights are all fixed, for a query input vector x ∈ {0, 1}d with F (x) = 0. The goal is to give a YES/NO answer to the
following decision problem:

Does there exist a y with �x− y�1 ≤ r such that F (y) = 1?

Then, we define the approximate version of our neural network robustness verification problems.

Definition A.9 (Approximate ROBUST-NET(B)). Given an n hidden nodes ReLU neural network F (x) : {0, 1}d → {0, 1}
where weights are all fixed, for a query input vector x ∈ {0, 1}d with F (x) = 0. The goal is to distinguish the following
two cases :
(I): There exists a point y such that �x− y�1 ≤ r and F (y) = 1.
(II): For all y satisfies �x− y�1 ≤ αr, the F (y) = 0, where α > 1.

Definition A.10 (Approximate ROBUST-NET(R)). Given an n hidden nodes ReLU neural network F (x) : Rd → R
where weights are all fixed, for a query input vector x ∈ Rd with F (x) ≤ 0. The goal is to distinguish the following two
cases :
(I): There exists a point y such that �x− y�1 ≤ r and F (y) > 0.
(II): For all y satisfies �x− y�1 ≤ αr, the F (y) ≤ 0, where α > 1.

As an analogy to SET-COVER, an oracle that solves the Approximate ROBUST-NET(R) problem can output an answer
r ≥ r0 but r ≤ αr0, which is an upper bound of r0 with a guaranteed approximation ratio α. With a similar statement as in
Proposition A.5, if we divide the answer r by α, then we get a lower bound r� = r

α where r� ≥ r0
α , which is a lower bound

with a guaranteed approximation ratio. If we can solve Approximate ROBUST-NET(R), we can get a lower bound with a
guaranteed approximation ratio, which is the desired goal of our paper.

A.2. Background of the PCP theorem

The famous Probabilistically Checkable Proofs (PCP) theorem is the cornerstone of the theory of computational hardness
of approximation, which investigates the inherent difficulty in designing efficient approximation algorithms for various
optimization problems.2 The formal definition can be stated as follows,

Theorem A.11 ((Arora & Safra, 1998; Arora et al., 1998)). Given a SAT formula φ of size n we can in time polynomial in
n construct a set of M tests satisfying the following:
(I) : Each test queries a constant number d of bits from a proof, and based on the outcome of the queries it either acceptes or
reject φ.
(II) : (Yes Case / Completeness) If φ is satisfiable, then there exists a proof so that all tests accept φ.
(III) : (No Case / Soundness) If φ is not satifiable, then no proof will cause more than M/2 tests to accept φ.

Note that PCP kind of reduction is slightly different from NP reduction, for more examples (e.g. maximum edge biclique,
sparsest cut) about how to use PCP theorem to prove inapproximibility results, we refer the readers to (Ambühl et al., 2011).

2https://en.wikipedia.org/wiki/PCP_theorem
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A.3. Warm-up

We state our hardness result for ROBUST-NET(B) (boolean inputs case) in this section. The reduction procedure for
network with boolean inputs is more straightforward and easier to understand than the real inputs case.

Theorem A.12. Unless NP = P, there is no polynomial time algorithm to give a (1 − o(1)) lnn-approximation to
ROBUST-NET(B) problem (Definition A.9) with n hidden nodes.

Proof. Consider a set-cover instance, let S denote a set of sets {S1, S2, · · · , Sd} where sj ⊆ [n], ∀j ∈ [d].

For each set Sj we create an input node uj . For each element i ∈ [n], we create a hidden node vi. For each i ∈ [n] and
j ∈ [d], if i ∈ Sj , then we connect uj and vi. We also create an output node w, for each i ∈ [n], we connect node vi and
node w.

Let 1i∈Sj
denote the indicator function that it is 1 if i ∈ Sj and 0 otherwise. Let Ti denote the set that Ti = {j | i ∈

Sj , ∀j ∈ [d]}. For each i ∈ [n], we define an activation function φi satisfies that

φi =

�
1, if

�
j∈Ti

uj ≥ 1,

0, otherwise.

Since uj ∈ {0, 1}, φi can be implemented in this way using ReLU activations:

φi = 1−max


0, 1−

�

j∈Ti

uj


 .

Note that
�d

j=1 1i∈Sj
=

�d
j=1 uj , because uj = 1 indicates choosing set Sj and uj = 0 otherwise.

For final output node w, we define an activation function ψ satisfies that

ψ =

�
1, if

�n
i=1 vi ≥ n,

0, otherwise.

Since vi ∈ [n], ψ can be implemented as

ψ = max

�
0,

n�

i=1

vi − n+ 1

�
.

We use vector x to denote {0}d vector and it is to easy to see that F (x) = 0. Let α > 1 denote a fixed parameter. Also, we
have F (y) > 0 if and only if C = {j|yj = 1} is a set-cover. According to our construction, we can have the following two
claims,

Claim A.13 (Completeness). If there exists a set-cover C ⊆ [d] with ∪j∈CSj = [n] and |C| ≤ r, then there exists a point
y ∈ {0, 1}d such that �x− y�1 ≤ r and F (y) > 0.

Claim A.14 (Soundness). If for every C ⊆ [d] with ∪j∈CSj = U satisfies that |C| > α · t, then for all y ∈ {0, 1}d satisfies
that �x− y�1 ≤ αr, F (y) ≤ 0 holds.

Therefore, using Theorem A.11, Theorem A.6, Claim A.13 and Claim A.14 completes the proof.

A.4. Main result

With the proof for ROBUST-NET(B) as a warm-up, we now prove our main hardness result for ROBUST-NET(R) in this
section.

Theorem A.15. Unless NP = P, there is no polynomial time algorithm to give an (1 − o(1)) lnn-approximation to
ROBUST-NET(R) problem (Definition A.10) with n hidden nodes.
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Proof. Consider a set-cover instance, let S denote a set of sets {S1, S2, · · · , Sd} where Sj ⊆ [n], ∀j ∈ [d]. For each set Sj

we create an input node uj . For each j ∈ [d], we create a hidden node tj and connect uj and tj .

For each element i ∈ [n], we create a hidden node vi. For each i ∈ [n] and j ∈ [d], if i ∈ Sj , then we connect uj and vi.
Finally, we create an output node w and for each i ∈ [n], we connect node vi and node w.

Let δ = 1/d. For each j ∈ [n], we apply an activation function φ1,j on tj such that

φ1,j = −max(0, δ − uj) + max(0, uj − 1 + δ)

It is easy to see that

tj = φ1,j =





uj − δ if uj ∈ [0, δ]

uj − (1− δ) if uj ∈ [1− δ, 1]

0 otherwise .

Let Ti denote the set that Ti = {j | i ∈ Sj , ∀j ∈ [d]}. For each i ∈ [n], we need an activation function φ2,i on node vi
which satisfies that

φ2,i ∈
�
[−δ, 0], if ∀j ∈ Ti, tj ∈ [−δ, 0],

[0, δ], if ∃j ∈ Ti, tj ∈ [0, δ].

This can be implemented in the following way,

φ2,i = max
j∈Ti

tj .

For the final output node w, we define it as
w = min

i∈[n]
vi.

We use vector x to denote {0}d vector and it is to easy to see that F (x) = −δ < 0. Let α > 1 denote a fixed parameter.

According to our construction, we can have the following two claims.

Claim A.16 (Completeness). If there exists a set-cover C ⊆ [d] with ∪j∈CSj = [n] and |C| ≤ r, then there exists a point
y ∈ [0, 1]d such that �x− y�1 ≤ r and F (y) > 0.

Proof. Without loss of generality, we let the set cover to be {S1, S2, ..., Sr}. Let y1 = y2 = · · · = yr = 1 and
yr+1 = yr+2 = ... = yd = 0. By the definition of tj , we have t1 = t2 = · · · = tr = δ. Since {S1, S2, · · · , Sr} is a
set-cover, we know that vi = δ for all i ∈ [n]. Then F (y) = w = mini∈[n] vi = δ > 0. Since we also have �y�1 = r, the
adversarial point is found.

Claim A.17 (Soundness). If for every C ⊆ [d] with ∪j∈CSj = U satisfies that |C| > α · r, then for all y ∈ [0, 1]d satisfies
that �x− y�1 ≤ αr(1− 1/d), F (y) ≤ 0 holds.

Proof. Proof by contradiction. We assume that there exists y such that F (y) > 0 and �y�1 ≤ αr(1−1/d). Since F (y) > 0,
we have for all i, vi > 0. Thus there exists j ∈ Ti such that tj > 0. Let π : [n] → Q denote a mapping (Q ⊆ [d] will be
decided later). This means that for each i ∈ [n], there exists j ∈ Ti, such that 1− δ < yj ≤ 1, and we let π(i) denote that j.

We define set Q ⊆ [d] as follows

Q = {j | ∃i ∈ [n], s.t. π(i) = j ∈ Ti and tj > 0}.

Since
�

j∈[d] |yj | = �y�1 ≤ αr(1− 1/d), we have

�

j∈Q

|yj | ≤
�

j∈[d]

|yj | ≤ αr(1− 1/d),
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where the first step follows by |Q| ≤ d.

Because for all j ∈ Q, |yj | > 1− δ = 1− 1/d, we have

|Q| ≤ αr(1− 1/d)

(1− 1/d)
= α · r.

So {Sj}j∈Q is a set-cover with size less than or equal to α · r, which is a contradiction.

Therefore, using Theorem A.11, Theorem A.6, Claim A.16 and Claim A.17 completes the proof.

By making a stronger assumption of ETH, we can have the following stronger result which excludes all 2o(n
c) time

algorithms, where c > 0 is some fixed constant:

Corollary A.18. Assuming Exponential Time Hypothesis (ETH, see Hypothesis A.2), there is no 2o(n
c) time algorithm that

gives a (1− o(1)) lnn-approximation to ROBUST-NET problem with n hidden nodes, where c > 0 is some fixed constant.

Proof. It follows by the construction in Theorem A.15 and (Moshkovitz, 2012a;b).

Note that in (Moshkovitz, 2012a), an additional conjecture, Projection Games Conjecture (PGC) is required for the proof,
but the result was improved in (Moshkovitz, 2012b) and PGC is not a requirement any more.
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B. Proof of Theorem 3.5
For a m-layer ReLU network, assume we know all the pre-ReLU activation bounds l(k) and u(k), ∀k ∈ [m − 1] for a
m-layer ReLU network and we want to compute the bounds of the the j th output at m th layer.

The j th output can be written as

fj(x) =

nm−1�

k=1

W
(m)
j,k [φm−1(x)]k + b

(m)
j , (15)

=

nm−1�

k=1

W
(m)
j,k σ(W

(m−1)
k,: φm−2(x) + b

(m−1)
k ) + b

(m)
j , (16)

=
�

k∈I+
m−1,I

−
m−1,Im−1

W
(m)
j,k σ(W

(m−1)
k,: φm−2(x) + b

(m−1)
k ) + b

(m)
j . (17)

For neurons belonging to category (i), i.e., k ∈ I+
m−1,

σ(W
(m−1)
k,: φm−2(x) + b

(m−1)
k ) = W

(m−1)
k,: φm−2(x) + b

(m−1)
k .

For neurons belonging to category (ii), i.e., k ∈ I−
m−1,

σ(W
(m−1)
k,: φm−2(x) + b

(m−1)
k ) = 0.

Finally, for neurons belonging to Category (iii), i.e., k ∈ Im−1, we bound their outputs. If we adopt the linear upper and

lower bounds in (1) and let d(m−1)
k :=

u
(m−1)
k

u
(m−1)
k −l

(m−1)
k

, we have

d
(m−1)
k (W

(m−1)
k,: φm−2(x)+b

(m−1)
k ) ≤ σ(W

(m−1)
k,: φm−2(x)+b

(m−1)
k ) ≤ d

(m−1)
k (W

(m−1)
k,: φm−2(x)+b

(m−1)
k −l

(m−1)
k ).

(18)

B.1. Upper bound

The goal of this section is to prove Lemma B.1.

Lemma B.1 (Upper bound with explicit function). Given an m-layer ReLU neural network function f : Rn0 → Rnm ,
parameters p, �, there exists two explicit functions fL : Rn0 → Rnm and fU : Rn0 → Rnm (see Definition 3.4) such that
∀j ∈ [nm],

fj(x) ≤ fU
j (x), ∀x ∈ Bp(x0, �).

Notice that (18) can be used to construct an upper bound and lower bound of fj(x) by considering the signs of the weights
W

(m)
j,k . Let fU,m−1

j (x) be an upper bound of fj(x); f
U,m−1
j (x) can be constructed by taking the right-hand-side (RHS) of
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(18) if W(m)
j,k > 0 and taking the left-hand-side (LHS) of (18) if W(m)

j,k < 0:

fU,m−1
j (x)

=
�

k∈I+
m−1

W
(m)
j,k (W

(m−1)
k,: φm−2(x) + b

(m−1)
k ) (19)

+
�

k∈Im−1,W
(m)
j,k >0

W
(m)
j,k d

(m−1)
k (W

(m−1)
k,: φm−2(x) + b

(m−1)
k − l

(m−1)
k )

+
�

k∈Im−1,W
(m)
j,k <0

W
(m)
j,k d

(m−1)
k (W

(m−1)
k,: φm−2(x) + b

(m−1)
k ) + b

(m)
j

=

nm−1�

k=1

W
(m)
j,k d

(m−1)
k (W

(m−1)
k,: φm−2(x) + b

(m−1)
k )−

�

k∈Im−1,W
(m)
j,k >0

W
(m)
j,k d

(m−1)
k l

(m−1)
k + b

(m)
j , (20)

=

nm−1�

k=1

W
(m)
j,k d

(m−1)
k W

(m−1)
k,: φm−2(x) (21)

+




nm−1�

k=1

W
(m)
j,k d

(m−1)
k b

(m−1)
k −

�

k∈Im−1,W
(m)
j,k >0

W
(m)
j,k d

(m−1)
k l

(m−1)
k + b

(m)
j


 ,

where we set d(m−1)
k = 1 for k ∈ I+

m−1 and set d(m−1)
k = 0 for k ∈ I−

m−1 from (19) to (20) and collect the constant terms
(independent of x) in the parenthesis from (20) to (21).

If we let A(m−1) = W(m)D(m−1), where D(m−1) is a diagonal matrix with diagonals being d
(m−1)
k , then we can rewrite

fU,m−1
j (x) into the following:

fU,m−1
j (x) =

nm−1�

k=1

A
(m−1)
j,k W

(m−1)
k,: φm−2(x) +

�
A

(m−1)
j,: b(m−1) −A

(m−1)
j,: T

(m−1)
:,j + b

(m)
j

�
(22)

=

nm−1�

k=1

A
(m−1)
j,k (

nm−2�

r=1

W
(m−1)
k,r [φm−2(x)]r) +

�
A

(m−1)
j,: b(m−1) −A

(m−1)
j,: T

(m−1)
:,j + b

(m)
j

�
(23)

=

nm−2�

r=1

nm−1�

k=1

A
(m−1)
j,k W

(m−1)
k,r [φm−2(x)]r +

�
A

(m−1)
j,: b(m−1) −A

(m−1)
j,: T

(m−1)
:,j + b

(m)
j

�
(24)

=

nm−2�

r=1

�W (m−1)
j,r [φm−2(x)]r + �b(m−1)

j . (25)

From (21) to (22), we rewrite the summation terms in the parenthesis into matrix-vector multiplications and for each
j ∈ [nm] let

T
(m−1)
k,j =

�
l
(m−1)
k if k ∈ Im−1, A

(m−1)
j,k > 0

0 otherwise

since 0 ≤ d
(m−1)
k ≤ 1, W(m)

j,k > 0 is equivalent to A
(m−1)
j,k > 0.

From (22) to (23), we simply write out the inner product W(m−1)
k,: φm−2(x) into a summation form, and from (23) to (24),

we exchange the summation order of k and r. From (24) to (25), we let

�W (m−1)
j,r =

nm−1�

k=1

A
(m−1)
j,k W

(m−1)
k,r (26)

�b(m−1)
j =

�
A

(m−1)
j,: b(m−1) −A

(m−1)
j,: T

(m−1)
:,j + b

(m)
j

�
(27)
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and now we have (25) in the same form as (15).

Indeed, in (15), the running index is k and we are looking at the m th layer, with weights W
(m)
j,k , activation functions

φm−1(x) and bias term b
(m)
j ; in (25), the running index is r and we are looking at the m − 1 th layer with equivalent

weights �W (m−1)
j,r , activation functions φm−2(x) and equivalent bias �b(m−1)

j . Thus, we can use the same technique from
(15) to (25) and obtain an upper bound on the fU,m−1

j (x) and repeat this procedure until obtaining fU,1
j (x), where

fj(x) ≤ fU,m−1
j (x) ≤ fU,m−2

j (x) ≤ . . . ≤ fU,1
j (x).

Let the final upper bound fU
j (x) = fU,1

j (x), and now we have

fj(x) ≤ fU
j (x),

where fU
j (x) = [fU (x)]j ,

fU
j (x) = A

(0)
j,: x+ b

(m)
j +

m−1�

k=1

A
(k)
j,: (b

(k) −T
(k)
:,j )

and for k = 1, . . . , m− 1,

A(m−1) = W(m)D(m−1), A(k−1) = A(k)W(k)D(k−1),

D(0) = In0

D(k)
r,r =





u(k)
r

u
(k)
r −l

(k)
r

if r ∈ Ik
1 if r ∈ I+

k

0 if r ∈ I−
k

T
(k)
r,j =

�
l
(k)
r if r ∈ Ik, A(k)

j,r > 0

0 otherwise

B.2. Lower bound

The goal of this section is to prove Lemma B.2.

Lemma B.2 (Lower bound with explicit function). Given an m-layer ReLU neural network function f : Rn0 → Rnm ,
parameters p, �, there exists two explicit functions fL : Rn0 → Rnm and fU : Rn0 → Rnm (see Definition 3.4) such that
∀j ∈ [nm],

fL
j (x) ≤ fj(x), ∀x ∈ Bp(x0, �).

Similar to deriving the upper bound of fj(x), we consider the signs of the weights W(m)
j,k to derive the lower bound. Let

fL,m−1
j (x) be a lower bound of fj(x); f

L,m−1
j (x) can be constructed by taking the right-hand-side (RHS) of (18) if

W
(m)
j,k < 0 and taking the left-hand-side (LHS) of (18) if W(m)

j,k > 0. Following the procedure in (19) to (25) (except that

now the additional bias term is from the set k ∈ Im−1,W
(m)
j,k < 0), the lower bound is similar to the upper bound we have

derived but but replace T(m−1) by H(m−1), where for each j ∈ [nm],

H
(m−1)
k,j =

�
l
(m−1)
k if k ∈ Im−1, A

(m−1)
j,k < 0

0 otherwise.

It is because the linear upper and lower bounds in (1) has the same slope u
u−l on both sides (i.e. σ(y) is bounded by two

lines with the same slope but different intercept), which gives the same A matrix and D matrix in computing the upper



Towards Fast Computation of Certified Robustness for ReLU Networks

bound and lower bound of fj(x). This is the key to facilitate a faster computation under this linear approximation (1). Thus,
the lower bound for fj(x) is:

fL
j (x) ≤ fj(x),

where fL
j (x) = [fL(x)]j ,

fL
j (x) = A

(0)
j,: x+ b

(m)
j +

m−1�

k=1

A
(k)
j,: (b

(k) −H
(k)
:,j )

and for k = 1, . . . , m− 1,

H
(k)
r,j =

�
l
(k)
r if r ∈ Ik, A(k)

j,r < 0

0 otherwise.
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C. Proof of Corollary 3.7
By Theorem 3.5, for x ∈ Bp(x0, �), we have fL

j (x) ≤ fj(x) ≤ fU
j (x). Thus,

fj(x) ≤ fU
j (x) ≤ max

x∈Bp(x,�)
fU
j (x), (28)

fj(x) ≥ fL
j (x) ≥ min

x∈Bp(x,�)
fL
j (x). (29)

Since fU
j (x) = A

(0)
j,: x+ b

(m)
j +

�m−1
k=1 A

(k)
j,: (b

(k) −T
(k)
:,j ),

γU
j := max

x∈Bp(x0,�)
fU
j (x) = max

x∈Bp(x0,�)

�
A

(0)
j,: x+ b

(m)
j +

m−1�

k=1

A
(k)
j,: (b

(k) −T
(k)
:,j )

�

=

�
max

x∈Bp(x0,�)
A

(0)
j,: x

�
+ b

(m)
j +

m−1�

k=1

A
(k)
j,: (b

(k) −T
(k)
:,j ) (30)

= �

�
max

y∈Bp(0,1)
A

(0)
j,: y

�
+A

(0)
j,: x0 + b

(m)
j +

m−1�

k=1

A
(k)
j,: (b

(k) −T
(k)
:,j ) (31)

= ��A(0)
j,: �q +A

(0)
j,: x0 + b

(m)
j +

m−1�

k=1

A
(k)
j,: (b

(k) −T
(k)
:,j ). (32)

From (30) to (31), we do a transformation of variable y := x−x0

� and therefore y ∈ Bp(0, 1). By the definition of dual
norm � · �∗:

�z�∗ = {sup
y

z�y | �y� ≤ 1},

and the fact that �q norm is dual of �p norm for p, q ∈ [1,∞], the term
�
maxy∈Bp(0,1) A

(0)
j,: y

�
in (31) can be expressed as

�A(0)
j,: �q in (32). Similarly,

γL
j := min

x∈Bp(x0,�)
fL
j (x) = min

x∈Bp(x0,�)

�
A

(0)
j,: x+ b

(m)
j +

m−1�

k=1

A
(k)
j,: (b

(k) −H
(k)
:,j )

�

=

�
min

x∈Bp(x0,�)
A

(0)
j,: x

�
+ b

(m)
j +

m−1�

k=1

A
(k)
j,: (b

(k) −H
(k)
:,j )

= �

�
min

y∈Bp(0,1)
A

(0)
j,: y

�
+A

(0)
j,: x0 + b

(m)
j +

m−1�

k=1

A
(k)
j,: (b

(k) −H
(k)
:,j )

= −�

�
max

y∈Bp(0,1)
−A

(0)
j,: y

�
+A

(0)
j,: x0 + b

(m)
j +

m−1�

k=1

A
(k)
j,: (b

(k) −H
(k)
:,j ) (33)

= −��A(0)
j,: �q +A

(0)
j,: x0 + b

(m)
j +

m−1�

k=1

A
(k)
j,: (b

(k) −H
(k)
:,j ). (34)

Again, from (33) to (34), we simply replace
�
maxy∈Bp(0,1) −A

(0)
j,: y

�
by � −A

(0)
j,: �q = �A(0)

j,: �q. Thus, if we use νj to

denote the common term A
(0)
j,: x0 + b

(m)
j +

�m−1
k=1 A

(k)
j,: b

(k), we have

γU
j = ��A(0)

j,: �q −
m−1�

k=1

A
(k)
j,: T

(k)
:,j + νj , (upper bound)

γL
j = −��A(0)

j,: �q −
m−1�

k=1

A
(k)
j,: H

(k)
:,j + νj . (lower bound)
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D. Algorithms
We present our full algorithms, Fast-Lin in Algorithm 1 and Fast-Lip in Algorithm 2.

Algorithm 1 Fast Bounding via Linear Upper/Lower Bounds for ReLU (Fast-Lin)

Require: weights and biases of m layers: W(1), · · · ,W(m), b(1), · · · , b(m), original class c, target class j
1: procedure FAST-LIN(x0, p, �0)
2: Replace the last layer weights W(m) with a row vector w̄ ← W

(m)
c,: −W

(m)
j,: (see Section 3.3.3)

3: Initial � ← �0
4: while � has not achieved a desired accuracy and iteration limit has not reached do
5: l(0),u(0) ← don’t care
6: for k ← 1 to m do � Compute lower and upper bounds for ReLU unis for all m layers
7: l(k),u(k) ←COMPUTETWOSIDEBOUNDS(x0, �, p, l

(1:k−1),u(1:k−1), k)
8: if l(m) > 0 then � l(m) is a scalar since the last layer weight is a row vector
9: � is a lower bound; increase � using a binary search procedure

10: else
11: � is not a lower bound; decrease � using a binary search procedure
12: ��j ← �
13: return ��j � ��j is a certified lower bound βL

14: procedure COMPUTETWOSIDEBOUNDS(x0, �, p, l
(1:m�−1),u(1:m�−1),m�)

15: � x0 ∈ Rn0 : input data vector, p : �p norm, � : maximum �p-norm perturbation
16: � l(k),u(k), k ∈ [m�] : layer-wise bounds
17: if m� = 1 then � Step 1: Form A matrices
18: A(0) ← W(1) � First layer bounds do not depend on l(0),u(0)

19: else
20: for k ← m� − 1 to 1 do
21: if k = m� − 1 then � Construct D(m�−1),A(m�−1),H(m�−1),T(m�−1)

22: Construct diagonal matrix D(k) ∈ Rnk×nk using l(k),u(k) according to Eq. (5).
23: A(m�−1) ← W(m�)D(m�−1)

24: else � Multiply all saved A(k) by A(m�−1)

25: A(k) ← A(m�−1)A(k) � We save A(k) for next function call
26: T(k) ← 0, H(k) ← 0 � Initialize T(k) and H(k)

27: for all r ∈ Ik do
28: for j ← 1 to nk do
29: if A(k)

j,r > 0 then
30: T

(k)
r,j ← l

(k)
r

31: else
32: H

(k)
r,j ← l

(k)
r

33: for j = 1 to nm� do � Step 2: Compute γU and γL

34: νj ← A
(0)
j,: x0 + b

(m�)
j , µ+

j ← 0, µ−
j ← 0 � Initialize νj , µ

+
j , µ

−
j

35: for k = 1 to m� − 1 do � This loop is skipped when m� = 1

36: µ+
j ← µ+

j −A
(k)
j,: T

(k)
:,j , µ−

j ← µ−
j −A

(k)
j,: H

(k)
:,j � According to Eq. (6)

37: νj ← νj +A
(k)
j,: b

(k) � According to Eq. (7)

38: � νj , µ
+
j , µ

−
j satisfy Definition 3.6

39: γU
j ← µ+

j + νj + ��A(0)
j,: �q

40: γL
j ← µ−

j + νj − ��A(0)
j,: �q � Definition 3.6

41: return γL, γU
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Algorithm 2 Fast Bounding via Upper Bounding Local Lipschitz Constant (Fast-Lip)

Require: Weights of m layers: W(1), · · ·W(m), original class c, target class j
1: procedure FAST-LIP(x0, p, �)
2: Replace the last layer weights W(m) with a row vector w̄ ← W

(m)
c,: −W

(m)
j,: (see Section 3.3.3)

3: Run FAST-LIN to find layer-wise bounds l(i),u(i), and form I+
i , I−

i , Ii fo all i ∈ [m]
4: C(0) ← W(1), L(0) ← 0, U(0) ← 0
5: for l ← 1 to m− 1 do
6: C(l),L(l),U(l) = BOUNDLAYERGRAD(C(l−1),L(l−1),U(l−1),W(l+1), nl+1, I+

l , I−
l , Il)

7: � v ∈ Rn0 because the last layer is replaced with a row vector w̄
8: v ← max(|C(m−1) + L(m−1)|, |C(m−1) +U(m−1)|) � All operations are element-wise;
9: ��j ← min( g(x0)

�v�q
, �) � q is the dual norm of p, 1

p + 1
q = 1

10: return ��j � ��j is a certified lower bound βL. We can also bisect ��j (omitted).
11: procedure BOUNDLAYERGRAD(C,L,U,W, n�, I+, I−, I)
12: for k ∈ [n0] do � n0 is the dimension of x0

13: for j ∈ [n�] do
14: C

�
j,k ← �

i∈I+

Wj,iCi,k

15: U
�
j,k ← �

i∈I+,Wj,i>0

Wj,iUi,k +
�

i∈I+,Wj,i<0

Wj,iLi,k +

16:
�

i∈I,Wj,i<0,Ci,k+Li,k<0

Wj,i(Ci,k + Li,k) +
�

i∈I,Wj,i>0,Ci,k+Ui,k>0

Wj,i(Ci,k +Ui,k)

17: L
�
j,k ← �

i∈I+,Wj,i>0

Wj,iLi,k +
�

i∈I+,Wj,i<0

Wj,iUi,k +

18:
�

i∈I,Wj,i>0,Ci,k+Li,k<0

Wj,i(Ci,k + Li,k) +
�

i∈I,Wj,i<0,Ci,k+Ui,k>0

Wj,i(Ci,k +Ui,k)

19: return C
�
,L

�
,U

�

E. An alternative bound on the Lipschitz constant
Using the property of norm, we can derive an upper bound of the gradient norm of a 2-layer ReLU network in the following:

�∇fj(x)�q
= �W(2)

j,: Λ
(1)W(1)�q

= �W(2)
j,: (Λ

(1)
a +Λ(1)

u )W(1)�q (35)

≤ �W(2)
j,: Λ

(1)
a W(1)�q + �W(2)

j,: Λ
(1)
u W(1)�q (36)

≤ �W(2)
j,: Λ

(1)
a W(1)�q +

�

r∈I1

�W(2)
j,rW

(1)
r,: �q (37)

where with a slight abuse of notation, we use Λ
(1)
a to denote the diagonal activation matrix for neurons who are always

activated, i.e. its (r, r) entry Λ
(1)
a(r,r) is 1 if r ∈ I+

1 and 0 otherwise, and we use Λ
(1)
u to denote the diagonal activation

matrix for neurons whose status are uncertain because they could possibly be active or inactive, i.e. its (r, r) entry Λ
(1)
u(r,r) is

1 if r ∈ I1 and 0 otherwise. Therefore, we can write Λ(1) as a sum of Λ(1)
a and Λ

(1)
u .

Note that (35) to (36) is from the sub-additive property of a norm, and (36) to (37) uses the sub-additive property of a norm
again and set the uncertain neurons encoding all to 1 because

�W(2)
j,: Λ

(1)
u W(1)� = �

�

r∈I1

W
(2)
j,rΛ

(1)
u(r,r)W

(1)
r,: � ≤

�

r∈I1

�W(2)
j,rΛ

(1)
u(r,r)W

(1)
r,: � ≤

�

r∈I1

�W(2)
j,rW

(1)
r,: �.

Notice that (37) can be used as an upper bound of Lipschitz constant and is applicable to compute a certified lower bound
for minimum adversarial distortion of a general �p norm attack. However, this bound is expected to be less tight because we
simply include all the uncertain neurons to get an upper bound on the norm in (37).
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F. Details of Experiments in Section 4
F.1. Methods

Below, we give detailed descriptions on the methods that we compare in Table 1, Table F.1 and Table F.2:

• Fast-Lin: Our proposed method of directly bounding network output via linear upper/lower bounds for ReLU, as
discussed in Section 3.3 and Algorithm 1;

• Fast-Lip: Our proposed method based on bounding local Lipschitz constant, in Section 3.4 and Algorithm 2;

• Reluplex: Reluplex (Katz et al., 2017) is a satisfiability modulo theory (SMT) based solver which delivers a true
minimum distortion, but is very computationally expensive;

• LP-Full: A linear programming baseline method with formulation borrowed from (Wong & Kolter, 2018). Note that
we solve the primal LP formulation exactly to get a best possible bound. This variant solves full relaxed LP problems
at every layer to give a final “adversarial polytope”. Similar to our proposed methods, it only gives a lower bound.
We extend this formulation to p = 2 case, where the input constraint becomes quadratic and requires a quadratic
constrained programming (QCP) solver, which is usually slower than LP solvers.

• LP: Similar to LP-Full, but this variant solves only one LP problem for the full network at the output neurons and the
layer-wise bounds for the neurons in hidden layers are solved by Fast-Lin. We also extend it to p = 2 case with QCP
constraints on the inputs. LP and LP-Full are served as our baselines to compare with Fast-Lin and Fast-Lip;

• Attacks: Any successful adversarial example gives a valid upper bound for the minimum adversarial distortion. For
larger networks where Reluplex is not feasible, we run adversarial attacks and obtain an upper bound of minimal
adversarial distortions to compare with. We apply the �2 and �∞ variants of Carlini and Wagner’s attack (CW) (Carlini
& Wagner, 2017c) to find the best �2 and �∞ distortions. We found that the CW �∞ attack usually finds adversarial
examples with smaller �∞ distortions than using PGD (projected gradient descent). We use EAD (Chen et al., 2018b),
a Elastic-Net regularized attack, to find adversarial examples with small �1 distortions. We run CW �2 and �∞ attacks
for 3,000 iterations and EAD attacks for 2,000 iterations;

• CLEVER: CLEVER (Weng et al., 2018) is an attack-agnostic robustness score based on local Lipschitz constant
estimation and provides an estimated lower-bound. It is capable of performing robustness evaluation for large-scale
networks but is not a certified lower bound;

• Op-norm: Operator norms of weight matrices were first used in (Szegedy et al., 2013) to give a robustness lower
bound. We compute the �p induced norm of weight matrices of each layer and use their product as the global Lipschitz
constant Lj

q . A valid lower bound is given by g(x0)/L
j
q (see Section 3.4). We only need to pre-compute the operator

norms once for all the examples.

F.2. Setup

We use MNIST and CIFAR datasets and evaluate the performance of each method in MLP networks with up to 7 layers
or over 10,000 neurons, which is the largest network size for non-trivial and guaranteed robustness verification to date.
We use the same number of hidden neurons for each layer and denote a m-layer network with n hidden neurons in each
layer as m× [n]. Each network is trained with a grid search of learning rates from {0.1, 0.05, 0.02, 0.01, 0.005} and weight
decays from {10−4, 10−5, 10−6, 10−7, 10−8} and we select the network with the best validation accuracy. We consider
both targeted and untargeted robustness under �p distortions (p = 1, 2,∞); for targeted robustness, we consider three target
classes: a random class, a least likely class and a runner-up class (the class with second largest probability). The reported
average scores are an average of 100 images from the test set, with images classified wrongly skipped. Reported time is per
image. We use binary search to find the certified lower bounds in Fast-Lin, Fast-Lip, LP and LP-Full, and the maximum
number of search iterations is set to 15.

We implement our algorithm using Python (with Numpy and Numba)3, while for the LP based method we use the highly
efficient Gurobi commercial LP solver with Python Interface. All experiments are conducted in single thread mode (we

3https://github.com/huanzhang12/CertifiedReLURobustness
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disable the concurrent solver in Gurobi) on a Intel Xeon E5-2683v3 (2.0 GHz) CPU. Despite the inefficiency of Python,
we still achieve two orders of magnitudes speedup compared with LP, while achieving a very similar lower bound. Our
methods are automatically parallelized by Numba and can gain further speedups on a multi-core CPU, but we disabled this
parallelization for a fair comparison to other methods.

F.3. Discussions

In Table 1a (full Table: Table F.1), we compare the lower bound βL computed by each algorithm to the true minimum
distortion r0 found by Reluplex. We are only able to verify 2 and 3 layer MNIST with 20 neurons per hidden layer within
reasonable time using Reluplex. It is worth noting that the input dimension (784) is very large compared to the network
evaluated in (Katz et al., 2017) with only 5 inputs. Lower bounds found by Fast-Lin is very close to LP, and the gaps are
within 2-3X from the true minimum distortion r0 found by Reluplex. The upper bound given by CW �∞ are also very close
to r0.

In Table 1b (full Table: Table F.2), we compare Fast-Lin, Fast-Lip with LP and Op-norm on larger networks with up to
over ten thousands hidden neurons. Fast-Lin and Fast-Lip are significantly faster than LP and are able to verify much
larger networks (LP becomes very slow to solve exactly on 4-layer MNIST with 4096 hidden neurons, and is infeasible for
even larger CIFAR models). Fast-Lin achieves a very similar bound comparing with results of LP over all smaller models,
but being over two orders of magnitude faster. We found that Fast-Lip can achieve better bounds when p = 1 in two-layers
networks, and is comparable to Fast-Lin in shallow networks. Meanwhile, we also found that Fast-Lin scales better than
Fast-Lip for deeper networks, where Fast-Lin usually provides a good bound even when the number of layers is large.
For deeper networks, neurons in the last few layers are likely to have uncertain activations, making Fast-Lip being too
pessimistic. However, Fast-Lip outperforms the global Lipschitz constant based bound (Op-norm) which quickly goes
down to 0 when the network goes deeper, as Fast-Lip is bounding the local Lipschitz constant to compute robustness lower
bound. In Table F.2, we also apply our method to MNIST and CIFAR models to compare the minimum distortion for
untargeted attacks. The computational benefit of Fast-Lin and Fast-Lip is more significant than LP because LP needs to
solve nm objectives (where nm is the total number of classes), whereas the cost of our methods stay mostly unchanged as
we get the bounds for all network outputs simultaneously.

In Table 2, we compute our two proposed lower bounds on neural networks with defending techniques to evaluate the
effects of defending techniques (e.g. how much robustness is increased). We train the network with two defending methods,
defensive distillation (DD) (Papernot et al., 2016) and adversarial training (Madry et al., 2018) based on robust optimization.
For DD we use a temperature of 100, and for adversarial training, we train the network for 100 epochs with adversarial
examples crafted by 10 iterations of PGD with � = 0.3. The test accuracy for the adversarially trained models dropped from
98.5% to 97.3%, and from 98.6% to 98.1%, for 3 and 4 layer MLP models, respectively. We observe that both defending
techniques can increase the computed robustness lower bounds, however adversarial training is significantly more effective
than defensive distillation. The lower bounds computed by Fast-Lin are close to the desired robustness guarantee � = 0.3.
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Table F.1. Comparison of our proposed certified lower bounds Fast-Lin and Fast-Lip, LP and LP-Full, the estimated lower bounds by
CLEVER, the exact minimum distortion by Reluplex, and the upper bounds by Attack algorithms (CW �∞ for p = ∞, CW �2 for
p = 2, and EAD for p = 1) on 2, 3 layers toy MNIST networks with only 20 neurons per layer. Differences of lower bounds and speedup
are measured on the two corresponding bold numbers in each row, representing the best answer from our proposed algorithms and LP
based approaches. Reluplex is designed to verify �∞ robustness so we omit results for �2 and �1. Note that LP-Full and Reluplex are
very slow and cannot scale to any practical networks, and the purpose of this table is to show how close our fast bounds are compared to
the true minimum distortion provided by Reluplex and the bounds that are slightly tighter but very expensive (e.g. LP-Full).

Toy Networks Average Magnitude of Distortions on 100 Images

Network p Target
Certified Bounds difference Exact Uncertified

Our bounds Our baselines ours vs. Reluplex CLEVER Attacks
Fast-Lin Fast-Lip LP LP-Full LP(-Full) (Katz et al., 2017) (Weng et al., 2018) CW/EAD

MNIST
2× [20]

∞
runner-up 0.0191 0.0167 0.0197 0.0197 -3.0% 0.04145 0.0235 0.04384

rand 0.0309 0.0270 0.0319 0.0319 -3.2% 0.07765 0.0428 0.08060
least 0.0448 0.0398 0.0462 0.0462 -3.1% 0.11711 0.0662 0.1224

2
runner-up 0.3879 0.3677 0.4811 0.5637 -31.2% - 0.4615 0.64669

rand 0.6278 0.6057 0.7560 0.9182 -31.6% - 0.8426 1.19630
least 0.9105 0.8946 1.0997 1.3421 -32.2% - 1.315 1.88830

1
runner-up 2.3798 2.8086 2.5932 2.8171 -0.3% - 3.168 5.38380

rand 3.9297 4.8561 4.2681 4.6822 +3.7% - 5.858 11.4760
least 5.7298 7.3879 6.2062 6.8358 +8.1% - 9.250 19.5960

MNIST
3× [20]

∞
runner-up 0.0158 0.0094 0.0168 0.0171 -7.2% 0.04234 0.0223 0.04786

rand 0.0229 0.0142 0.0241 0.0246 -6.9% 0.06824 0.0385 0.08114
least 0.0304 0.0196 0.0319 0.0326 -6.9% 0.10449 0.0566 0.11213

2
runner-up 0.3228 0.2142 0.3809 0.4901 -34.1% - 0.4231 0.74117

rand 0.4652 0.3273 0.5345 0.7096 -34.4% - 0.7331 1.22570
least 0.6179 0.4454 0.7083 0.9424 -34.4% - 1.100 1.71090

1
runner-up 2.0189 1.8819 2.2127 2.5010 -19.3% - 2.950 6.13750

rand 2.8550 2.8144 3.1000 3.5740 -20.1% - 4.990 10.7220
least 3.7504 3.8043 4.0434 4.6967 -19.0% - 7.131 15.6850

(a) Comparison of bounds

Toy Networks Average Running Time per Image

Network p Target
Certified Bounds Exact Speedup

Our bounds Our baselines Reluplex ours vs.
Fast-Lin Fast-Lip LP LP-Full (Katz et al., 2017) LP-(full)

MNIST
2× [20]

∞
runner-up 3.09 ms 3.49 ms 217 ms 1.74 s 134 s 70X

rand 3.25 ms 5.53 ms 234 ms 1.93 s 38 s 72X
least 3.37 ms 8.90 ms 250 ms 1.97 s 360 s 74X

2
runner-up 3.00 ms 3.76 ms 1.10 s 20.6 s - 6864X

rand 3.37 ms 6.16 ms 1.20 s 23.1 s - 6838X
least 3.29 ms 9.89 ms 1.27 s 26.4 s - 8021X

1
runner-up 2.85 ms 39.2 ms 1.27 s 16.1 s - 412X

rand 3.32 ms 54.8 ms 1.59 s 17.3 s - 316X
least 3.46 ms 68.1 ms 1.74 s 17.7 s - 260X

MNIST
3× [20]

∞
runner-up 5.58 ms 3.64 ms 253 ms 6.12 s 4.7 hrs 1096X

rand 6.12 ms 5.23 ms 291 ms 7.16 s 11.6 hrs 1171X
least 6.62 ms 7.06 ms 307 ms 7.30 s 12.6 hrs 1102X

2
runner-up 5.35 ms 3.95 ms 1.22 s 57.5 s - 10742X

rand 5.86 ms 5.81 ms 1.27 s 66.3 s - 11325X
least 5.94 ms 7.55 ms 1.34 s 77.3 s - 13016X

1
runner-up 5.45 ms 39.6 ms 1.27 s 75.0 s - 13763X

rand 5.56 ms 52.9 ms 1.47 s 82.0 s - 14742X
least 6.07 ms 65.9 ms 1.68 s 85.9 s - 1304X

(b) Comparison of time
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Table F.2. Comparison of our proposed certified lower bounds Fast-Lin and Fast-Lip with other lower bounds (LP, Op-norm, CLEVER)
and upper bounds (Attack algorithms: CW for p = 2,∞, EAD for p = 1) on networks with 2-7 layers, where each layer has 1024 or
2048 nodes. Differences of lower bounds and speedup are measured on the two corresponding bold numbers in each row. Note that
LP-Full and Reluplex are computationally infeasible for all the networks reported here, and “-” indicates the method is computationally
infeasible for that network. For Op-norm, computation time for each image is negligible as the operator norms can be pre-computed.

Large Networks Average Magnitude of Distortion on 100 Images Average Running Time per Image

Network p Target
Certified Bounds diff Uncertified Certified Bounds Speedup

Our bounds LP Op-norm ours CLEVER Attacks Our bounds LP ours
Fast-Lin Fast-Lip (Baseline) (Szegedy et al., 2013) vs. LP (Weng et al., 2018) CW/EAD Fast-Lin Fast-Lip (Baseline) vs. LP

MNIST
2× [1024]

∞
runner-up 0.02256 0.01802 0.02493 0.00159 -9.5% 0.0447 0.0856 127 ms 167 ms 19.3 s 151X

rand 0.03083 0.02512 0.03386 0.00263 -8.9% 0.0708 0.1291 156 ms 219 ms 20.8 s 133X
least 0.03854 0.03128 0.04281 0.00369 -10.0% 0.0925 0.1731 129 ms 377 ms 22.2 s 172X

2
runner-up 0.46034 0.42027 0.55591 0.24327 -17.2% 0.8104 1.1874 127 ms 196 ms 419 s 3305X

rand 0.63299 0.59033 0.75164 0.40201 -15.8% 1.2841 1.8779 128 ms 234 ms 195 s 1523X
least 0.79263 0.73133 0.94774 0.56509 -16.4% 1.6716 2.4556 163 ms 305 ms 156 s 956X

1
runner-up 2.78786 3.46500 3.21866 0.20601 +7.7% 4.5970 9.5295 117 ms 1.17 s 38.9 s 33X

rand 3.88241 5.10000 4.47158 0.35957 +14.1% 7.4186 17.259 139 ms 1.40 s 48.1 s 34X
least 4.90809 6.36600 5.74140 0.48774 +10.9% 9.9847 23.933 151 ms 1.62 s 53.1 s 33X

MNIST
3× [1024]

∞
runner-up 0.01830 0.01021 0.02013 0.00004 -9.1% 0.0509 0.1037 1.20 s 1.81 s 50.4 s 42X

rand 0.02216 0.01236 0.02428 0.00007 -8.7% 0.0717 0.1484 1.12 s 1.11 s 52.7 s 47X
least 0.02432 0.01384 0.02665 0.00009 -8.7% 0.0825 0.1777 1.02 s 924 ms 54.3 s 53X

2
runner-up 0.35867 0.22120 0.41040 0.06626 -12.6% 0.8402 1.3513 898 ms 1.59 s 438 s 487X

rand 0.43892 0.26980 0.49715 0.10233 -11.7% 1.2441 2.0387 906 ms 914 ms 714 s 788X
least 0.48361 0.30147 0.54689 0.13256 -11.6% 1.4401 2.4916 925 ms 1.01 s 858 s 928X

1
runner-up 2.08887 1.80150 2.36642 0.00734 -11.7% 4.8370 10.159 836 ms 3.16 s 91.1 s 109X

rand 2.59898 2.25950 2.91766 0.01133 -10.9% 7.2177 17.796 863 ms 3.84 s 109 s 126X
least 2.87560 2.50000 3.22548 0.01499 -10.8% 8.3523 22.395 900 ms 4.20 s 122 s 136X

MNIST
4× [1024]

∞
runner-up 0.00715 0.00219 - 0.00001 - 0.0485 0.08635 1.90 s 4.58 s - -

rand 0.00823 0.00264 - 0.00001 - 0.0793 0.1303 2.25 s 3.08 s - -
least 0.00899 0.00304 - 0.00001 - 0.1028 0.1680 2.15 s 3.02 s - -

2
runner-up 0.16338 0.05244 - 0.11015 - 0.8689 1.2422 2.23 s 3.50 s - -

rand 0.18891 0.06487 - 0.17734 - 1.4231 1.8921 2.37 s 2.72 s - -
least 0.20672 0.07440 - 0.23710 - 1.8864 2.4451 2.56 s 2.77 s - -

1
runner-up 1.33794 0.58480 - 0.00114 - 5.2685 10.079 2.42 s 2.71 s - -

rand 1.57649 0.72800 - 0.00183 - 8.9764 17.200 2.42 s 2.91 s - -
least 1.73874 0.82800 - 0.00244 - 11.867 23.910 2.54 s 3.54 s - -

CIFAR
5× [2048]

∞
runner-up 0.00137 0.00020 - 0.00000 - 0.0062 0.00950 24.2 s 60.4 s - -

rand 0.00170 0.00030 - 0.00000 - 0.0147 0.02351 26.2 s 78.1 s - -
least 0.00188 0.00036 - 0.00000 - 0.0208 0.03416 27.8 s 79.0 s - -

2
runner-up 0.06122 0.00951 - 0.00156 - 0.2712 0.3778 34.0 s 60.7 s - -

rand 0.07654 0.01417 - 0.00333 - 0.6399 0.9497 36.8 s 49.4 s - -
least 0.08456 0.01778 - 0.00489 - 0.9169 1.4379 37.4 s 49.8 s - -

1
runner-up 0.93835 0.22632 - 0.00000 - 4.0755 7.6529 36.5 s 70.6 s - -

rand 1.18928 0.31984 - 0.00000 - 9.7145 21.643 37.5 s 53.6 s - -
least 1.31904 0.38887 - 0.00001 - 12.793 34.497 38.3 s 48.6 s - -

CIFAR
6× [2048]

∞
runner-up 0.00075 0.00005 - 0.00000 - 0.0054 0.00770 37.2 s 106 s - -

rand 0.00090 0.00007 - 0.00000 - 0.0131 0.01866 37.0 s 119 s - -
least 0.00095 0.00008 - 0.00000 - 0.0199 0.02868 37.2 s 126 s - -

2
runner-up 0.03463 0.00228 - 0.00476 - 0.2394 0.2979 56.1 s 99.5 s - -

rand 0.04129 0.00331 - 0.01079 - 0.5860 0.7635 60.2 s 95.6 s - -
least 0.04387 0.00385 - 0.01574 - 0.8756 1.2111 61.8 s 88.6 s - -

1
runner-up 0.59638 0.05647 - 0.00000 - 3.3569 6.0112 57.2 s 108 s - -

rand 0.72178 0.08212 - 0.00000 - 8.2507 17.160 61.4 s 88.2 s - -
least 0.77179 0.09397 - 0.00000 - 12.603 28.958 62.1 s 65.1 s - -

CIFAR
7× [1024]

∞
runner-up 0.00119 0.00006 - 0.00000 - 0.0062 0.0102 10.5 s 27.3 s - -

rand 0.00134 0.00008 - 0.00000 - 0.0112 0.0218 10.6 s 29.2 s - -
least 0.00141 0.00010 - 0.00000 - 0.0148 0.0333 11.2 s 30.9 s - -

2
runner-up 0.05279 0.00308 - 0.00020 - 0.2661 0.3943 16.3 s 28.2 s - -

rand 0.05938 0.00407 - 0.00029 - 0.5145 0.9730 16.9 s 27.3 s - -
least 0.06249 0.00474 - 0.00038 - 0.6253 1.3709 17.4 s 27.6 s - -

1
runner-up 0.76647 0.07028 - 0.00000 - 4.815 7.9987 16.9 s 27.8 s - -

rand 0.86467 0.09239 - 0.00000 - 8.630 22.180 17.6 s 26.7 s - -
least 0.91127 0.10639 - 0.00000 - 11.44 31.529 17.5 s 23.5 s - -

MNIST
3× [1024]

∞
untargeted

0.01808 0.01016 0.01985 0.00004 -8.9% 0.0458 0.0993 915 ms 2.17 s 227 s 248X
2 0.35429 0.21833 - 0.06541 - 0.7413 1.1118 950 ms 2.02 s - -
1 2.05645 1.78300 2.32921 0.00679 -11.7% 3.9661 9.0044 829 ms 4.41 s 537 s 648X

CIFAR
5× [2048]

∞
untargeted

0.00136 0.00020 - 0.00000 - 0.0056 0.00950 24.1 s 72.9 s - -
2 0.06097 0.00932 - 0.00053 - 0.2426 0.3702 34.2 s 77.0 s - -
1 0.93429 0.22535 - 0.00000 - 3.6704 7.3687 35.6 s 90.2 s - -


