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Abstract

Gaussian data is pervasive and many learning algorithrgs femeans) model
their inputs as ainglesample drawn from a multivariate Gaussian. However, in
many real-life settings, each input object is best desdritpemultiple samples
drawn from a multivariate Gaussian. Such data can arisex@mple, in a movie
review database where each movie is rated by several usenstime-series do-
mains such as sensor networks. Here, each input can be lhatescribed by
both a mean vectand covariance matrix which parameterize the Gaussian dis-
tribution. In this paper, we consider the problem of clusigsuch input objects,
each represented as a multivariate Gaussian. We formblateroblem using an
information theoretic approach and draw several intargdiieoretical connec-
tions to Bregman divergences and also Bregmaitrix divergences. We evaluate
our method across several domains, including synthete, dahsor network data,
and a statistical debugging application.

1 Introduction

Gaussian data is pervasive in all walks of life and many legralgorithms—e.gk-means, principal
components analysis, linear discriminant analysis, etc-eeheach input object assinglesample
drawn from a multivariate Gaussian. For example,Afraeans algorithm assumes that each input
is a single sample drawn from one/ofunknown) isotropic Gaussians. The goakefneans can be
viewed as the discovery of the mean of each Gaussian andemyoofithe generating distribution of
each input object.

However, in many real-life settings, each input object igirely represented bgnultiple samples
drawn from an underlying distribution. For example, a shigescores in reading, writing, and
arithmetic can be measured at each of four quarters thraughe school year. Alternately, consider
a website where movies are rated on the basis of originplity, and acting. Here, several different
users may rate the same movie. Multiple samples are alsaitdnig in time-series data such as
sensor networks, where each sensor device continuallytarenis environmental conditions (e.qg.
humidity, temperature, or light). Clustering is an impattdata analysis task used in many of these
applications. For example, clustering sensor networkagesvhas been used for optimizing routing
of the network and also for discovering trends between semsdes. If thek-means algorithm
is employed, then only the means of the distributions willchestered, ignoring all second order
covariance information. Clearly, a better solution is rezkd

In this paper, we consider the problem of clustering inpyects, each of which can be represented
by a multivariate Gaussian distribution. The “distancetwWesen two Gaussians can be quantified
in an information theoretic manner, in particular by theffestential relative entropy. Interestingly,
the differential relative entropy between two multivagigdaussians can be expressed as the con-
vex combination of two Bregman divergences—a Mahalanolsimdce between mean vectors and



a Burg matrix divergence between the covariance matrices.dévelop an EM style clustering

algorithm and show that the optimal cluster parameters eaohieaply determined via a simple,
closed-form solution. Our algorithm is a Bregman-like ttwgig method that clusters both means
and covariances of the distributions in a unified framework.

We evaluate our method across several domains. First, wgemreesults from synthetic data exper-
iments, and show that incorporating second order infomnatan dramatically increase clustering
accuracy. Next, we apply our algorithm to a real-world semsgiwork dataset comprised of 52
sensor devices that measure temperature, humidity, Agltyoltage. Finally, we use our algorithm
as a statistical debugging tool by clustering the behavidumctions in a program across a set of
known software bugs.

2 Preliminaries

We first present some essential background material.nilgévariate Gaussiamlistribution is the

multivariate generalization of the standard univariateecarhe probability density function (pdf)
of a d-dimensional multivariate Gaussian is parameterized bgnmectory, and positive definite
covariance matrix::
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where|X| is the determinant oE.
TheBregman divergencg] with respect tap is defined as:

Dy(x,y) = ¢(x) — ¢(y) — (z —y)" Vo(y),

whereg is a real-valued, strictly convex function defined over avexrset) = dom(¢) C R? such
that¢ is differentiable on the relative interior ¢f. For example, ifs(x) = 'z, then the resulting
Bregman divergence is the standard squared Euclideamdéstimilarly, ifp(x) = 27 AT Az,

for some arbitrary non-singular matri&, then the resulting divergence is the Mahalanobis distance
Mg-1(z,y) = (x—y)T S~ !(x—1y), parameterized by the covariance masixS—! = AT A. Al-
ternately, if¢(x) = >, (x; log x; — x;), then the resulting divergence is the (unnormalized) ikaat
entropy. Bregman divergences generalize many propefiteguared loss and relative entropy.

Bregman divergences can be naturally extended to matésds|lows:
Dy(X,Y) = 6(X) - o(Y) — tr((Vo(Y)" (X ~ Y)),

where X andY are matricesg is a real-valued, strictly convex function defined over rcas,
andtr(A) denotes the trace ol. Consider the functiop(X) = || X ||%. Then the corresponding
Bregman matrix divergence is the squared Frobenius np&h,— Y'||z.. The Burg matrix diver-
gence is generated from a function of higenvalues\y, ..., Ay of the positive definite matrixX:
#(X) = —>,log\; = —log|X|, the Burg entropy of the eigenvalues. The resulting Burgimat
divergence is:

B(X,Y)=tr(XY ) —log| XY ! —d. (1)
As we shall see later, the Burg matrix divergence will arigirally in our application. Lexy, ..., Ay
be the eigenvalues oKX and vy, ..., vq the corresponding eigenvectors andiet...,v4 be the
eigenvalues ot with eigenvectorsvy, ..., wg. The Burg matrix divergence can also be written as

BX,Y)=)_ Y Z(w/w;)? = log= —d.
i g Vi p Vi
From the first term above, we see that the Burg matrix divergéna function of the eigenvalues as

well as of theeigenvectoref X andY .

The differential entropyof a continuous random variable with probability density functiory is
defined as

h() =~ [ H@)log f(a)de.

It can be shown [3] that an-bit quantization of a continuous random variable with gdhas
Shannon entropy approximately equaltg) + n. The continuous analog of the discrete relative



entropy is the differential relative entropy. Given a ramd@ariablex with pdf’s f andg, the
differential relative entropy is defined as

i@,
o) ™

D(fllg) = / f(x)log

3 Clustering Multivariate Gaussians via Differential Relative Entropy

Given a set ofi multivariate Gaussians parameterized by mean veetgrs.., m,, and covariances
S1, ..., Sn, we seek a disjoint and exhaustive partitioning of theses&ans intd: different clusters,
71,..., ;. Each clustey can be represented by a multivariate Gaussian parametdryzeeary;
and covarianc& ;. Using differential relative entropy as the distance meabetween Gaussians,
the problem of clustering may be posed as the minimizatigar(all clusterings) of

k
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3.1 Differential Relative Entropy and Multivariate Gaussians

We first show that the differential entropy between two maltiate Gaussians can be expressed as
a convex combination of a Mahalanobis distance between snaad the Burg matrix divergence
between covariance matrices.

Consider two multivariate Gaussians, parameterized bynmeetorsm andu, and covariance§
andX, respectively. We first note that the differential relagveropy can be expressedsf||g) =

[ flog f — flogg = —h(f) — [ flogg. The first term is just the negative differential entropy of
p(x|m, S), which can be shown [3] to be:

d 1
h(p(@|m, ) = 5 + 5 log(2m)"|S]. ®)
We now consider the second term:

[ lalm.s)ogptelie®) = [ talm. ) |- 5@ - 7o - ) log(zn)F 21
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1, 1 _ 1
—5tr (B718) = S(m = w)"ET (m - p) — 5 log(27)|3.

The expectation above is taken over the distributidm|m, S). The second to last line above
follows from the definition ofS = E[(z — m)(z — m)T] and also from the fact thaf[(z —



m)(m — p)T] = E[x — m](m — p)T = 0. Thus, we have

Dip(alm. S)|p(eln. ) = —5 — Llog@n)S| + Sr(878) + S lox(2)S| (@)
tym = )"E (m )

- % (tr(S1) —log || — d) + %(m TS (m— )

= %B(Sv %)+ %Mz—l(m,u), ®)

whereB(S, X) is the Burg matrix divergence ands;—: (m, u) is the Mahalanobis distance, pa-
rameterized by the covariance matBix

We now consider the problem of finding the optimal represamt&aussian for a set efGaussians
with meansmy, ..., m. and covariances$s, ..., S.. For non-negative weighis,, ...a. such that
>, a; = 1, the optimal representative minimizes the cumulativeedéhtial relative entropy:

p(z|p’,¥%) = arg min a;D(p(x|m;, S;)||p(z|p, X)) (6)
Pl )
= arg min o <1B(S~ E)Jr}M (m; )) )]
Eptainm) 2= M 2770 T e )

The second term can be viewed as minimizing the Bregmannrdgtion with respect to some fixed
(albeit unknown) Bregman divergence (i.e. the Mahalandistance parameterized by some co-
variance matrix®). Consequently, it has a unique minimizer [1] of the form

u = Zaimi. (8)

Next, we note that equation (7) is strictly convex3IT!. Thus, we can derive the optim&l* by
setting the gradient of (7) with respect¥ ! to 0:

n

S Do D (plalme, So)p(ali ) = Y (8- 3+ (mg — ) 1))
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Setting this to zero yields

3= Zai (S; + (m; — p*)(m; — p*)7") . 9)

Figure 1 illustrates optimal representatives of two 2-disienal Gaussians with means marked by
points A and B, and covariances outlined with solid linese Bptimal Gaussian representatives are
denoted with dotted covariances; the representative ofefhases weights(a 4 = %, ag = %),
while the representative on the right uses weidhts = %, ap = %). As we can see from equation
(8), the optimal representative mean is the weighted aeevhthe means of the constituent Gaus-
sians. Interestingly, the optimal covariance turns ougtthie average of the constituent covariances
plus rank one updates. These rank-one changes account fdettations from the individual means
to the representative mean.

3.2 Algorithm

Algorithm 1 presents our clustering algorithm for the cadeere each Gaussian has equal weight
o = % The method works in an EM-style framework. Initially, deisassignments are chosen
(these can be assigned randomly). The algorithm then pdedesratively, until convergence. First,
the mean and covariance parameters for the cluster repatigerdistributions are optimally com-
puted given the cluster assignments. These parameterpa@ated as shown in (8) and (9). Next,
the cluster assignmentsare updated for each input Gaussian. This is done by asgignén*"
Gaussian to the clustgrwith representative Gaussian that is closest in diffeaéngilative entropy.
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Figure 1: Optimal Gaussian representatives (shown with dotted lines) of two Gasssémtered at A and
B (for two different sets of weights). While the optimal mean of eachesgntative is the average of the
individual means, the optimal covariance is the average of the individwariances plus rank-one corrections.

Since both of these steps are locally optimal, convergehtteealgorithm to a local optima can be
shown. Note that the problem i P-hard, so convergence to a global optima cannot be guadhntee

We next consider the running time of Algorithm 1 when the inBaussians aré-dimensional.
Lines 6 and 9 compute the optimal means and covariances dbraaster, which require® (nd)
andO(nd?) total work, respectively. Line 12 computes the differeimative entropy between each
input Gaussian and each cluster representative Gausssammljthearg min over allX; is needed,
we can reduce the Burg matrix divergence computation (euét)) totr(Sizgl) — log |E]fl|.

Once the inverse of each cluster covariance is computed(bmst ofO(kd?)), the first term can
be computed iD(d?) time. The second term can similarly be computed once for ekrster for

a total cost ofO(kd®). Computing the Mahalanobis distance is@fd?) operation. Thus, total
cost of line 12 isO(kd® + nkd?) and the total running time of the algorithm, giveriterations, is

O(tkd*(n + d)).

Algorithm 1 Differential Entropic Clustering of Multivariate Gaussians
1: {maq,...,m,} < means of input Gaussians

2: {S1,...,Sn} < covariance matrices of input Gaussians
3: m « initial cluster assignments
4: while not convergedlo
5. for j = 1tok do {update cluster meahs
6: By m Zi:ﬂ'i:j m;
7. end for
8: for j = 1tok do {update cluster covariances
9 X oy Dimey (Si (M — ) (mg — )"
10:  end for
11: for ¢ = 1ton do {assign each Gaussian to the closest cluster represer@atigsian
12: m; — argmin<;j<g B(S;, Xj5) + My, - (my, nj) {B is the Burg matrix divergence and
My, -1 is the Mahalanobis distance parameterizedhy
13:  end for
14: end while

4 Experiments

We now present experimental results for our algorithm actbeee different domains: a synthetic
dataset, sensor network data, and a statistical debugppigation.

4.1 Synthetic Data

Our synthetic datasets consist of a set of 200 objects, gashioh consists of 30 samples drawn
from one ofk randomly generated-dimensional multivariate Gaussians. TheGaussians are
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Figure 2: Clustering quality of synthetic data. Traditionalmeans clustering uses only first-order infor-
mation (i.e. the mean), whereas our Gaussian clustering algorithm atspanates second-order covariance
information. Here, we see that our algorithm achieves higher clusteuialifyfor datasets composed of four-
dimensional Gaussians with varied number of clusters (left), as wetlrasfied dimensionality of the input
Guassians wittt = 5 (right).

generated by choosing a mean vector uniformly at random ffemunit simplex and randomly
selecting a covariance matrix from the set of matrices wigervalued, 2, ..., d.

In Figure 2, we compare our algorithm to themeans algorithm, which clusters each object solely
on the mean of the samples. Accuracy is quantified in termsoohalized mutual information
(NMI) between discovered clusters and the true clustertaradard technigue for determining the
quality of clusters. Figure 2 (left) shows the clusteringlify as a function of the number of clusters
when the dimensionality of the input Gaussians is fixéd=(4). Figure 2 (right) gives clustering
quality for five clusters across a varying number of dimemsid\ll results represent averaged NMI
values across 50 experiments. As can be seen in Figure 2, wtivariate Gaussian clustering
algorithm yields significantly higher NMI values tharmeans for all experiments.

4.2 Sensor Networks

Sensor networks are wireless networks composed of smalictst sensors that monitor their sur-
rounding environment. An open question in sensor netwagsarch is how to minimize communi-
cation costs between the sensors and the base stationessimmunication requires a relatively
large amount of power, a limited resource on current sersdgces (which are usually battery pow-
ered).

A recently proposed sensor network system, BBQ [4], redaoesmunication costs by modelling
sensor network data at each sensor device using a timeigamyiltivariate Gaussian and trans-
mitting only model parameters to the base station. We apptyraultivariate Gaussian clustering
algorithm to cluster sensor devices from the Intel Lab akBlery [8]. Clustering has been used in
sensor network applications to determine efficient rousiciiemes, as well as for discovering trends
between groups of sensor devices. The Intel sensor netvemidists of 52 working sensors, each
of which monitors ambient temperature, humidity, lightdksy and voltage every thirty seconds.
Conditioned on time, the sensor readings can be fit quitelbyed multivariate Gaussian.

Figure 3 shows the results of our multivariate Gaussiantetirgy algorithm applied to this sensor
network data. For each device, we compute the sample meatogadance from sensor readings
between noon and 2pm each day, for 36 total days. To accouwaifiging scales of measurement,
we normalize all variables to have unit variance. The sectuster (denoted by ‘2’ in figure 3) has
the largest variance among all clusters: many of the sefizofsis cluster are located in high traffic
areas, including the large conference room at the top ofaineaind the smaller tables in the bottom
of the lab. Since the measurements were taken during lunehtive expect higher traffic in these
areas. Interestingly, this cluster shows very high coatamh between humidity and voltage. Cluster
one is characterized by high temperatures, which is notisimg, as there are several windows on
the left side of the lab. This window faces west and has anstnatted view of the ocean. Finally,
cluster three has a moderate level of total variation, wéthtively low light levels. The cluster is
primarily located in the center and the right of lab, awayrfroutside windows.
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Figure 3: To reduce communication costs in sensor networks, each sensoe aesic be modelled by a
multivariate Gaussian. The above plot shows the results of applyingganitam to cluster sensors into three
groups, denoted by labels ‘1’, '2’, and ‘3.

4.3 Statistical Debugging

Leveraging program runtime statistics for the purpose ¢tfrgoe debugging has received recent
research attention [12]. Here we apply our algorithm totelutunctional behavior patterns over
software bugs in the’sIeX document preparation program. The data is taken from theNgys-
tem [7], a system that uses machine learning to provideretter messaging. The dataset contains
four software bugs, each of which is caused by an unsucdé88fX compilation (e.g. specifying
an incorrect number of columns in an array environment) aittiiguous or unclear error messages
provided. £TEX has notoriously cryptic error messages for document clatiqn failures—for ex-
ample, the message “LaTeX Error: There’s no line here to ead’be caused by numerous problems
in the source document.

Each function in the program’s source is measured by theiénecy with which it is called across
each of the four software bugs. We model this distributioa 4sdimensional multivariate Gaussian,
one dimension for each bug. The distributions are estimied a set of samples; each sample
corresponds to a singléTEX file drawn from a set of grant proposals and submitted coeput
science research papers. For each file and for each of théudigar theATEX compiler is executed
over a slightly modified version of the file that has been cledrtg exhibit the bug. During program
execution, function counts are measured and recorded. d&teadls can be found in [7].

Clustering these function counts can yield important dgingyinsight to assist a software engineer
in understanding error dependent program behavior. Figgstews three covariance matrices from
a sample clustering of eight clusters. To capture the degreniels between bugs, we normalize each
input Gaussian to have zero mean and unit variance. Clusteggresents functions that are highly
error independent—i.e. the matrix shows high levels of datian among all pairs of error classes.
Conversely, clusters (b) and (c) show that some functioashaghly error dependent. Cluster (b)
shows a high dependency between bugs 1 and 4, while cluyexHh(ibits high covariation between
bugs 1 and 3, and between bugs 2 and 4.

1.00 0.94 0.94 0.94 1.00 0.58 0.58 0.91 1.00 0.58 0.95 0.58

0.94 1.00 0.94 0.94 0.58 1.00 0.55 0.67 0.58 1.00 0.58 0.95

0.94 0.94 1.00 0.94 0.58 0.55 1.00 0.68 0.95 0.58 1.00 0.58

0.94 094 0.94 1.00 0.91 0.67 0.68 1.00 0.58 0.95 0.58 1.00
(a) (b) ()

Figure 4:Covariance matrices for three clusters discovered by clustering faattehavior of theAlleX doc-
ument preparation program. Cluster (a) corresponds to functioichwe error-independent, while clusters
(b) and (c) represent two groups of functions that exhibit diffetgmes of error dependent behavior.

5 Reéated Work

In this work, we showed that the differential relative epiyrdetween two multivariate Gaussian
distributions can be expressed as a convex combinatioredfitthalanobis distance between their



mean vectors and the Burg matrix divergence between theariemces. This is in contrast to
information theoretic clustering [5], where each inputaken to be a probability distribution over
some finite set. In [5], no parametric form is assumed, andKtiilback-Liebler divergence (i.e.
discrete relative entropy) can be computed directly froendistributions. The differential entropy
between two multivariate Gaussians wass considered inifil@je context of solving Gaussian
mixture models. Although an algebraic expression for tiffeigntial entropy was given in [10], no
connection to the Burg matrix divergence was made there.

Our algorithm is based on the standard expectation-maaimiz style clustering algorithm [6].
Although the closed-form updates used by our algorithmianéas to those employed by a Bregman
clustering algorithm [1], we note that the computation @ tptimal covariance matrix (equation
(9)) involves the optimal mean vector.

In[9], the problem of clustering Gaussians with respedigsstymmetric differential relative entropy,
D(fl|lg)+ D(g||f) is considered in the context of learning HMM parameters f@esh recognition.
The resulting algorithm, however, is much more computatiigrexpensive than ours; whereas in
our method, the optimal means and covariance parametebec@mputed via a simple closed form
solution. In [9], no such solution is presented and an iterahethod must instead be employed. The
problem of finding the optimal Gaussian with respect to thet irgument (note that equation (6)
is minimized with respect to the second argument) is consdla [11] for the problem of speaker
interpolation. Here, only one source is assumed, and thusseeing is not needed.

6 Conclusions

We have presented a new algorithm for the problem of clusgeriultivariate Gaussian distributions.

Our algorithm is derived in an information theoretic contexhich leads to interesting connections
with the differential entropy between multivariate Gaassi, and Bregman divergences. Unlike
existing clustering algorithms, our algorithm optimizegttbfirst and second order information in

the data. We have demonstrated the use of our method on sesisarrk data and a statistical

debugging application.
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