
Goal-Directed Inductive Matrix Completion

Si Si
Dept. of Computer Science
University of Texas at Austin

ssi@cs.utexas.edu

Kai-Yang Chiang
Dept. of Computer Science
University of Texas at Austin

kychiang@cs.utexas.edu

Cho-Jui Hsieh
Depts. of Statistics and

Computer Science
University of California, Davis
chohsieh@ucdavis.edu

Nikhil Rao
Technicolor R&I

nikhilrao86@gmail.com

Inderjit S. Dhillon
Dept. of Computer Science
University of Texas at Austin
inderjit@cs.utexas.edu

ABSTRACT
Matrix completion (MC) with additional information has
found wide applicability in several machine learning appli-
cations. Among algorithms for solving such problems, In-
ductive Matrix Completion(IMC) has drawn a considerable
amount of attention, not only for its well established the-
oretical guarantees but also for its superior performance in
various real-world applications. However, IMC based meth-
ods usually place very strong constraints on the quality of
the features(side information) to ensure accurate recovery,
which might not be met in practice. In this paper, we pro-
pose Goal-directed Inductive Matrix Completion(GIMC) to
learn a nonlinear mapping of the features so that they satisfy
the required properties. A key distinction between GIMC
and IMC is that the feature mapping is learnt in a super-
vised manner, deviating from the traditional approach of un-
supervised feature learning followed by model training. We
establish the superiority of our method on several popular
machine learning applications including multi-label learning,
multi-class classification, and semi-supervised clustering.

1. INTRODUCTION
Matrix completion methods are widely used in several

applications, ranging from collaborative filtering for recom-
mender systems [8], to social network analysis [4] and clus-
tering [25]. In these applications, a particular entry of the
observed matrix is modeled as a linear interaction between
factors corresponding to the row and column variables. For
example, a rating provided by user i for movie j in a recom-
mender system is modeled as rij = wT

i hj , where wi,hj are
low dimensional user and movie embeddings.

Modern applications typically involve large amounts of
data (often in the millions or more), and several scalable
algorithms have been proposed to solve matrix completion
problems in such large data regimes [27, 21]. As a conse-
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quence of large-scale data acquisition methods, these ap-
plications involving large amounts of data also involve side
information. Fast and scalable methods have been proposed
in [30, 19] when the side information is in the form of pair-
wise relationships, such as product co-purchasing networks
or social networks for recommender systems, or gene–gene
interaction networks in computational biology.

In several applications of interest, one is not aware of the
relational information in the form of graphs, but is given
direct information in the form of features. These might cor-
respond to demographic information (gender, occupation)
for users and product information (genre, year of release)
in a movie recommender system for example. When such
features are provided, one can model an observation as a
specific interaction between the features. For example in
the recommender system case considered above, we would
have rij = xTi Zyj where Z is the learnt model and xi(yj)

are the user (movie) features [5] 1. These methods two ad-
vantages over traditional matrix completion applications:

• The target matrix to be estimated (Z above) can be
significantly smaller than the partially observed data
matrix, thus lowering the number of parameters to
learn and speeding up computation.

• The presence of features allows the practitioner to gen-
eralize to previously unseen users and/or items, which
is something standard matrix completion cannot do.

While such methods have been considered before in [24, 5],
the authors in [2] showed that a significant drawback of
feature-based matrix completion methods–Inductive Matrix
Completion(IMC)– is that there need to be extremely strict
constraints placed on the features to ensure accurate recov-
ery of the underlying matrix. Specifically, the space spanned
by the row (column) features must correspond to the row
(column) space of the matrix to be factorized. In prac-
tice, such constraints are seldom met, which might result
in poor performance of IMC. One way to solve this prob-
lem is by constructing mappings of the features so that
the mapped features are more aligned to the subspaces in
question. Moreover, the mappings should be constructed so
that the methods are scalable, to be applicable to modern
datasets. This brings us to the questions we wish to answer
in this paper:

1We expound on this in more detail in the sequel



1. Can a (possibly nonlinear) mapping be constructed for
the features so that we can retain the gains provided
by IMC given noisy features?

2. Can the resulting method be scaled to large datasets?

We answer both the above questions in the affirmative.
To answer the first question, we aim to construct (nonlinear)
embeddings of the row (or column) features so that they are
better aligned to the task at hand. Specifically, we develop
a minimization scheme called Goal-Directed Inductive Ma-
trix Completion (GIMC) that alternates between learning
the low-rank factors of the target matrix, and the aforemen-
tioned embeddings. A key contribution of this work is that
the embeddings are learned in a supervised manner. This
is a significant deviation from several other feature learning
methodologies that learn the features in an unsupervised
setting and use the learned features to solve the machine
learning task.

To answer the second question, we resort to performing
linear approximations of the nonlinear mappings that we
aim to learn. Linear approximations of kernel-based meth-
ods have spawned large amounts of interest, either by us-
ing random Fourier features [17] or via Nyström approxima-
tions [23]. Such methods are attractive since they facilitate
the use of highly scalable existing methods for learning with
linear models. However, the dimension of these approximate
kernel mappings could be very high, which induces a signifi-
cant computational burden. We show that since we can learn
the features based on the task at hand, we can use signif-
icantly fewer Fourier features or Nyström landmark points
to achieve the same error as classical, unsupervised kernel
approximation methods.

Viewed from a different perspective, our proposed Goal-
Directed Inductive Matrix Completion framework could be
viewed as a three-layer neural network. In this shallow
neural network, the objective is a least squares loss and
cos(·) and sin(·) are the activation functions. Interestingly,
with such a shallow neural network, we achieve state-of-the-
art performance in various matrix completion applications.
Note that instead of using gradient descent in our algorithm
to optimize the loss function, similar to neural networks,
we could use back-propagation and SGD as an optimization
scheme, and also use other activation functions such as the
sigmoid function or hyperbolic tangent.

We consider three applications to test our proposed method:
Multi-Label learning, Multi-Class classification, and Semi-
supervised Clustering. In these three cases, we show that
GIMC achieves state of the art results, while using far fewer
features than what would be required to achieve the same
performance using unsupervised feature learning methods.
We verify that we achieve orders of magnitude speedups over
existing methods.

The rest of the paper is organized as follows: in the next
Section, we summarize related work. In Section 3 we detail
the Inductive Matrix Factorization formulation and summa-
rize known results. We propose our model in Section 4 and
show how to apply our framework for solving three popular
machine learning applications: Multi-Label learning, Multi-
Class classification, and Semi-supervised Clustering in Sec-
tion 5. We provide extensive empirical results on several
real-world datasets in Section 6 before concluding our paper
in Section 7.

2. RELATED WORK
We categorize related work into three categories, based on

the core contribution of the corresponding works:

2.1 Scalable Matrix Factorization
Stochastic gradient descent(SGD) is widely used in matrix

factorization due to its efficiency and ease of implementa-
tion. Various update schemes to parallelize SGD have been
proposed: HogWild [21] uses lock free approach and DSGD
[20] partitions the rating matrix into independent blocks to
avoid conflict in the distributed system. [15] takes I/O cost
and the CPU utility into consideration and proposed a fast
and robust parallel SGD matrix factorization algorithm to
deal with the situation when data cannot fit into memory.
On a different note, [27][26] proposed to use coordinate de-
scent instead of SGD to optimize the loss function, and the
corresponding parallel solvers are shown to have superior
performance in both multi-core and distributed settings.

2.2 Matrix Completion with Side Information
Matrix completion with side information has drawn much

attention for improving the performance of traditional ma-
trix completion. For instance, [19, 30] incorporates graph
information as a regularization term into matrix completion
framework, where the graph encodes pairwise relationships
among variables. Along similar lines, [13] uses a social net-
work among users to bias the recommender system. Instead
of these pairwise relationships, in scenarios where one is pro-
vided with features for the rows and/or columns of the ma-
trix, [5, 24, 10] proposed an Inductive Matrix Completion
formulation. The method is “Inductive”, in that it general-
izes to previously unobserved data points, which is a draw-
back in traditional recommender systems. These methods
have since been applied to predict gene-disease relationships
[14] and semi-supervised clustering [25].

2.3 Non-Linear Kernel Mappings
To overcome the computational barrier of applying kernel

methods to very large datasets, linear approximations have
become popular, common among them being Nyström based
methods [23] [29] [11] and random feature based meth-
ods [18] [12] [3, 7]. It has been shown that these approximate
kernel mappings can speed up the training and prediction
for kernel machines such as kernel SVM and Gaussian pro-
cesses. To achieve a “good” approximation to the underlying
kernel, these methods require the generation of many ran-
dom features or landmark points. Thus, while such meth-
ods can in principle alleviate the computational costs associ-
ated with kernel machines, achieving a good approximation
requires generation of many random features or landmark
points which contributes to increased costs.

3. INDUCTIVE MATRIX COMPLETION
In this section, we first introduce traditional matrix com-

pletion and inductive matrix completion, and then formally
set up the problem we are interested in solving. Consider a
standard matrix completion setup, where we observe entries
from an nx × ny matrix A. Let Ω : |Ω| � nxny be the
set of observed entries in A. Traditional matrix completion
models A to be low rank, meaning that the row and column
variables of A share a low dimensional latent space.

Standard matrix completion tries to recover the low-rank



matrix by solving one of the following optimization prob-
lems:

min
Z

1

2
‖PΩ(A− Z)‖2F + λz‖Z‖∗, (1)

min
W,H

1

2
‖PΩ(A−WHT )‖2F + λWH(‖W‖2F + ‖H‖2F ), (2)

where W ∈ Rnx×k and H ∈ Rny×k, and PΩ(·) is the projec-
tion operator that only retains those entries of the matrix
that lie in the set Ω, It has been shown that these two prob-
lems are in fact equivalent when the chosen k ≥ rank(A) [22].
In addition, although the factorization objective (2) is non-
convex, it turns out that the (local optimal) solution given
by this non-convex form is usually comparable to the global
optimum in (1). To solve (2), note that when either W
or H is fixed, the above optimization becomes convex with
respect to the other variable, so that one can solve (2) by
alternating minimization. Various optimization techniques,
for example, coordinate descent and stochastic gradient de-
scent, have been proposed to solve (2) efficiently.

One challenge for traditional matrix completion is that it
cannot directly use side information and apply it to predict
new and unseen data, or to simplify computation. Induc-
tive Matrix Completion [5] alleviates this issue. Specifically,
suppose we are given a set of features X ∈ Rnx×dx for the
rows of A, and similarly for the columns, Y ∈ Rny×dy . Each
row of X (denoted as xi) and each row of Y (denoted as yj)
are features for the i-th row and j-th column entity respec-
tively. Then, IMC incorporates the feature information into
matrix completion by solving the following problem:

min
Z

1

2
‖PΩ(A−XZY T )‖2F + λz‖Z‖∗,

min
W,H

1

2
‖PΩ(A−XWHTY T )‖2F + λWH(‖W‖2F + ‖H‖2F ),

(3)

where now W ∈ Rdx×k and H ∈ Rdy×k.
Note that the number of unknown parameters are k(dx +

dy) which can be significantly smaller than k(nx+ny). This
has the potential to speed up computations by non-trivial
amounts. Furthermore, besides recovering unseen entries in
A, (3) can also be used to deal with cold start problem in
recommendation systems. For example, for a movie recom-
mendation problem, given a new user where only its fea-
tures xnew are available, IMC could predict the score for the
movies to be xTnewZY

T . We refer the interested reader to
[5] for details.

We consider a comparison between MC and IMC on a
synthetic example. We generate the underlying matrix A as
XY T + N , where X,Y ∈ R200×50 are two rank-50 random
matrices with each entry drawn from Gaussian distribution
N (0, 1), and N ∈ R200×200 is the noise matrix with each en-
try drawn from N (0, 0.1). X and Y are provided as features
to IMC, and rank k is set to be 20 for both MF and IMC.
We vary the number of observed entries from 5% to 30%
and recover the remaining entries of the target matrix. The
approximately recovered matrix Â will be WHT in MF and
XWHTY T in IMC. We then evaluate the recovered matrix
Â using the relative approximation error ‖Â−A‖F‖A‖F

. As shown

in Figure 1, IMC results in lower error than MC, suggest-
ing that incorporating side information is useful for better
recovery given a small perturbed observations.

While Figure 1 shows that IMC could outperform MC, the

Figure 1: Toy example comparing MC, IMC, IMC-
RFF, and GIMC-LFF. MC is the traditional model
(Eq (2)); IMC is the model in Eq (3); IMC-RFF
is a modification of IMC with random Fourier fea-
ture based side information as in Eq (5). GIMC-LFF
learns the Fourier projections and the model simul-
taneously by solving Eq (9) side information is the
random Fourier features from X and Y as in Eq (5);
GIMC-LFF is to learn the projections of Fourier fea-
ture and model in IMC simultaneously. Using side
information (IMC and IMC-RFF) improves perfor-
mance, but not as significantly as learning both the
projections and the model (GIMC-LFF)

quality of the features plays a significant role in determining
the accuracy of the recovered matrix. Indeed, the authors
in [24] showed that to guarantee exact recovery in IMC,
the features X,Y should be perfectly aligned with the row
and column spaces of the target matrix A. Specifically, we
require that

Col(A) ⊆ Col(X), Row(A) ⊆ Col(Y ), (4)

where Col(·) and Row(·) correspond to the column and row
space respectively. That is, to achieve good performance,
the features X and Y should be strongly related to the un-
derlying problem, which might not be satisfied in practice.
This motivates us to ask if, given noisy features X and Y,
one can learn an embedding of the features so that we can
retain the gains provided by IMC given noisy features.

4. PROPOSED FRAMEWORK: GIMC
In this section, we introduce our framework–Goal-directed

Inductive Matrix Completion (GIMC). We first show how to
employ nonlinear mappings into IMC, and then introduce
the proposed GIMC model where we add supervision into
nonlinear mappings throughout the learning process.

4.1 Nonlinear Feature Mapping for IMC
As discussed previously, performance of IMC may suffer

if condition (4) is not satisfied. One way to address this
issue is to generate features based on X and Y ; that is,
mapping X to ΦX(X) and Y to ΦY (Y ) via two mappings

ΦX : Rdx → Rd
′
x and ΦY : Rdy → Rd

′
y . Notice that to

overcome the violation of (4), such mapping has to be non-
linear, since for any linear mapping L, Col(L(X)) ⊆ Col(X)
and thus cannot help to relieve the violation of (4). By doing



so, the IMC problem can modified to be:

min
Z

1

2
‖PΩ(A− ΦX(X)ZΦY (Y )T )‖2F + λz‖Z‖∗, (5)

where ΦX(X) and ΦY (Y ) are new set of features generated
by the non-linear mapping of X and Y respectively. For
simplicity, here we again consider Z to be low rank, but in
general, the term ‖Z‖∗ could be further replaced by other
regularizations for different applications. From now on, we
will focus our discussion on the mapping of X, and use n, d
to represent nx, nd. All subsequent discussions could be ap-
plied to Y as well with n = ny, d = dy.

Indeed, the specific mapping to be used can be varied, and
the choices are many. A popular choice of such mappings
are kernel mappings where we map x to ϕ(x) which could
be infinite dimensional. Recently, scalable alternatives to
using exact kernels (either directly in the primal or via the
Gram matrix in the dual) have been proposed where the ex-
act mapping is replaced by an approximation. For instance,
for shift-invariant kernels, based on Bochner’s theorem[17],
the feature mapping ϕ(·) can be written as (with high prob-
ability):

xi → ϕU (xi) =
1√
m

[ cos(uT1 xi), · · · , cos(uTmxi),

sin(uT1 xi), · · · , sin(uTmxi)] (6)

where U={u1,· · ·,um} are the m projection directions sam-
pled according to the distribution from the Fourier trans-
form of the kernel function. For the RBF kernel (k(xi,xj) =

e−γ‖xi−xj‖2 with γ representing kernel width), the sampling
distribution is a Gaussian distribution p(u) = N(0, 2γI).
Since there are infinite number of data points from that dis-
tribution, the feature mapping is infinite dimensional, and
cannot be used in practice. [17] proposed to randomly sam-
ple a few projections from the distribution, and used the
approximate feature mapping to speed up kernel machines.

Another popular kernel mapping is Nyström features that
approximate the kernel matrix G by sampling m� n land-
mark points {ur}mr=1, and forming two matrices C ∈ Rn×m
and E ∈ Rm×m based on the kernel function. Here Cir =
K(xi,ur) and Eij = K(ui,uj), and the kernel matrix can
be approximated as

G ≈ Ḡ := CE†CT , (7)

where E† denotes the pseudo-inverse of E. From the fea-
ture point of view, the Nyström method may be viewed
as constructing features for xi; with m landmark points
u1, · · · ,um, the feature mapping is

xi → ϕU (xi) = [k(xi,u1), k(xi,u2), · · · , k(xi,um)]M,
(8)

where M = (E†)
1
2 and U = {u1, · · · ,um,M}.

However, when using the above feature mappings for solv-
ing IMC, as shown in the experiment, we need large num-
ber of projections or landmark points (large m), to achieve
good performance. The memory requirement for storing
these new set of features ϕU (xi) for all xi is O(nm). This
can be infeasible in many applications, for example, when
m > 10, 000 and n approaches 1 million. A natural question
to ask is if we can reduce the number of samples needed to
perform the approximation.

4.2 Goal-directed IMC
To overcome the issue with large number of nonlinear fea-

tures, we propose Goal-directed Inductive Matrix Comple-
tion(GIMC), which aims to learn the feature mapping au-
tomatically to benefit the model. Instead of constructing a
mapping ϕU (·) in an unsupervised setting which ignores the
task at hand, we propose to learn the feature mappings and
the model parameters simultaneously in a supervised man-
ner. This can be attempted by solving the following joint
optimization problem:

min
Z,U,V

{
λz‖Z‖∗ +

∑
(i,j)∈Ω

`(ϕU (xi)
TZϕV (yj), Aij)

}
:= f(Z,U, V ),

(9)

where ` is the loss function, Z represents the model, and
the feature mapping of X and Y are ϕU (·), ϕV (·) which are
parameterized by U and V respectively. For simplicity, in
this paper we focus on squared loss `(b, a) = 1

2
(b− a)2, but

in general we can extend the algorithm to any loss function.
The main difference between problems (5) and (9) is that
the former only considers the model parameters Z given a
fixed feature mapping since U, V are predetermined, while
the latter considers to learn Z and U, V simultaneously. As
a result, we have the flexibility to optimize the kernel map-
ping according to the objective function that is defined by
different machine learning applications with IMC.

Again, we can define the feature mapping ϕU (·) in (9) us-
ing various functions. In our first algorithm, Goal-directed
IMC with Learned Fourier Features (GIMC-LFF) approach,
we define the feature mapping according to (6), and the
parameters U = {ur}mr=1 are the projection directions in
Fourier Features. Compared to the original RFF that sam-
ples {ur}mr=1 randomly from a distribution, we can learn
the projection directions {ur}mr=1 by minimizing the final
objective function in IMC.

Our second proposed algorithm, Goal-directed IMC with
Learned Nyström approximation (GIMC-LNYS), uses ϕU (·)
defined in (8). In this case, the parameters U = {u1, . . . ,um,M},
where each ui is a landmark point, and M ∈ Rm×m is a lin-
ear transformation. Although gradient descent updates dis-
cussed below can be applied to two set of variables ({ur}mr=1

and M), we observe no improvement by learning two sets
of parameters, so in the following we assume M = I in
GIMC-LNYS. Thus, U = {ur}mr=1 for both GIMC-LNYS
and GIMC-LFF, where each ur ∈ Rd.

Problem (9) is non-convex and can be solved via alternat-
ing minimization, where we alternatively optimize the model
parameters Z and feature mapping parameters U and V .
The update of model Z varies through applications, and we
will discuss how to update model parameters under specific
applications shortly in Section 5. To update nonlinear map-
ping parameters u1, . . . ,um, we use gradient descent and
update the parameters as:

ut+1
r ← utr − η∇urf(Z,U, V ), ∀r = 1, . . . ,m (10)

where η is the step size and we adopt the Armijo-rule based
step size selection to perform line search. Assume Bij =
ϕU (xi)

TZϕV (yj) is the current prediction on (i, j) element,



the gradient for each ur can be computed by chain rule:

∇urf(Z,U, V ) =
∑

(i,j)∈Ω

`′(Bij , Aij)
∂ϕU (xi)

∂ur

∂Bij
∂ϕU (xi)

=
∑

(i,j)∈Ω

`′(Bij , Aij)
∂ϕU (xi)

∂ur
ZϕV (yj)

(11)

where ∂ϕU (xi)
∂ur

is a d×m Jacobian matrix. For GIMC-LFF,

each ur only correlates with two features (see (6)), so the
Jacobian matrix has only two nonzero columns; where for
GIMC-LNYS each Jacobian matrix has only one nonzero
column. The update of V could be conducted similarly.

The time complexity of computing (11) can be analyzed
as follows. (1) Computing ϕV (yj) for all j: Assume the
computation of each element in ϕV (yj) requires O(d) time
(one inner product for both GIMC-LNYS and GIMC-LFF),
so constructing ϕV (yj) for all j requires O(dmn) time. This
can be further reduced to O(nnz(Y )m) if the original feature
matrix Y is sparse. (2) Computing ϕU (xi) for all i: similarly
this requires O(nnz(X)m) time. (3) Computing eq (11):

Since only one or two columns of ∂ϕU (xi)
∂ur

are nonzero, each

term in eq (11) requires O(m) time. In summary, the overall
time complexity for evaluating ∇urf(Z,U, V ) is

O

(
(nnz(X) + nnz(Y ) + nnz(A))m

)
,

which is similar to the original matrix completion if m is
small.

Details of the method are given in Algorithm 1. Since we
employ alternating minimization scheme for solving (9), one
can show that with the same number of landmark points
or projection directions m, our method can achieve lower
objective function values compared to the one achieved by
using IMC with unsupervised Nyström (IMC-NYS) or ran-
dom Fourier features(IMC-RFF). Specifically, let U0 and V 0

be the initial set of mapping directions, Z0 be the model
trained using IMC-RFF or IMC-NYS, and U t be the up-
dated directions at iteration t of Algorithm 1, we will have

f(Zt, U t, V t) ≤ f(Z0, U0, V 0),

which potentially implies a lower generalization error. In the
toy example in Figure 1, we can clearly see that GIMC-LFF
performs better than IMC-RFF, because we learn the fea-
ture and model together and thus construct a better set of
non-linear features to benefit IMC. In our real-world experi-
ments, we will also show that for a fixed number of features,
our method outperforms IMC using both traditional Nys-
tröm and random Fourier feature mappings.

5. APPLICATIONS
We now state how to apply our proposed GIMC model to

three machine learning applications: multi-label/multi-class
learning problems, and semi-supervised clustering problem.

5.1 Multi-label and Multi-class Learning
Modern multi-label learning algorithms have to deal with

problems with a very large number of samples, features and
labels 2 For example in our experiments, the largest dataset

2called “extreme multi-label learning” http://research.
microsoft.com/en-us/um/people/manik/events/xc15/

Algorithm 1: Goal-Directed Inductive Matrix Factor-
ization (GIMC)

Input : Partially observed set {Aij | (i, j) ∈ Ω},
feature set X = {xi}nx

i=1 and Y = {yi}
ny

i=1,
number of landmark points or projection
directions mx,my for X and Y .

Output: The model Z, U = {ur}mx
r=1 and V = {vr}my

r=1

which parameterize the goal-directed feature
mapping for X : ϕU (·) and mapping for
Y : ϕV (·) respectively.

1 [For GIMC-LFF]: Initialize {ur}mx
r=1, {vr}my

r=1 by
original random Fourier features

2 [For GIMC-LNYS]: Initialize {ur}mx
r=1, {vr}my

r=1 by
kmeans sampling or random sampling from training
data

3 for t = 1, . . . ,maxiter do
4 Update Z by existing IMC with {ϕU (xi)}nx

i=1 and

{ϕV (yi)}
ny

i=1

// Learn feature map for X
5 Compute gr ← ∇urf(Z,U, V ), ∀r = 1, . . . ,mx

6 Line search to find a step size η
7 Update ur ← ur − ηgr, ∀r = 1, . . . ,mx

// Learn feature map for Y
8 Compute gr ← ∇vrf(Z,U, V ), ∀r = 1, . . . ,my

9 Line search to find a step size η
10 Update vr ← vr − ηgr, ∀r = 1, . . . ,my

we used has more than a hundred thousand samples, fea-
tures, and labels.

Traditional multi-label learning approaches usually only
consider linear models due to computational concerns, espe-
cially when the number of labels is huge (see [28, 16]). Using
our goal-directed kernel approximation framework, we can
not only learn the non-linear features, but also make com-
putation efficient in both training and prediction phases.

Given training data X = {xi}ni=1, we use A ∈ Rn×L to
denote the 0/1 label matrix, where each row of A represents
the L labels associated with xi. We can formulate a simple
model that assumes no correlation among labels, and solve
for each label independently:

min
w1...wL

L∑
j=1

(λ
2
‖wj‖2 +

n∑
i=1

`(wT
j ϕU (xi), Aij)

)
,

where each wj is the parameters for predicting whether the
data has label j. This can be reduced to L binary classifi-
cation problems, but this approach is very time consuming.
For example, the Delicious dataset with 983 labels requires
more than 1 day for training. Generally speaking, a method
cannot scale to large n and large L if the time complexity
grows with O(nL).

We now show that we can apply GIMC-LFF and GIMC-
LNYS to solve this problem. As ` is chosen to be the squared
loss, the objective function can be rewritten as

min
W,U

λ

2
‖W‖2F +

1

2
‖A− ϕU (X)W‖2F ,

where ϕU (X) := [ϕU (x1) . . . ϕU (xn)]T , (12)

and W ∈ Rm×L are model parameters. We can see that
(12) is a special case of (9), where ϕV (Y ) = I and Ω is



all the nL elements in A. 3 Therefore, we can solve it by
the alternating minimization algorithm. Unfortunately, as
analyzed in Section 4.2, directly computing (11) will lead to
O(|Ω|m) = O(Lmn), which will not scale to problems with
L, n ≥ 100, 000.

Interestingly, in the following we show that by carefully
arranging the computation, the computational complexity
can be reduced to O(m2(n+L) +m‖X‖0 +m‖A‖0)), which
leads to a scalable algorithm that only depends on the num-
ber of nonzero elements in feature and label matrices.

When U is fixed, the subproblem with respect to W is a
standard linear regression problem, which can be solved by a
linear system solver: W ← (λϕU (X)TϕU (X)+λI)−1ϕU (X)TA.
This costs O(m3 +m‖A‖0 +m2L) time complexity.

When W is fixed, for GIMC-LFF the subproblem with
respect to U can be written as

∇urf(w, U) =
1√
m

n∑
i=1

L∑
j=1

(wT
j ϕU (xi)−Ai,j)(Wr,j sin(uTr xi)

−Wr+m,j cos(uTr xi))xi,

which can be written in a compact form as

∇Uf(w, U) =
1√
m
XT ((ϕU (X)WWT

(2) −AWT
(2)) ◦ cos(XU))

− (ϕU (X)WWT
(1) −AWT

(1)) ◦ sin(XU))
)
,

where U ∈ Rd×m, WT = [WT
(1) W

T
(2)] and ◦ is the element-

wise product. This can be computed in O(m2n+m‖X‖0 +
m‖A‖0) time where ‖ · ‖0 is number of nonzeroes in the
matrix.

In the line search step, we use the following formulation
to compute the objective function value,

‖A− ϕU (X)W‖2F =
∑

1≤i,j≤m

(
(WWT ) ◦ (ϕU (X)TϕU (X))

)
ij

+ ‖A‖2F − 2
∑

1≤i,j≤m

(AWT ◦ ϕU (X))ij ,

which only requires O(m‖A‖0 + nm2 + Lm2) time. The
complexity will not grow as O(nL), which means it can use
large number of samples and labels when A is sparse. A
similar update rule can be derived for GIMC-LNYS.

As a final remark, we can also use (12) for solving multi-
class classification problem, where A is a n×L matrix with
L to be the number of classes. Aij = 1 when xi belong to
j-th class. The algorithm and analysis remain the same.

5.2 Semi-supervised Clustering
We now show that we can apply our GIMC framework

for semi-supervised clustering as well. The semi-supervised
clustering problem can be stated as follows: Suppose we are
given n items and a feature matrix X ∈ Rn×d where the
i-th row xi is the feature of i-th item, and a set of pairwise
constraints C = {Sij | (i, j) ∈ Ω} where each constraint Sij
is in the following form:

Sij =

{
1, if item i and j are similar,

0, if item i and j are dissimilar.

3Rigorously speaking, it is a special case for the ”generalized”
GIMC model where regularization of model parameter is
replaced with ‖ · ‖2F .

Then the goal is to find a clustering of items such that most
similar items are within the same cluster. A state-of-the-
art approach MCCC [25] models this problem using IMC

framework. Specifically, let S =
∑k
i=1 cic

T
i be the rank-

k similarity matrix, where ci is the indicator of the i-th
cluster. Then the constraint set C could be thought of as
partial observations of S. MCCC first tries to complete the
low rank matrix S using IMC (3), and then uses its top-k
singular vectors, which ideally will be the cluster indicators,
to derive a partition.

Although it has been shown that MCCC outperforms tra-
ditional semi-supervised clustering algorithms [25], one issue
is that it only considers linear mapping of features in ma-
trix completion step, while the clustering may be revealed
by some non-linear mapping of features. Thus, to overcome
this problem, we propose to apply our GIMC framework to
solve the semi-supervised clustering by learning both non-
linear mapping of features and the underlying similarity S
by solving the following optimization problem:

min
W,H,U,V

1

2
‖PΩ

(
S − ϕU (X)WHTϕV (X)T

)
‖2F +

λ

2
(‖W‖2F + ‖H‖2F ),

(13)

which is a special case of the GIMC framework (9) with
Y = X and A = S 4. To solve above optimization prob-
lem, we alternate between learning the nonlinear mapping
(i.e. solve U, V with fixed W,H) and the model (i.e. solve
W,H with fixed U, V ). Once converged, we can derive a
clustering by running k-means on top-k singular vectors of
ϕU (X)WHTϕV (X)T .

We now briefly discuss how to solve each subproblem ef-
ficiently using GIMC under semi-supervised clustering con-
text. First, fixing U, V , solving W,H becomes a standard
IMC problem, and one can use existing efficient algorithms
(e.g. alternating minimization with conjugate gradient [28]
as used in our experiment) to solve for W and H. The
method addressed in [28] only requires O((|Ω| + nm)k) for
each update of W or H.

Fixing W,H, we could solve U, V alternatively by gradi-
ent descent with line search. For example, let us first con-
sider (13) to be GIMC-LFF where U , V are parameters for
projections in Fourier Features, then the learning process of
U is similar to the one in multilabel learning, except here we
only consider the loss on a subset Ω. The gradient of each
projection ur could be written as:

∇urf(U, V,W,H) =
∑

(i,j)∈Ω

(ϕ(xi)
Tqj − Sij)(−Qj,r sin(uTr xi)

+Qj,r+k cos(uTr xi))xi, (14)

where Q = ϕV (X)HWT . The gradient of U could be com-
puted in O((|Ω| + nd)m) as discussed in Section 4.2. In
addition, for each line search iteration, evaluating objective
function also takes O((|Ω|+nd)m) since only |Ω| inner prod-
ucts have to be computed. Similar update rule and time
complexity analysis could also be derived if we consider Nys-
tröm features for U and V . Typically, m, d � n, |Ω| � n2,
the overall time complexity for learning mappings grows at a
rate much smaller than O(n2), especially if the available con-
straints are sparse. Using GIMC-LFF for semi-supervised

4Here we consider the equivalent nonconvex form of IMC
objective (see Section 3).



clustering is shown in Algorithm 2. We can derive similar
algorithm using GIMC-LNYS.

Algorithm 2: Semi-supervised Clustering with GIMC-
LFF
Input : feature matrix X, constraint set

C = {Sij | (i, j) ∈ Ω}, number of clusters k,
regularization parameter λ, number of
projections m.

Output: Clustering result π.
// Solve for GIMC-LFF model (13)

1 Initialize random projections U, V ∈ Rd×m, model

parameter W,H ∈ R2m×k.
2 for t = 1, . . . ,maxiter do

// Learning IMC model
3 [W,H]← minW,H

1
2
‖PΩ

(
S −

ϕU (X)WHTϕV (X)T
)
‖2F + λ

2
(‖W‖2F + ‖H‖2F )

// Learning non-linear mapping
4 Update U with gradient descent (using (14)).
5 Update V with gradient descent (similar to (14)).

// Use left side of matrix to approximate top-k singular
vectors

6 T ← svds(ϕU (X)W,k)
7 π ← kmeans(T, k)

6. EXPERIMENTS
We consider the three applications mentioned in the pre-

ceding section. We compare the following methods:

1. IMC-NYS: IMC with Nyström features. Here the land-
mark points in Nyström features are sampled uniformly
at random from the dataset [23].

2. IMC-RFF: IMC with random Fourier features [18].
Random Fourier features are constructed based on the
Fourier transform of the shift-invariant kernel function.

3. LEML[28]: state-of-the-art multi-label solver using IMC
framework.

4. FastXML[16]: state-of-the-art multi-label solver using
a random forest approach, where each tree is con-
structed by jointly optimizing both the ranking loss
and tree structure.

5. SLEEC[1]: state-of-the-art multi-label solver which learns
an ensemble of local distance preserving embeddings to
preserve the pairwise distance between the neighbors’
label vector.

6. k-means: traditional k-means clustering, which only
considers data points as features.

7. MCCC[25]: a semi-supervised clustering method using
IMC framework.

8. GIMC-LNYS: our proposed framework GIMC which
learns Nyström features.

9. GIMC-LFF: our proposed framework GIMC which learns
Fourier features.

Note that we compare with SLEEC, FastXML, and LEML
for the multi-label learning task, and k-means and MCCC
for semi-supervised clustering problem. SLEEC, FastXML,
and LEML are highly optimized C++ implementation pub-
lished along with the original papers. We use the parame-
ters along with the released code for these three methods.
We use Gaussian kernel as the basis kernel function used in
Nyström feature and random Fourier features. The kernel
width γ in Gaussian kernel and the regularization term λ
in IMC are chosen by cross-validation. All experiments are
conducted on a machine with an Intel Xeon X5440 2.83GHz
CPU and 32G RAM.

6.1 Multi-label and Multi-class Learning
First, we show that our proposed algorithms can be ap-

plied to large-scale multi-label and multi-class classification
problems. The datasets are listed in Table 1. The four
multi-label datasets are from [1]. We evaluate the results by
averaged precision at top 1, 3, and 5.

For multi-label learning problem, firstly we compare with
IMC using Nyström features (IMC-NYS) and random Fourier
features(IMC-RFF) in Figure 2. Here we vary m, i.e., the
number of projections or landmark points in the feature
mapping, which is directly related to the memory usage and
prediction time of our method, and show the top-3 accu-
racy. It shows that GIMC-LFF and GIMC-LNYS are much
better than IMC-NYS and IMC-RFF. This shows that with
the same number of features, learning feature mapping and
models together will benefit IMC. Furthermore, we compare
with three state-of-the-art multi-label learning approaches:
SLEEC [1], FastXML [16] and LEML [28] in the same fig-
ures. For these three algorithms, we compare with the best
accuracy using the best parameters reported in their pa-
pers. Also, GIMC-LFF achieves better test accuracy com-
pared to state-of-the-art multi-label solvers on all these three
datasets.

The detailed comparison in terms of precision at 1, 3, 5
are shown in Table 2. In addition, the efficiency of our algo-
rithms is competitive to state-of-the-art algorithms, SLEEC
and FastXML. On the NUS-WIDE dataset, using 500 fea-
tures with 100 iterations, our GIMC-LFF achieves a 17.27%
accuracy taking 6,482 seconds, while FastXML achieves a
16.32% using 17,774 seconds and SLEEC takes 68,232 sec-
onds and achieves 17.67% accuracy.

We can also use our proposed methods for multi-class clas-
sification. We treat it as a special case of multi-label learn-
ing problem where the label matrix Y has only one 1 in each
row. Here we test on one popular multi-class classification
dataset: CIFAR-10.

CIFAR-10: We benchmark our method on the CIFAR-
10[9], a popular multi-class classification dataset with 10
classes of natural images including 50,000 training samples
and 10,000 testing samples. Each image is an 32× 32 RGB
image. For each image, we extracted 12,288-dimensional fea-
tures using CAFFE, a popular deep learning framework[6].
We then apply our proposed method GIMC-LFF and GIMC-
LNYS on these new set of features for classification. The
result is in Figure 2. In our experiment, linear SVMs with
the new set of features achieves 81.73% accuracy, while our
proposed methods achieve around 84% accuracy using 2000
features which is also much better than IMC with random
Fourier features and Nyström features.



Table 1: Data set statistics for multi-label and multi-class classification problems.

Dataset type # training samples # testing samples # features # labels
Bibtex multi-label 4,880 2,515 1,836 159

Delicious multi-label 12,920 3,185 500 983
NUS-WIDE multi-label 161,789 107,859 1,134 1,000

Delicious-large multi-label 196,606 100,095 782,585 205,443
CIFAR-10 multi-class 50,000 10,000 12,288 10

Table 2: Comparison between our proposed method GIMC with SLEEC, FastXML, and LEML for multi-
label learning problem. Note that P1, P3, and P5 indicates Precision at top 1, top 3, and top 5 respectively.
GIMC means GIMC-LFF for BibTex, Delicious, and NUS-WIDE datasets. For Delicious-large, we combine
GIMC-LFF and GIMC-LNYS, that is, we concatenate the non-linear features learned from both GIMC-LFF
and GIMC-LNYS, to make the final prediction. We can see that for the first three datasets, GIMC achieves
the best performance comparing with other methods. On Delicious-large dataset, GIMC has similar accuracy
with SLEEC, but takes much less time: 4,724 vs 25,289 seconds.

Bibtex Delicious NUS-WIDE Delicious-large
P1 (%) P3 (%) P5 (%) P1 (%) P3 (%) P5 (%) P1 (%) P3 (%) P5 (%) P1 (%) P3 (%) P5 (%)

GIMC 65.85 41.17 30.01 71.40 65.16 59.79 22.49 17.40 14.70 46.13 40.32 38.15
SLEEC [1] 65.29 39.60 28.63 68.38 61.50 56.35 17.67 14.20 12.07 47.03 41.67 38.88

FastXML[16] 64.53 40.17 29.27 69.65 63.93 59.36 21.00 16.32 13.66 42.81 38.76 36.34
LEML[16] 62.53 38.40 28.21 65.66 61.15 56.08 20.76 16.00 13.11 40.30 37.76 36.66

6.2 Semi-Supervised Clustering
Since GIMC-LFF and GIMC-LNYS perform similarly well,

we mainly compare our proposed GIMC-LFF for semi-supervised
clustering with three popular clustering methods. We con-
sider using simple k-means on data points’ features (and
ignore pairwise constraints) as the baseline, and also com-
pare with state-of-the-art clustering method MCCC [25],
and IMC-RFF which first generates random Fourier fea-
tures, and then applies MCCC with these nonlinear fea-
tures. We take m = 500 for both IMC-RFF and GIMC-LFF.
Note that (1) MCCC is based on the IMC framework; (2)
since MCCC has been shown to outperform many traditional
methods (see [25] for details), we thus focus on comparing
with MCCC to demonstrate the effectiveness of our model.

In this experiment, we consider three real-world datasets:
Mushroom, Segment and Covtype 5 from classification bench-
marks. Items with the same label are regarded as in the
same cluster which is the general setting for semi-supervised
clustering. We randomly sample |Ω| pairs of items and gen-
erate the pairwise constraints based on these pairs, with
|Ω| = [1, 5, 10, 15, 20] × n, where n is the number of data
points. For each choice of |Ω|, we apply each method sev-
eral times with different regularization parameters λ chosen
from the set {0.1, 0.5, 1, 5, 10}, and take the parameter (and
the corresponding clustering π) that achieves the smallest
empirical clustering error on the validation set:

1

|Ω|

( ∑
(i,j)∈Ω:πi=πj

1(Sij = 0) +
∑

(i,j)∈Ω:πi 6=πj

1(Sij = 1)

)
.

Then we use the parameter λ to train the model and gen-
erate the clustering π, and evaluate π using the clustering
error rate to the ground-truth clustering defined by:

2

n(n− 1)

( ∑
(i,j):π∗i =π∗j

1(πi 6= πj) +
∑

(i,j):π∗i 6=π
∗
j

1(πi = πj)

)
5We subsample from the entire dataset to make clusters have
balanced size.

where π∗i is the ground-truth cluster of item i.
The result is shown in Table 3. First, we observe that

MCCC, IMC-RFF, and GIMC-LFF all perform well on Mush-
room as perfect clustering could be (almost) derived. This
confirms that MCCC is indeed effective when clustering is
linearly dependent on features (100% training classification
accuracy could be attained by a linear SVM on this dataset).
However, in Segment and Covtype where features are not
linearly separable for clustering, MCCC is trapped and both
IMC-RFF and GIMC-LFF perform better than MCCC on
these two datasets. This shows that considering nonlinear
mapping of features improves the clustering result when data
points are not linearly separable. Furthermore, we see that
GIMC-LFF can further improve IMC-RFF with sufficient
constraints. This is because when constraints are sufficient,
GIMC-LFF could reliably learn a better nonlinear mapping
based on constraints, and thus a better clustering could be
obtained. The results show that our framework outperforms
both state-of-the-art MCCC algorithm and IMC-RFF by
learning a better nonlinear mapping of features for cluster-
ing.

7. CONCLUSION
We propose a family of Goal-directed Inductive Matrix

Completion (GIMC) algorithms. Instead of constructing
non-linear features without any supervision to the final goal,
we formulate the non-linear mapping finding stage and the
model learning stage together as a unified function. As a re-
sult, out algorithms find the non-linear mapping that is good
for Inductive Matrix Completion. We apply our two algo-
rithms, GIMC based on Fourier features (GIMC-LFF) and
GIMC based on Nyström features(GIMC-LNYS), to multi-
label learning, multi-class classification, and semi-supervised
clustering problems. Experimental results show that our al-
gorithms significantly reduce the number of non-linear fea-
tures needed, and we obtain a better prediction accuracy
and lower clustering error rate compared to state-of-the-art
methods.



(a) BibTex (b) Delicious

(c) NUS-WIDE (d) CIFAR

Figure 2: The comparison on multi-label and multi-class classification problems. Figures 2(a),2(b), and 2(c)
show results for multi-label learning problem and Figure 2(d) shows results for multi-class classification prob-
lem. x-axis shows the number of projections in GIMC-LFF or number of landmark points in GIMC-LNYS.
y-axis shows the Top-3 accuracy for multi-label learning or prediction accuracy for multi-class classification.
In Figure 2(b) and 2(c) we can observe GIMC-LFF and GIMC-LNYS are much better than IMC-RFF and
IMC-NYS for multi-label learning. GIMC-LFF even outperforms state-the-art multi-label solvers (LEML,
FastXML, and SLEEC). In Figure 2(d), our algorithms also have good performance when applying to multi-
class problems such as the CIFAR-10 dataset.

As future work, we are planning to exploit (1) different
non-linear features mapping, e.g., polynomial kernel feature
mapping; (2) different optimization techniques in our frame-
work to speed up the computation, e.g., using coordinate
descent and stochastic gradient descent; (3) other machine
learning applications, such as classification and regression.
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