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Abstract
Our goal is to improve the training and pre-
diction time of Nyström method, which is a
widely-used technique for generating low-rank
kernel matrix approximations. When applying
the Nyström approximation for large-scale ap-
plications, both training and prediction time is
dominated by computing kernel values between a
data point and all landmark points. With m land-
mark points, this computation requires Θ(md)
time (flops), where d is the input dimension.
In this paper, we propose the use of a family
of fast transforms to generate structured land-
mark points for Nyström approximation. By
exploiting fast transforms, e.g., Haar transform
and Hadamard transform, our modified Nyström
method requires only Θ(m) or Θ(m log d) time
to compute the kernel values between a given
data point andm landmark points. This improve-
ment in time complexity can significantly speed
up kernel approximation and benefit prediction
speed in kernel machines. For instance, on the
webspam data (more than 300,000 data points),
our proposed algorithm enables kernel SVM pre-
diction to deliver 98% accuracy and the result-
ing prediction time is 1000 times faster than LIB-
SVM and only 10 times slower than linear SVM
prediction (which yields only 91% accuracy).

1. Introduction
In recent years, significant effort has been expended in try-
ing to scale up kernel machines; however, standard kernel
machines such as kernel SVM or kernel ridge regression
suffer from slow training and prediction which prohibits
their use in real-world large-scale applications. One of the
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key issues is to compute and store the kernel matrix, which
usually takes Θ(n2d) time and Θ(n2) space, where n is
the number of training samples and d is the dimensional-
ity. A widely-used approach to alleviate this problem is
to approximate the kernel matrix by its low-rank approxi-
mation, as a result of which kernel methods can be solved
efficiently.

There has been a vast body of work on low-rank approxi-
mation methods, among which Nyström method has drawn
considerable attention for very large-scale datasets. It has
been shown in (Williams & Seeger, 2001; Li et al., 2010;
Rudi et al., 2015; Hsieh et al., 2014a) that Nyström based
kernel approximation is efficient for scaling up kernel ma-
chines in both training and prediction phases. In Nyström
approximation, both training and prediction time is dom-
inated by the time to compute the kernel values between
a data point and all landmark points. With m landmark
points, assume each kernel evaluation takes Θ(d) time,
then Θ(md) time is needed to compute m kernel values.
There has been substantial work in the literature (Drineas
& Mahoney, 2005; Zhang et al., 2008) towards improving
the approximation for a fixed number of landmark pointsm
by exploiting different landmark points selection methods.

However, the computational complexity for both train-
ing and testing phases has not been taken into consider-
ation when forming landmark points. For a fixed m land-
mark points, popular Nyström methods need Θ(nmd) to
form the kernel values when forming the low-rank approx-
imation and Θ(md) for prediction on one testing point.
In this paper, we propose the use of fast transforms, e.g.,
fast Haar and Hadamard transforms, to generate structured
landmark points. Based on these new structured landmark
points, the kernel values can be quickly evaluated, which
reduces the time complexity of forming the Nyström ap-
proximation and speeds up the prediction. More specially,
to test a new sample, for m landmark points, traditional
Nyström methods take Θ(md) time to make a prediction
and due to the benefit of fast transforms, the time complex-
ity can be reduced to Θ(m log d) or Θ(m) via our method.
Although fast transforms have been widely used in machine
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learning community, e.g., speed up random projection in
(Le et al., 2013) and (Gittens & Mahoney, 2013b); their
benefit for constructing structured landmark points to im-
prove Nyström methods has never been investigated.

In this paper, we make the following contributions:

• We propose a family of fast transform based Nyström
approximation algorithms (Fast-Nys). By enforcing
the structure of the landmark points, with a fixed time
budget, our proposed algorithms can compute kernel
approximation with many more landmark points com-
pared to traditional Nyström approximation.

• We cast the landmark points learning problem into
an optimization problem with structural constraints,
which can be solved efficiently in an alternating mini-
mization scheme.

• We compare our proposed algorithm with state-of-
the-art kernel approximation and fast prediction al-
gorithms on real datasets and show that our proposed
algorithm can achieve lower approximation error and
higher prediction accuracy under a fixed time budget.
When combined with the divide-and-conquer frame-
work, our proposed algorithm performs better than the
best known fast kernel SVM prediction algorithm.

In Section 2, we review state-of-the-art kernel approxima-
tion and fast prediction methods. In Section 3, we explain
the Nyström method and show how to apply it to speed up
the training and prediction of kernel machines. The main
algorithm is described in Section 4. Section 5 shows the
experimental results. We conclude our paper in Section 6.

2. Related Work
To speed up kernel methods, a family of widely-used tech-
niques is to approximate the kernel matrix. Among them,
one popular way is to generate random features from the
kernel function to approximate kernel matrix. Random
kitchen sinks (RKS) (Rahimi & Recht, 2007; 2008; Dai
et al., 2014) approximate the shift-invariant kernel based
on its Fourier transform. (Yang et al., 2014) considers us-
ing Quasi-Monte Carlo to generate features. Other than
shift-invariant kernels, (Kar & Karnick, 2012) considers
constructing random features for inner product kernels and
(Pennington et al., 2015) generalizes random features for
polynomial kernel for data on the unit sphere. Fastfood (Le
et al., 2013) applies the Hadamard transform to speed up
RKS. Several work focuses on exploiting the structure of
the kernel matrix, e.g., (Hsieh et al., 2014b) considers the
block structure of the kernel matrix and (Si et al., 2014)
considers both low-rank and block structure of the shift-
invariant kernel matrix to reduce the memory usage.

Other than random feature and block structure based meth-
ods, Nyström approximation (Williams & Seeger, 2001)

is an efficient way to generate the low-rank representa-
tion to approximate the kernel matrix. The basic idea for
Nyström approximation is to select some data points as
landmark points and use the kernel values between these
landmark points and all the data points to generate the
low-rank approximation. There are many landmark points
selection algorithms proposed in the literature. Standard
Nyström (Williams & Seeger, 2001) uniformly samples
landmark points from the dataset. More sophisticated land-
mark points selection algorithms have been proposed, in-
cluding kmeans sampling (Zhang et al., 2008), sampling
based on norm of corresponding kernel columns (Drineas
& Mahoney, 2005), ensemble Nyström (Kumar et al.,
2009), entropy-based selection (Brabanter et al., 2010),
subspace distance (Lim et al., 2015) and leverage score
based sampling (Gittens & Mahoney, 2013a;b). (Gittens &
Mahoney, 2013b) further proposed to use Hadamard trans-
form to speedup the leverage score computation. Different
from previous work, we propose a family of Fast Transform
Landmark points Selection algorithms that focuses on both
“approximation error” and “computational time” through
learned structured landmark points.

Prediction time for kernel methods. Kernel methods
typically need Θ(nd) prediction time for each test sam-
ple, which could be expensive when the size of training
set is large. Therefore, speeding up the prediction have
become a popular research direction. For example, (Jose
et al., 2013; Choromanska & Langford, 2015) proposed to
speed up prediction time using tree-based approaches. Be-
sides using trees, Nyström approximation can also signifi-
cantly speed up the prediction. (Hsieh et al., 2014a) con-
structs pseudo landmark points in Nyström approximation
and combines with divide-and-conquer strategy to achieve
fast prediction. Our proposed algorithms utilize the prop-
erty of fast transforms to speed up the kernel values evalu-
ation, and thus can be applied to speed up prediction time.
With m landmark points, the prediction time for our ap-
proach is Θ(m log d) or Θ(m) while traditional Nyström
methods require Θ(md).

3. Background
In this section, we will present the training and predic-
tion time complexity when applying Nyström approxima-
tion to kernel machines. Given a set of instance-label pairs
{xi, yi}ni=1, xi ∈ Rd, yi ∈ {+1,−1} for classification and
yi ∈ R for regression, we use K(xi,xj) to denote the ker-
nel function. The kernel matrix is given by G ∈ Rn×n,
where Gij = K(xi,xj). One famous kernel machine is
kernel SVM:

α∗ ← argmin
α

1

2
αTQα− eTα s.t. 0 ≤ α ≤ B,

where α∗ is the dual optimal solution of the kernel ma-
chine; Q is an n × n matrix with Qij = yiyjGij ; B is the
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balancing parameter between loss and regularization. The
prediction for a testing sample x needs to compute the de-
cision value:

∑n
i=1 yiα

∗
iK(xi,x). Due to the Θ(n2d) time

and Θ(n2) space complexity of forming and storing kernel
matrix, kernel machines are slow in both training and pre-
diction phases.

To scale up kernel machines, a promising way is to form
the low-rank approximation of G by Nyström approxima-
tion. Given m � n landmark points {uj}mj=1, Nyström
methods (Williams & Seeger, 2001) form the following
low-rank approximation for the kernel matrix:

G ≈ Ḡ := CW †CT , (1)

where C ∈ Rn×m contains kernel values between all the
data points and the landmark points (Cij = K(xi,uj)),
and W ∈ Rm×m contains kernel values between land-
mark points (Wij = K(ui,uj)), and W † is the pseudo-
inverse of W . The time complexity for traditional Nyström
is Θ(nmd + m3), where Θ(nmd) is used for forming the
kernel value matrix C, and Θ(m3) is used for formingW †.
We can see that in Nyström methods computing C is the
bottleneck for large-scale applications.

After forming the Nyström approximation, the training
speed can be sped up since the matrix-vector product Ḡv
can be computed efficiently. More interestingly, Nyström
approximation is also a promising way to speed up the test-
ing phase. For a testing sample x, with Nyström approxi-
mation the decision value can be computed by

x̄(W †CTα) = x̄β, (2)

where α is the kernel SVM (or kernel ridge regression)
model, and x̄ = [K(x,u1), . . . ,K(x,um)]. β is inde-
pendent of x, so can be precomputed and stored. There-
fore, the time complexity for predicting a testing sample is
equal to the time complexity for computing x̄, which re-
quires Θ(md) time/flops for computing the m kernel val-
ues. It has been shown in many previous papers (Hsieh
et al., 2014a) that Nyström approximation is an efficient
way to improve the prediction time, and can achieve state-
of-the-art performance if used in conjunction with divide-
and-conquer SVM or Memory Efficient Kernel Approxi-
mation frameworks (Hsieh et al., 2014b; Si et al., 2014).

However, existing landmark points selection approaches
aim to minimize the “kernel approximation error”, and
none of them brought the “computational time” into the
picture when forming the Nyström approximation. In this
work, we propose a family of Fast Transforms Landmark
points Selection algorithms (Fast-Nys) that considers both
“approximation error” and “computational time”. As a re-
sult, we are able to improve the Nyström approximation in
both training and prediction phases.

4. Fast Transform landmark points selection
(Fast-Nys)

We consider a family of kernel functions that have the fol-
lowing form:

K(xi,xj) = f(xi)f(xj)g(xTi xj), (3)

where f(·) : Rd → R and g(·) : R → R. Some widely
used kernel functions belong to this family: in Gaussian
kernel, f(x) = e−γ‖x‖

2

, g(z) = e2γz , in polynomial ker-
nel f(x) = 1, g(z) = (c+z)p, and in homogeneous kernel
f(x) = 1, g(z) = zp.

Given a set of m landmark points U ∈ Rm×d where each
row of U is a landmark point uj , in the training phase the
main computation of forming Nyström approximation (1)
is to compute C ∈ Rn×m where Cij = K(xi,uj). The
computational time for each row of C can be written as

Tf + Tg ×m+ TUx, (4)

where Tf and Tg are function evaluation time for f(·) and
g(·) respectively, and TUx is the time complexity for com-
puting Ux, i.e., the inner product between an arbitrary
x ∈ Rd and U . In the prediction phase for kernel SVM,
as shown in (2), the bottleneck is to compute x̄, the kernel
values between a test sample and all landmark points. So
the prediction time complexity is the same as (4).

Now we analyze the time complexity for computing kernel
values between one data point x and all landmark points
(Eq. (4)). Typically the matrix-vector product Ux has
Θ(md) time complexity, and both Tg and Tf are very fast.
Therefore, the third term (computation of TUx) dominates
the time complexity: computing each x̄ requires Θ(md)
time complexity. Table 1 shows the time segmentation for
standard Nyström on MNIST dataset with 60, 000 samples,
and TUx clearly dominates the computational time.

Now we are ready to describe the main idea of this paper.
Can we compute Ux using less than Θ(md) floating point
operations with m landmark points? The answer is yes if
the landmark matrix U has some special structure. If we
force the landmark points to collectively have some spe-
cial structure, then the kernel approximation and predic-
tion time can both be sped up. We propose two examples
of the Fast Transform Landmark Points Selection methods,
where for each one we force U to have a special structure
to benefit the computation of Ux.

4.1. Haar Landmark Points

For the first example of our proposed framework, we make
use of the fast Haar discrete wavelet transform. Haar dis-
crete wavelet transform associates with Haar matrix Hd.
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Figure 1. Comparisons of landmark points and approximation er-
ror using our proposed method (Fast-Nys with Haar landmark
points) and Kmeans Nystrom (KNys). In the figure, green as-
terisk are the data points generated from Gaussian distribution.
Red circles are the landmark points in KNys and blue diamonds
are the generated Haar landmark points from Fast-Nys. Note that
Fast-Nys uses fast transform to form the kernel values, so with
the similar amount of time, Fast-Nys can handle more landmark
points than traditional Nyström methods (here, KNys).

As an example, when d = 4,

H4 =


1 1 1 1
1 1 −1 −1
1 −1 0 0
0 0 1 −1

 . (5)

Generally, the 2d× 2d Haar matrix can be derived as:

H2d =

(
Hd ⊗ [1, 1]
Id ⊗ [1,−1]

)
, (6)

where Id is d × d identity matrix; ⊗ is the Kronecker
product. The time complexity for fast wavelet transform
is Θ(d), which means d× d Haar matrix multiplies a d× 1
vector can be done in Θ(d) time.

In the Haar landmark points approach, we force the m× d
landmark matrix U to have the following structure:

U = [V1H
T
d , V2H

T
d , . . . , VsH

T
d ]T , (7)

where s = m/d, each Vi is a d by d diagonal matrix, and
Hd is the d× d Haar matrix.

Given a sample x, the computation of Ux can be done by

Ux = [(HdV1x)T , (HdV2x)T , . . . , (HdVsx)T ]T . (8)

If we write Vi = diag(vi) where vi is a d-dimensional vec-
tor, called ’seed’, then each v̄ = Vix can be computed by

d multiplications. Also, using the properties of Haar trans-
form, Hdv̄ can be computed in Θ(d) time (and only with
plus and minus operations) using Haar transform. There-
fore, with m landmark points, using Haar landmark points,
the computation of Ux can be done in Θ(ds) = Θ(m)
time, which is significantly faster than the Θ(md) time in
standard Nyström. When d is not 2l for some l, we can ap-
pend zero features, which will not change the order of time
complexity.

Using this structure, we have the freedom in choosing
’seeds’ vectors v1, . . . ,vs. Note that given a set of s classi-
cal landmark points m1, . . . ,ms that can be generated by
any landmark points selection approach (random sampling,
kmeans clustering, leverage score based sampling, or oth-
ers), we can set the seeds v1 = m1, . . . ,vs = ms. Since
the first row of the Haar matrix is all 1s, the first row of
each HdVi will be mi. This implies that the original land-
mark points {mi}si=1 will be a subset of the Haar landmark
points {ui}mi=1. Also, it is not difficult to show that the new
set of landmark points will decrease the kernel approxima-
tion error compared with using original Nyström landmark
points (see Theorem 1 in the Appendix).

In term of complexity, the time complexity for using
{mi}si=1 and {ui}mi=1 are the same (both are Θ(m)) to
form one row of C in Nyström approximation. For the
training time, there is small computation overhead in com-
puting W † as shown in Table 1. Furthermore, computing
W † can be further sped up by randomized SVD (Li et al.,
2010).

Figure 1 is a toy example comparing our proposed method
with a state-of-the-art Nyström approximation method,
Kmeans Nyström (KNys). As we can see in the figure, the
landmark points generated from Fast-Nys cover more space
than the landmark points from KNys, so it can achieve
much lower approximation error. Note that although Fast-
Nys uses more landmark points than KNys, the training and
prediction time are similar since the structure of landmark
points allow us to speed up the kernel value evaluation by
fast wavelet transform.

In conclusion, the benefits of our proposed Haar landmark
points are:

• For the same number of landmark points, using Haar
landmark points will speed up training and prediction.
• Using the same Θ(m) time, Haar landmark points al-

low us to generate more landmark points, and is guar-
anteed to achieve better performance than the original
landmark points.

4.2. Hadamard Landmark Points

Instead of using the Haar matrix in (7), we can also use
other fast transforms such as Hadamard transform, which
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(a) ijcnn. (b) webspam. (c) magic.

Figure 2. Comparisons of Haar landmark points and Hadamard landmark points for Gaussian kernel approximation on three real datasets.
We also compare random seeds with learning seeds with structural constraint (Haar with structural constraint) in Nyström approximation.
x-axis shows the time (in seconds), and y-axis shows the relative kernel approximation error. Since Haar landmark points perform better
than Hadamard landmark points in (12), we do not show the result of Hadamard with structural constraint in these plots.

associates with the Walsh-Hadamard matrix defined as

H̄2 =

[
1 1
1 −1

]
and H̄2d =

[
H̄d H̄d

H̄d −H̄d

]
.

By exploiting the structure, the fast Hadamard transform
allows the computation of matrix-vector product H̄dv to
be done in Θ(d log d) time. We define the Hadamard land-
mark points to have the following structure:

U = [V1H̄
T
d , V2H̄

T
d , . . . , VsH̄

T
d ]T . (9)

Using a similar derivation with the previous subsection,
we can see that with m landmark points, the matrix-vector
product Ux can be done in Θ(m log d) time if landmark
points matrix U follows the form of (9).

Similar to the Haar landmark points case, given a set
of original landmark points {m1, . . . ,ms}, we can set
vi = mi for all i = 1, . . . , s, the resulting kernel ap-
proximation has lower approximation error than just us-
ing the original s landmark points, with little computational
overhead. With the same number of landmark points, ap-
proximation using Haar landmark points usually has bet-
ter time complexity but worse approximation quality com-
pared with using Hadamard landmark points. A compar-
ison between Hadamard landmark points and Haar land-
mark points is shown in Figure 2. We can see that Haar
landmark points in most cases achieves lower approxima-
tion error than Hadamard landmark points using the same
amount of time.

4.3. Searching for Seeds

In this section, we propose another way to learn the seeds
v1, · · · ,vs in our algorithm by minimizing the upper
bound of kernel approximation error. We consider the up-
per bound derived in (Zhang et al., 2008):

Proposition 1 (Zhang et al., 2008). If the kernel function
K(·, ·) satisfies

K(a, b)2 −K(c,d)2 ≤ η(‖a− c‖2 + ‖b− d‖2) (10)

for some constant η, then the error of Nyström approxima-
tion is bounded by ‖Ḡ−G‖F ≤ C1

√
e+ C2e, where

e =

n∑
i=1

(
min
j
‖xi − uj‖2

)
. (11)

It is easy to show that the kernel function considered in
our paper (3) satisfies condition (10) (see Lemma 1 in the
Appendix). This motivates us to find the optimal seeds to
minimize the error e.

Optimal Seeds Selection by Minimizing the Error. In
our proposed algorithms, the fast transform landmark
points (7) and (9) are parameterized by the seed vectors
v1, . . . ,vs, so here the goal is to find the best seed vectors
to minimize the upper bound of the approximation error,
which leads to the following optimization problem:

argmin
{v1,...,vs},t

n∑
i=1

‖xi − uti‖2 (12)

s.t. U = [V1H
T
d , V2H

T
d , . . . , VsH

T
d ]T , (13)

where ui is the i-th row of U , H can be Haar or Hadamard
matrices, and t is the indicator vector.

In the following we propose an alternating minimization
scheme to solve the above optimization problem. We it-
eratively update the indicator vector t and the seed vec-
tors v1, . . . ,vs. A naive algorithm will have Θ(nmd) time
complexity because there are n points, m landmark points
in the d-dimensional space. However, we show that by us-
ing Haar/Hadamard transforms our algorithm only requires
Θ(md+ nd) or Θ(md+ nd log d) time.

When {v1, . . . ,vs} are fixed, the cluster indicator can be
computed by

ti = argmin
q=1,...,m

‖xi − uq‖2 = argmin
q=1,...,m

‖uq‖2 − 2xTi uq.

‖uq‖ is independent of n so can be computed efficiently,
and the only bottleneck is to compute Uxi. Luckily, due to
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number of landmark points methods TUx Tg pseudo-inverse of W Learning seed Rest Approx. Error Total time
m = 40 Nys 2.79 0.17 0.01 0 0.06 0.0063 3.03

Fast-Nys 0.77 0.17 0.01 0.33 0.07 0.0068 1.35
m = 80 Nys 5.38 0.18 0.01 0 0.08 0.0033 5.65

Fast-Nys 1.36 0.18 0.01 0.50 0.06 0.0038 2.11
m = 160 Nys 10.81 0.20 0.02 0 0.12 0.0014 11.15

Fast-Nys 2.65 0.20 0.02 0.76 0.08 0.0020 3.71

Table 1. Segment the time (in seconds) for each step of standard Nyström (Nys) and Fast-Nys with Haar landmark points for the same
number of landmark points m, run on MNIST dataset with 60,000 samples. Note that ’Rest’ includes the time for computing Tf . We
can see that computing Ux dominate the whole procedure of Fast-Nys and Fast-Nys can significantly speed up the computation and
achieve similar accuracy. Another thing we want to mention is that under the similar amount of time m = 40 for Nys (3.03 seconds)
and m = 160 for Fast-Nys (3.71 seconds), Fast-Nys achieves much lower approximation error (0.0068 vs.0.0020).

Table 2. Comparisons of Fast-Nys and the standard Nyström approximation under m landmark points. n � m and n � d. Tseed is the
time for learning the seeds that is Θ(nd + md) for Haar landmark points, and Θ(nd log d + md) for Hadamard landmark points.

Time to form Kernel Approximation Prediction Time in kernel methods
Standard Nyström Θ(nmd+m3) Θ(md)

Fast-Nys with Haar landmark points Θ(nm+m3) + Tseed Θ(m)
Fast-Nys with Hadamard landmark points Θ(nm log d+m3) + Tseed Θ(m log d)

the structure of U in (13), the matrix-vector product can be
computed efficiently, so the time complexity for this step is

nTUx +md.

When t is fixed, the update of v1, . . . ,vs can be separated
into several subproblems. Note that there are s groups in
the structure of (13) and each group has d landmark points.
Assume each ti (indicator of xi) is in group g(i) and offset
q(i) , then we can write (12) as

argmin
v1,...,vs

n∑
i=1

d∑
j=1

((xi)j −Hq(i),j(vg(i))j)
2. (14)

The objective function of (14) is just a sum of m one-
variable quadratic function, which can be solved in closed
form with time complexity of Θ(nd).

In summary, running the above alternating minimization
for a fixed number of iterations takes Θ(nd + md) for
Haar landmark points, and Θ(nd log d+md) for Hadamard
landmark points. This alternating minimization scheme can
scale to large problems because the time complexity is lin-
ear to n. In practice, the algorithm usually converges to
a reasonably good solution in 10 iterations, so we fix the
number of iterations to be 10 for all the experiments. In
Figure 2, we compare learning seeds with the one without
learning in Fast-Nys, where the initial seeds are selected
randomly. Clearly the former achieves lower kernel ap-
proximation error.

Note that although Kmeans Nyström proposed in (Zhang
et al., 2008; Zhang & Kwok, 2010) also used Proposition 1
to find landmark points, in our algorithm we are learning

Algorithm 1 Fast Transforms for Nyström Approximation
Input : Data points {(xi)}ni=1, number of initial seeds s,

the number of landmark points m = sd
Output: The rank-m approximation CW †CT

1. Select seed vectors {vi}si=1 using Section 4.1 or 4.3.
2. Form U by (7) where Hd can be Haar matrix or
Hadamard matrix
3. Form the C,W using fast matrix-vector product with
Haar or Hadamard transform as shown in (8)
4. The rank-m approximation G ≈ CW †CT

the “seeds” for fast transforms, so we cannot directly use
kmeans. We further reduce the time complexity by exploit-
ing the structure of landmark points.

4.4. Summary of the Proposed Algorithm

Our method is described in Algorithm 1. Note that (1) Sim-
ilar to other Nyström based methods (Li et al., 2010), when
m is large, randomized SVD can be applied to speed up
computing pseudo inverse of them×m intersection matrix
W ; (2) To further improve the speed, in the experiments,
we randomly sample 2000 data points to learn the seeds;
(3) Number of landmark points does not have to be fixed
as sd. We can truncate the fast transforms to get different
numbers of landmark points.

The time complexity is summarized in Table 2. Since we
can use the fast discrete wavelet (Fourier) transform with-
out explicitly forming the matrix, Fast-Nys is also memory
efficient. In Table 1, we segment the time for Fast-Nys and
compare it with standard Nyström with the same amount
of landmark points. We can see that with the same amount
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(a) a9a, polynomial. (b) USPS,polynomial. (c) Covtype, polynomial.

(d) MNIST, Gaussian. (e) CIFAR, Gaussian. (f) Epsilon, homogeneous.
Figure 3. Low-rank kernel approximation results. x-axis is the time and y axis shows the relative kernel approximation error. Methods
with approximation error above the top of y-axis are not shown. Note that (1) the time for learning the landmark points is included in
the running time. (2) two random feature based methods, RKS and Fastfood can not directly apply for homogeneous and polynomial
kernel. So we only show their kernel approximation results on Gaussian kernel in (d) and (e). More comparison between Fast-Nys with
other Nyström based methods can be found in Figure 5 in the Appendix.

Table 3. Data set statistics (n: number of samples; d: dimension
of samples).

Dataset n d Dataset n d
USPS 9298 256 Covtype 581,012 54

a9a 48,842 123 MNIST 60,000 784
Letter 18,000 16 CIFAR 60,000 400

Epsilon 25,000 2,000 webspam 350,000 254

of landmark points, (1) time for computing Ux, i.e., inner
product between data points and landmark points, domi-
nates the whole procedure; (2) learning seeds takes a small
portion of the overall time; (3) Fast-Nys is faster than stan-
dard Nyström method, while achieving similar accuracy.

5. Experimental Results
In this section, we empirically demonstrate the benefits of
our proposed method (Fast-Nys) on eight data sets listed
in Table 3. We consider two different tasks and com-
pare their computational time: time for forming the ker-
nel approximation and prediction time for kernel SVM.
We test three types of widely used kernels: Gaussian ker-
nel (k(xi,xj) = exp(−γ‖xi − xj‖2), polynomial ker-
nel k(xi,xj) = (1 + 〈xi,xj〉)p, and homogeneous kernel
k(xi,xj) = (〈xi,xj〉)p. The degree p is set to be 3 in the
experiment. For comparison, we compare our method with
seven state-of-the-art methods for kernel approximation or
kernel SVM prediction:

1. The standard Nyström method (Nys), where the land-
mark points are sampled uniformly at random from the
dataset (Williams & Seeger, 2001).

2. Kmeans Nyström (KNys), where the landmark points
are the kmeans centroids (Zhang & Kwok, 2010).

3. Pseudo Landmark points (Pseudo), where pseudo-
landmark points are generated from the sampled
columns of kernel matrix to improve the Nyström ap-
proximation (Hsieh et al., 2014a).

4. Random Kitchen Sinks (RKS), which approximates
the shift-invariant kernel based on its Fourier trans-
form (Rahimi & Recht, 2008).

5. Fastfood with “Hadamard features” (Fastfood), which
uses the Hadamard transform to speed up matrix multi-
plication (Le et al., 2013).

6. The Local Deep Kernel Learning method (LDKL),
which learns a tree-based primal feature embedding to
achieve faster prediction speed (Jose et al., 2013).

7. Divide-and-Conquer based fast Prediction (DC-
Pred++): pseudo landmark points with divide-and-
conquer strategy for fast prediction (Hsieh et al.,
2014a).

The first five methods are kernel approximation methods,
which are also used for speeding up the prediction in ker-
nel SVM, and the last two (LDKL and DC-Pred++) are
two state-of-the-art algorithms specifically designed for
fast prediction. The setting and parameters used in the ex-
periments are shown in the Appendix.
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(a) MNIST, Gaussian (b) CIFAR, Gaussian (c) USPS, polynomial

Figure 4. Fast prediction results. Methods with prediction accuracy below the bottom of y-axis are not shown. x-axis shows the predic-
tion time which is normalized by the linear SVM prediction time, and the y-axis shows the kernel SVM prediction accuracy. Since RKS
and Fastfood can not directly apply for approximating polynomial kernel, we show their performance on Gaussian kernel in (a) and (b)

Table 4. Comparison of kernel SVM prediction on four real-world datasets. Note that the actual prediction time is normalized by the
linear SVM prediction time. For example, 10x means the actual prediction time = 10× (time for linear SVM prediction time). Some
prediction measurement is used in (Hsieh et al., 2014a).

Dataset Metric DC-Fast-Nys DC-Pred++ LDKL KNys RKS Fastfood
Letter Prediction Time 7.6x 11.71x 12.81x 140x 61x 50x

Accuracy 95.4% 95.14% 95.36% 87.58% 89.93% 89.9%
USPS Prediction Time 7.31x 14.8x 7.50x 200x 72.5x 80x

Accuracy 94.9% 94.82% 95.71% 92.56% 91.33% 94.39%
webspam Prediction Time 11.21x 20.5x 23x 200x 34.5x 80x

Accuracy 98.0% 98.4% 95.15% 95.01% 96.4% 96.7%
a9a Prediction Time 7.35x 7.93x 7.91x 50x 15x 80x

Accuracy 84.70% 83.90% 84.54% 83.9% 84.32% 61.9%

5.1. Kernel Approximation
The kernel approximation results are shown in Figure
3. We use relative kernel approximation error ‖G −
G̃‖F /‖G‖F to measure the quality, and test on three types
of kernels. In these plots, we vary the number of landmark
points m for different Nyström methods and each marker
represents the result corresponds to one choice of m. We
can observe from Figure 3 that, with the same amount of
time, our proposed method significantly and consistently
yields lower approximation error than other Nyström based
methods for various kernels. This means that our proposed
method can achieve faster training speed for speeding up
kernel machines. Fast-Nys also shows better performance
than leverage score based (Gittens & Mahoney, 2013a) and
entropy based (Brabanter et al., 2010) landmark points in
Nyström approximation in Figure 5 in the Appendix. Since
our method is a basic Nyström method, it can combine with
ensemble Nyström and MEKA (Si et al., 2014) to achieve
lower approximation error.

5.2. Fast Prediction for Kernel SVM
Next we show the benefit of using our method to improve
the kernel SVM prediction time. First, in Figure 4 we
show the comparison between our proposed algorithm and
other kernel approximation methods for kernel SVM pre-
diction. Since Fastfood and RKS can only be used for
shift-invariant kernel, we do not compare with them on
USPS. As can be seen in Figure 4, with the same predic-

tion time, Fast-Nys always achieves higher accuracy. For
example, on MNIST, our proposed method takes around
40x linear SVM’s prediction time to achieve accuracy of
95%, while the second best algorithm takes more than 80x
linear SVM’s prediction time to achieve similar accuracy.

Furthermore, we can even boost the performance of our
proposed algorithm with divide-and-conquer-framework
(DC-Fast-Nys). The divide-and-conquer strategy has been
shown to be useful in speeding up the training and pre-
diction in kernel methods (Si et al., 2014; Hsieh et al.,
2014a;b). The performance of DC-Fast-Nys are shown in
Table 4. All the results are based on the Gaussian kernel.
We can see that DC-Fast-Nys is faster than other methods,
especially DC-Pred++ and LDKL which are two state-of-
the-art fast prediction algorithms.

6. Conclusion
In this paper, we propose a family of fast transform based
Nyström approximation algorithms, Fast-Nys, which con-
structs easy-to-compute landmarks to reduce the kernel
value evaluation time between these landmark points and
the given data points. Using the same amount of computa-
tional time, Fast-Nys can deal with more landmark points
compared with all the previous Nyström methods, and this
lead to fast training and prediction in kernel machines.
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7. Appendix
7.1. Proof of lower approximation error

Theorem 1. Using Algorithm 1 to generate m landmark
points, we can guarantee that the approximation quality
will become better than the traditional Nyström approxi-
mation with initial s landmark points:

‖G− Ḡ‖ ≤ ‖G− G̃‖, (15)

where G̃ and Ḡ are the approximation of G from standard
Nyström and Algorithm 1 respectively.

Proof. Let us first compare our method with standard
Nyström. The generalization to other sampling strategies
based Nyström is straight forward. Let G denote the kernel
matrix form on the n data points, and suppose s landmark
points x1, · · · ,xs are selected uniformly at random from
the data. Let us define the sampling matrix S ∈ Rn×s to
be a zero-one matrix where Sij = 1 if i-th sample in the
dataset is selected as landmark point. C is a n × s matrix
consisting of the corresponding s columns selected from
G and W consists of the kernel matrix formed by these s
landmark points. So by standard Nyström, G̃ = CW+GT ,
C = GS and W = STGS.

Usingm1, · · · ,ms as initial landmark points in Algorithm
1, after fast transforms, we totally have m = sd land-
mark points v1, · · · ,vm, of which the last s points are the
original landmark points and the rest m − s are new land-
mark points. Assume the new kernel matrix GH is the ker-
nel matrix on the union of the original n data points and
m− s new added landmark points. So G is a block in GH .
Similarly we define SH , CH , and WH as sampling ma-
trix, m sampled columns in GH and kernel matrix formed
by m landmark points respectively. So CH = GHSH
and WH = STHGHSH . Let the decomposition of GH be
GH = LTHLH . So

GH = LTHLH = [
L̄T

LT
][ L̄ L ] = [

L̄T L̄ L̄TL
LT L̄ LTL

].

(16)
Since G is a block in GH , the decomposition of G is LTL.

Since CH = GHSH = LTHLHSH and let the singu-
lar value decomposition of LHSH be UHΣHV

T
H , CH =

LTHUHΣHV
T
H . Also we have

WH = STHGHSH = STHL
T
HLHSH = VHΣ2

HV
T
H .

(17)

The Nyström approximation on GH is written as

GH = CHW
+
HC

T
H (18)

= LTHUHΣHV
T
H VHΣ−2H V TH VHΣHU

T
HLH

= LTHUHU
T
HLH .

So we have

GH − CHW+
HC

T
H = LTHLH − LTHUHUTHLH (19)

= (LH − UHUTHLH)T (LH − UHUTHLH).

The Nyström approximation error on the original n data
points or G part is

(GH − CHW+
HC

T
H)G = LTL− LTUHUTHL (20)

= (L− UHUTHL)T (L− UHUTHL).

According to Lemma 1 in (Drineas & Mahoney, 2005), we
have the standard Nyström approximation on G as

G− CW+CT = LTL− LTUUTL (21)

= (L− UUTL)T (L− UUTL).

where LS’s SVD is UΣV T .

Since U is the basis for the range space of LS and UH is
the basis for the range space of LHSH , so range(U) ⊆
range(UH). According to the proposition 8.5 in (Halko
et al., 2011), we have

‖L− UHUTHL‖2 ≤ ‖L− UUTL‖2, (22)

so

‖(GH − CHW+
HC

T
H)G‖ ≤ ‖G− CW+CT ‖, (23)

or

‖G− Ḡ‖ ≤ ‖G− G̃‖. (24)

7.2. Lemma 1

Lemma 1. If the kernel function can be written as (3), as-
sume the maximum distance between the samples and the
original point is a bounded number R, and f, g are differ-
entiable, then

K(a, b)2 −K(c,d)2 ≤ η(‖a− c‖2 + ‖b− d‖2) (25)

for any a, b, c,d ∈ Rd, where

η = 4M4
fL

2
gR

2 + 4M2
fM

2
gL

2
f ,

where Mf = max‖x‖≤R |f(x)|, Mg = max‖u‖≤R |g(u)|,
Lf = max‖x‖≤R |f ′(x)|, Lg = max‖u‖≤R |g′(u)|.
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Proof. For any a, b, c,d ∈ Rd, we have

(K(a, b)−K(c,d))2

=

(
f(a)f(b)g(aT b)− f(c)f(d)g(cTd)

)2

=

(
(f(a)f(b)g(aT b)− f(c)f(d)g(aT b))

+ (f(c)f(d)g(aT b)− f(c)f(d)g(cTd))

)2

≤2

(
g(aT b)(f(a)f(b)− f(c)f(d))

)2

+ 2

(
f(c)f(d)(g(aT b)− g(cTd))

)2

≤2M2
g

(
f(a)f(b)− f(c)f(d)

)2

+ 2M4
f

(
g(aT b)− g(cTd)

)2

.

We can then bound each term by(
f(a)f(b)− f(c)f(d)

)2

≤
(
f(a)f(b)− f(c)f(b) + f(c)f(b)− f(c)f(d)

)2

≤2(f(a)− f(c))2f(b)2 + 2(f(b)− f(d))2f(c)2

≤2M2
f

(
(f(a)− f(c))2 + (f(b)− f(d))2

)
=2M2

f

(
f ′(ξ1)2‖a− c‖2 + f ′(ξ2)2‖b− d‖2

)
≤2M2

fL
2
f (‖a− c‖2 + ‖b− d‖2)

Similarly, we have

(g(aT b)− g(cTd))2

=(g′(ξ)(aT b− cTd))2

≤L2
g(a

T b− cT b+ cT b− cTd)2

=L2
g((a− c)T b+ (b− d)T c)2

≤2L2
g(‖(a− c)T b‖2 + 2‖(b− d)T c‖2)

≤2L2
gR

2(‖a− c‖2 + ‖b− d‖2)

This proves (25).

7.3. Parameters for the experimental results

• All the experiments were conducted on a machine
with an Intel Xeon X5440 2.83GHz CPU and 32G
RAM. We tried to have the best implementation for
each algorithm. Fast-Nys, DC-Pred++, Nys, KNys,
RKS, Fastfood are all implemented in C sharing the

same modules. LDKL is the highly optimized C++
implementation published along with the original pa-
per (Jose et al., 2013).

• The degree for the polynomial kernel and homoge-
neous kernel is set to be 3.

• We do data normalization with mean to be 0 and vari-
ance to be 1 before running our algorithms.

• When working on fast prediction experiments, we first
form the low-rank approximation for the kernel matrix
and apply liblinear to perform the classification.

• For fast prediction parameters(γ is the width param-
eters for Gaussian kernel and C is the regularization
term in Liblinear SVM):

– cifar: γ = 2−10,C = 64;
– mnist: γ = 2−10,C = 128;
– a9a: C = 32;

• For kernel approximation:

– magic: γ = 0.01

– ijcnn: γ = 0.01

– webspam: γ = 1

• When working on prediction, we use random samples
as the initial landmarks for Fast-Nys. The number of
initial landmarks ranges from 2 to 10.

• When using kmeans Nyström, we randomly sample
10000 data samples to perform clustering.

• For LDKL, for a fair comparison, we disable the SSD
operation.

• We use an alternating minimization algorithm to find
the seeds in our algorithm. The algorithm usually con-
verges to a reasonably good solution in 10 iterations,
so we fix the number of iterations to be 10 for all the
experiments. For example, on MNIST dataset with
k=10, the initial objective function value (using ran-
dom samples) is 1750260, after 10 iterations it drops
to 90041, and the converged solution has objective
function value 89872.

7.4. Comparison with other kernel approximation
methods

We show the comparison between fast-Nys with leverage
score (Gittens & Mahoney, 2013b) and entropy based land-
mark points (Brabanter et al., 2010) in Nyström approxima-
tion and random feature (Rahimi & Recht, 2007).
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(a) MNIST, Gaussian (b) CIFAR, Gaussian
Figure 5. Low-rank kernel approximation results. x-axis is the time and y axis shows the relative kernel approximation error. Methods
with approximation error above the top of y-axis are not shown. (a) compares Fast-Nys with sampling landmark points based on
leverage score (Gittens & Mahoney, 2013a). Since this method needs to compute the entire kernel, it is much slower than our method.
(b) compares Fast-Nys with entropy based landmark points based Nyström approximation (Brabanter et al., 2010) and random feature
(Rahimi & Recht, 2008). We can also observe Fast-Nys achieves much lower approximation error than these two methods.
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