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Abstract

An important task in unsupervised learn-
ing is maximum likelihood mixture estima-
tion (MLME) for exponential families. In
this paper, we prove a mathematical equiv-
alence between this MLME problem and
the rate distortion problem for Bregman
divergences. We also present new theo-
retical results in rate distortion theory for
Bregman divergences. Further, an analy-
sis of the problems as a trade-off between
compression and preservation of informa-
tion is presented that yields the informa-
tion bottleneck method as an interesting
special case.

1. Introduction

An important task in unsupervised learning is max-
imum likelihood mixture estimation (MLME) (Red-
ner & Walker, 1984) for exponential families, which
are the most widely used class of parametric dis-
tributions for statistical analysis and learning. Re-
cent years have seen a lot of interest and research on
information theoretic formulations of unsupervised
learning (Tishby et al., 1999; Dhillon et al., 2003)
that draw from rate distortion theory (Berger, 1971;
Cover & Thomas, 1991). In this paper, we prove a
mathematical equivalence between the MLME prob-
lem for exponential families and the rate distortion
problem for Bregman divergences (Azoury & War-
muth, 2001), which include a large class of popu-
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lar distortion functions such as squared Euclidean
distortion, KL-divergence, Itakura-Saito distance,
Mahalanobis distance, generalized I-divergence, etc.
We achieve the equivalence by deriving new theo-
retical results in rate distortion theory for Bregman
divergences, and using a recent bijection theorem
between exponential families and Bregman diver-
gences. It is interesting to note that special cases
of this equivalence have been observed in the litera-
ture (Kearns et al., 1997; Slonim & Weiss, 2002).

Theoretical results in rate distortion theory typically
involve squared Euclidean distortion. In this paper,
we generalize certain results known for squared Eu-
clidean distortion (Rose, 1994) to all Bregman diver-
gences. In particular, we prove a new lower bound on
the rate distortion function applicable for all Breg-
man divergences. Further, we show that at any given
distortion level either (a) the rate distortion function
is equal to the new lower bound, in which case it can
be analytically computed, or (b) the optimal sup-
port1 of the reproduction random variable is finite
under mild assumptions, so that the rate distortion
function can be algorithmically computed. The re-
sult is significant since it provides a way to solve
the rate distortion problem for all Bregman diver-
gences. Further, it theoretically justifies the use of
finite reproduction alphabets for lossy compression
and motivates the equivalence with finite mixture
models.

We also analyze an alternative viewpoint of the rate
distortion problem for Bregman divergences in terms
of a trade-off between compression and preserva-
tion of Bregman information, a concept recently
proposed in (Banerjee et al., 2004) that includes

1Support of X ∼ p(x) is the set Xs = {x : p(x) > 0}.



variance, mutual information, etc. as special cases.
We discuss an interesting special case of this set-
ting, namely the trade-off between compression and
preservation of mutual information, which has be-
come popular in the recent past as the information
bottleneck method (Tishby et al., 1999).

We begin by defining Bregman divergences. Let φ
be a real-valued strictly convex function defined on
the convex set S = dom(φ)(⊆ Rm), the domain of
φ, such that φ is differentiable on int(S), the in-
terior of S (Rockafeller, 1970). The Bregman di-
vergence dφ : S × int(S) 7→ [0,∞) is defined as
dφ(x,y) = φ(x)− φ(y)− 〈x− y,∇φ(y)〉, where ∇φ
is the gradient of φ. The squared Euclidean distance
and KL-divergence are examples of Bregman diver-
gences, corresponding to φ(x) = 〈x,x〉, x ∈ Rm and
φ(p) =

∑m
j=1 pj log pj , p ∈ m-simplex respectively.

2. Rate Distortion with Bregman
Divergences

Rate distortion theory (Berger, 1971) deals with the
fundamental limits of quantizing a stochastic source
X ∼ p(x), x ∈ X , using a random variable X̂ over a
reproduction alphabet X̂ typically assumed to em-
bed the source alphabet X , i.e., X ⊆ X̂ . In the
rate distortion setting, the performance of a quan-
tization scheme is determined in terms of the rate,
i.e., the average number of bits for encoding a sym-
bol, and the expected distortion between the source
and the reproduction random variables based on an
appropriate distortion function d : X × X̂ 7→ R+.
The central problem in rate distortion theory (Cover
& Thomas, 1991) is to compute the rate distortion
function R(D), which is defined as the minimum
achievable rate for a specified level of expected dis-
tortion D, and can be mathematically expressed as

R(D) = min
p(x̂|x):EX,X̂ [d(X,X̂)]≤D

I(X; X̂) , (2.1)

where I(X; X̂) is the mutual information of X and
X̂. Note that in general X and X̂ could either be
discrete or continuous random variables. As appro-
priate, the expectations will involve summations or
integrals where p represents the corresponding prob-
ability mass function or probability density function.

The rate distortion problem (2.1) is a convex op-
timization problem and can be solved using the
Blahut-Arimoto algorithm (Cover & Thomas, 1991).
However, numerical computation of the rate distor-
tion function through the Blahut-Arimoto algorithm
is often infeasible in practice, primarily due to the

lack of knowledge of the optimal support of the re-
production random variable. Analytic closed form
expressions of the rate distortion function exist only
for certain well-behaved source and distortion mea-
sure combinations. Therefore, exact computation of
the rate distortion function has remained a difficult
problem.

Rose (1994) showed that the rate distortion prob-
lem for the squared Euclidean distortion and for any
source whose support is a bounded set can be solved
either analytically or through a numerical computa-
tion technique called the mapping approach (Rose,
1994). In this paper, we generalize this result to
all Bregman divergences. In order to define a dis-
tortion measure based on a Bregman divergence, we
require a concrete representation of the source and
reproduction alphabets. In general, X and X̂ may
be abstract sets, and hence, we consider a concrete
sufficient statistic representation2 of these random
variables. In particular, let T be the sufficient statis-
tic function so that Z = T (X) and Ẑ = T (X̂) are
the sufficient statistic representations of the source
and reproduction random variables. The distortion
measure d : X × X̂ 7→ R+ can now be defined as a
Bregman divergence in the sufficient statistic space,
i.e., d(x, x̂) = dφ(z, ẑ), z = T (x), ẑ = T (x̂). The
rate distortion problem can now be formulated en-
tirely in the sufficient statistic space as follows:

min
p(ẑ|z):EZ,Ẑ [dφ(Z,Ẑ)]≤D

I(Z; Ẑ) . (2.2)

Now, we present a new analytic lower bound on the
rate distortion function for Bregman divergences,
which we call the Shannon-Bregman lower bound.

Theorem 1 3 The rate distortion function for a
source Z ∼ p(z) and a Bregman divergence dφ is
always lower bounded by the Shannon-Bregman
lower bound RL(D) defined as

RL(D) = H(Z) + sup
γ≥0

{−γD + EZ [log fγφ(Z)]} ,

where H(Z) denotes the (differential) entropy of Z
and fγφ is the unique function that satisfies
∫

dom(φ)

exp(−dγφ(t, µ))fγφ(t) dt = 1, ∀µ ∈ dom(φ) .

The Shannon-Bregman lower bound plays the same
role for Bregman divergences as the Shannon lower

2If X ∼ pθ(x), parameterized by θ, then T (X) is
a sufficient statistic if the (conditional) distribution of
X|T (X) is independent of θ.

3We omit proofs due to lack of space.



bound for “difference” distortion measures (Berger,
1971), i.e., distortions of the form d(x, y) = ρ(x− y)
for any non-negative function ρ(·). Rose (1994) used
the Shannon lower bound for squared Euclidean dis-
tortion to reduce the rate distortion problem into
two mutually exclusive solvable cases. More specif-
ically, Rose (1994) showed that for squared Eu-
clidean distortion and any source whose support is
a bounded set, either (a) the rate-distortion func-
tion equals the Shannon lower bound, or (b) the op-
timal support of the reproduction random variable
is finite, in which case the rate distortion function
can be numerically computed using the mapping ap-
proach. Our following theorem states a significantly
more general result.

Theorem 2 Consider the rate distortion problem
for a source Z ∼ p(z) and a Bregman divergence
dφ. Let Ẑs(D) be the support of the optimal repro-
duction random variable for an expected distortion
D. If Ẑs(D) contains an accumulation point, then
R(D) = RL(D).

If R(D) > RL(D), then Ẑs(D) does not contain an
accumulation point. Further, if the source alpha-
bet is a bounded set, Ẑs(D) can be shown to be
a finite set using the Bolzano-Weierstrass theorem.
Thus, the rate distortion problem for Bregman di-
vergences and sources with bounded support can be
divided into two cases, of which the first one can
be solved analytically using the Shannon-Bregman
lower bound and the second one requires a numeri-
cal solution involving a finite reproduction alphabet.
Therefore, in the rest of the section, we focus only on
the second case. In fact, we solve a simpler problem
assuming that the cardinality of the optimal support
of the reproduction random variable is known. This
assumption is reasonable since deterministic anneal-
ing methods (Rose, 1998) can be applied to empir-
ically determine the appropriate cardinality at any
distortion value.

2.1. Rate Distortion for Fixed Finite
Cardinality Reproduction Alphabet

In this subsection, we consider the joint problem of
finding the optimal support Ẑs of the reproduction
random variable with |Ẑs| = k as well as the opti-
mal probabilistic assignments p(ẑ|z) that achieve the
rate-distortion function for a given source. When
the distortion measure is a Bregman divergence, the
problem can be formally stated as follows:

min
Ẑs, p(ẑ|z)

|Ẑs|=k

{I(Z; Ẑ) + βDEZ,Ẑ [dφ(Z, Ẑ)], (2.3)

where βD is the optimal Lagrange multiplier that
depends on the chosen tolerance level D of the ex-
pected distortion. We shall refer to problem (2.3)
as rate distortion with a support of fixed finite car-
dinality (RDFC). It is important to note that un-
like the original rate distortion problem (2.1), the
RDFC problem is not a convex optimization prob-
lem, since it involves optimizing over both Ẑs and
p(ẑ|z). Hence, it is difficult to obtain the globally
optimal solution. However, since the minimization
is over two sets of arguments, namely p(ẑ|z) and Ẑs,
the objective function in (2.3) can be greedily min-
imized by iteratively optimizing over the individual
arguments yielding a solution that is locally optimal.

Lemma 1 (Cover & Thomas, 1991) 4 The so-
lution to the problem

min
p(ẑ|z)

{I(Z; Ẑ) + βDEZ,Ẑ [dφ(Z, Ẑ)],

for a fixed Ẑs is given by

p(ẑ|z) =
p(ẑ)

N(z, βD)
exp(−βDdφ(z, ẑ)),

where p(ẑ) = EZ|ẑ[p(Z)] and N(z, βD) is the parti-
tion function.

Lemma 2 The solution to the problem,

min
Ẑs
{I(Z; Ẑ) + βDEZ,Ẑ [dφ(Z, Ẑ)],

for fixed probabilistic assignments p(ẑ|z) is given by

ẑ∗ = EZ|ẑ[Z].

Lemma 1 follows directly from the self-consistent
equations for the solution of the rate distortion prob-
lem (Cover & Thomas, 1991) while Lemma 2 follows
from the result that the expectation of a random
variable minimizes its expected Bregman divergence
to a point (Banerjee et al., 2004). Based on these
results, we obtain an alternate minimization algo-
rithm for computing the rate distortion function (Al-
gorithm 1), guaranteed to achieve local optimality.

Theorem 3 The alternate minimization algorithm
(Algorithm 1) for the RDFC problem (2.3) converges
to a solution that is locally optimal, i.e., the objec-
tive function in (2.3) cannot be decreased by either
changing p(ẑ|z) or Ẑs.

4Lemmas 1 and 2 hold irrespective of whether Z is
a continuous or discrete random variable, but practical
computation (Algorithm 1) is feasible only for finite Z.



Algorithm 1 Computation of Rate Distortion
Curve for Bregman Divergences

Input: Z ∼ p(z) over Z = {zi}ni=1 ⊂ dom(φ) ⊆ Rm,

Bregman divergence dφ, k = |Ẑs|, variational param-
eter β corresponding to a point on R(D) curve

Output: Ẑ∗s = {ẑh}kh=1, P ∗ = {{p(ẑh|zi)}kh=1}ni=1

that (locally) optimizes (2.3), rate-distortion trade-off
(Rβ , Dβ) at β.

Method:
Initialize with some {ẑh}kh=1 ⊂ dom(φ)
repeat
{Blahut Arimoto Step (p(ẑ|z) using Lemma 1)}
repeat

for i = 1 to n do
for h = 1 to k do
p(ẑh|zi)← p(ẑh)

N(zi,β)
exp(−βdφ(zi, ẑh)),

end for
end for
for h = 1 to k do
p(ẑh)←Pn

i=1 p(ẑh|zi)p(zi)
end for

until convergence

{Support Estimation Step (Ẑs using Lemma 2)}
for h = 1 to k do

ẑh ←
Pn
i=1 p(zi|ẑh)zi

end for
until convergence
Compute Dβ =

P
z,ẑ p(z)p(ẑ|z)dφ(z, ẑ)

Compute Rβ =
P

z,ẑ p(z)p(ẑ|z) log p(ẑ|z)
p(ẑ)

3. Equivalence with Mixture
Estimation for Exponential Families

The maximum likelihood mixture estimation
(MLME) problem involves finding the mixture of
k distributions from a specified parametric family
F that best fits the observed data in terms of
the log-likelihood. This problem seems different
from the rate distortion problem since MLME only
assumes knowledge of a finite set of independent
samples of the random variable and not the actual
distribution. However, as we shall show, it is
equivalent to the rate distortion problem when the
source distribution in the rate distortion setting
equals the empirical distribution over the sampled
data points.

The standard way to address the mixture estimation
problem is to introduce a hidden random variable as-
sociated with the choice of mixture component. Let
Zd be the finite set of independent samples corre-
sponding to the observed random variable Z. Let
Ẑ be the hidden random variable corresponding to
the choice of the mixture component and taking val-
ues in Ẑs with |Ẑs| = k. The mixture distribution
p(z) can be viewed as the marginal induced from the

joint distribution p(z, ẑ) such that each conditional
distribution p(z|ẑ) belongs to the specified paramet-
ric family F . The mixture estimation problem can
be formally stated as the problem of maximizing
the average incomplete log-likelihood of the data,
i.e., 1

n

∑
z∈Zd log p(z), over all mixture distributions

p(z) consisting of k component distributions from
F . The MLME problem has been shown (Neal &
Hinton, 1998; Rose, 1998) to be equivalent to the
problem of minimizing the variational free energy of
a statistical system, where the physical states corre-
spond to the values of the unknown random variable
Ẑ and the energy of each state is given by the nega-
tive joint log-likelihood (− log p(z, ẑ)). The negative
of this variational free energy can be expressed as
the sum of the entropy of the conditional distribu-
tion p(ẑ|z) and the expected complete log-likelihood
with respect to p(z, ẑ). Therefore, the minimum free
energy problem and hence, the MLME problem can
be expressed as

min
Ẑs, p(ẑ|z)

|Ẑs|=k

{
−EZ,Ẑ [log p(Z, Ẑ)]−H(Ẑ|Z)

}
, (3.4)

where Z ∼ pd(z), the empirical distribution over
the sample set Zd, the joint distribution p(z, ẑ) =
p(ẑ)p(z|ẑ) such that p(z|ẑ) ∈ F and the minimiza-
tion is performed over Ẑs and p(ẑ|z), which uniquely
determine the mixture distribution p(z).

Now, consider the case when the specified paramet-
ric family F is an exponential family Fψ with a log-
partition function ψ (Azoury & Warmuth, 2001) so
that pψ(z|θ) ∈ Fψ is given by

pψ(z|θ) = exp (〈z, θ〉 − ψ(z)) ,

over some measure ν(z) where θ ∈ dom(ψ) is the
natural parameter. Although, the MLME prob-
lem (3.4) assumes that Fψ is fully specified, typi-
cally, only a meta family Mψ consisting of scaled
versions of Fψ is specified. To make this more pre-
cise, we define the scaled versions of Fψ as the para-

metric families F (β)
ψ , β ≥ 0, such that p

(β)
ψ (z|θ) ∈

F (β)
ψ is given by

p
(β)
ψ (z|θ) ∝ (pψ(z|θ))β , (3.5)

where pψ(z|θ) ∈ Fψ and Mψ = {F (β)
ψ , β ≥ 0}. It

can be shown that each F (β)
ψ is itself an exponen-

tial family with a log-partition function ψβ(θ) =
βψ(θ/β). For example, the set of all unit variance
Gaussian distributions over R is an exponential fam-
ily Fψ with ψ(θ) = θ2/2. All constant variance
Gaussian families are the scaled versions of this Fψ,



and Mψ is the set of all the scaled versions. To per-
form mixture modeling, we need to choose a particu-
lar member of the meta family Mψ, i.e., a particular
value for the scaling factor β. Usually, β is implicitly
chosen to be 1 with Fψ being a canonical representa-
tion of the meta family Mψ. In practice, appropriate
choice of β has led to improved results on natural
datasets, e.g., see (Nigam, 2001) for scaled families
on the mixture of multinomials model.

Using (3.5) in (3.4), we note that the scaling fac-
tor β determines the relative importance of expected
complete log-likelihood and the assignment entropy
terms in the maximum likelihood problem (3.4), and
consequently, the degree of “softness” in the assign-
ments p(ẑ|z). In particular, the assignment entropy

term H(Ẑ|Z) is significant for low β leading to an
almost uniform assignment, whereas for high β, the
entropy term becomes insignificant resulting in hard
assignments between Z and Ẑ. It is, therefore, im-
portant to choose β appropriately based on the de-
sired accuracy and softness constraints. We present
an information theoretic analysis for making this
choice by demonstrating an equivalence between the
RDFC problem for a specified distortion constraint
and the MLME problem based on a particular mem-
ber of a meta exponential family with scaling factor
β that depends on D.

3.1. Equivalence Theorem

We start by reviewing a bijection result involv-
ing Bregman divergences and exponential families.
Since the log-partition function ψ of an exponential
family is a convex function (Azoury & Warmuth,
2001), Legendre duality (Rockafeller, 1970) can be
invoked to establish the following bijection theorem.

Theorem 4 (Banerjee et al., 2004) Let P(ψ,θ)

be an exponential probability distribution function
with log-partition function ψ(θ) where θ ∈ Γ is
the natural parameter. Let µ be the corresponding
expectation parameter. Let (ψ,Γ) and (φ, S) be
Legendre conjugates, and let dφ be the Bregman
divergence derived from φ. Then,

dP(ψ,θ)(z) = exp(−dφ(z,µ))dνφ(z), (3.6)

where νφ is a uniquely determined measure on S.
Hence, there is a bijection between exponential dis-
tributions P(ψ,θ) and Bregman divergences dφ(·,µ).

Note that the distribution P(ψ,θ) corresponds to
the exponential density pψ(z|θ) ∈ Fψ. Based
on the above theorem, the conditional distribution

pψ(z|ẑ) ∈ Fψ is given by pψ(z|ẑ) = exp(−dφ(z, ẑ)),
where ẑ is the expectation parameter, φ is the
Legendre conjugate of ψ and dφ is the Bregman
divergence derived from φ. Hence, the Bregman
divergence dφ(z, ẑ) is related to the negative log-
likelihood (− log pψ(z|ẑ)) of the corresponding ex-
ponential distribution. We use this observation to
prove the following equivalence.

Theorem 5 Consider a source Z ∼ pd(z). Then,
the RDFC problem (2.3) for Z with Bregman distor-
tion dφ, tolerable expected distortion D with |Ẑs| = k
is equivalent to the MLME problem (3.4) for a mix-
ture model with k distributions from the scaled ex-

ponential family F (βD)
ψ , where βD is the optimal La-

grange multiplier for the RDFC problem and ψ is the
Legendre conjugate of φ.

Proof: It is sufficient to compare the objective func-
tions of the problems (2.3) and (3.4) as both are
minimization problems with identical arguments and
constraints. For the RDFC problem (2.3) based on
Bregman divergence dφ and tolerable level of distor-
tion D, the objective function is given by

JRDFC(Ẑs, p(ẑ|z))

= I(Z; Ẑ) + βDEZ,Ẑ [dφ(Z, Ẑ)]

= EZ,Ẑ [log p(Ẑ|Z)− log p(Ẑ) + βDdφ(Z, Ẑ)]

Since ψ is the Legendre conjugate of φ, the expo-
nential family Fψ corresponding to the Bregman di-
vergence dφ is given by (3.6) and the scaled version

F (βD)
ψ is obtained using (3.5). Hence, the objective

function of the MLME problem (3.4) based on the

exponential family F (βD)
ψ is given by

JMLME(Ẑs, p(ẑ|z))

= − EZ,Ẑ [log p(Z, Ẑ)]−H(Ẑ|Z)

= EZ,Ẑ [log p(Ẑ|Z)− log p(Ẑ) + βDdφ(Z, Ẑ)]

The objective functions JMLME and JRDFC are ex-
actly same and hence, the equivalence follows.

The equivalence theorem gives an information
theoretic recipe for choosing the appropriate
scaled exponential family for a mixture modeling
based on the desired model accuracy constraints.
In particular, the Bregman distortion constraint
EZ,Ẑ [dφ(Z, Ẑ)] ≤ D, which is equivalent to a con-

ditional entropy constraint H(Z|Ẑ) ≤ D, specifies
the desired level of model accuracy. Then, the ap-
propriate exponential family for mixture modeling



is F (βD)
ψ where βD is the optimal Lagrange multi-

plier of the RDFC problem. This follows since the
optimal solution (p(ẑ|z), Ẑs) of the RDFC problem

exactly satisfies the condition p(z|ẑ) ∈ F (βD)
ψ .

The objective function of the MLME problem cor-

responding to F
(β)
ψ can be written as I(Z, Ẑ) +

βEZ,Ẑ [dφ(Z, Ẑ)]. Therefore, solving the MLME

problem based on any exponential family F (β)
ψ , β ≤

βD such that EZ,Ẑ [dφ(Z, Ẑ)] ≤ D yields a solution
identical to that of the unconstrained MLME prob-

lem based on F (βD)
ψ , and the equivalent RDFC prob-

lem. In particular, the constrained MLME problem

based on Fψ ≡ F (1)
ψ such that EZ,Ẑ [dφ(Z, Ẑ)] ≤ D

is equivalent to RDFC problem for all D such that
βD ≥ 1. Further, the constrained MLME problem

based on F
(0+)
ψ is equivalent to the RDFC problem

for all D.

The equivalence also suggests that that the RDFC
problem can also be solved by the expectation maxi-
mization (EM) algorithm (Redner & Walker, 1984).
The update equations in both the algorithms are
identical, the only difference being the order in which
they are executed, i.e., the two algorithms corre-
spond to two different ways of cyclic minimization.
Both the algorithms are guaranteed to converge to
a locally optimal solution, but the actual solutions
could be different. In fact, any algorithm that al-
ternates between the three updates, viz, p(ẑ|z), p(ẑ)
and ẑ, will have similar guarantees. However, this
class of algorithms have two drawbacks. First, the
algorithms assume that the optimal cardinality k(D)
of the reproduction alphabet or the mixture model
for a given tolerable distortion D is known though it
is not the case in practice. Secondly, the algorithms
are guaranteed to provide only locally optimal so-
lutions. A practical technique that addresses these
deficiencies is the deterministic annealing approach
that starts with a high value of D (i.e., a low positive
βD), where the optimal support of the reproduction
random variable and the mixture model have cardi-
nality one, and slowly decreases the tolerable distor-
tion level D (i.e., increases βD) while detecting the
phase transitions corresponding to changes in the
cardinality. For details, see Rose (1998).

4. Compression vs. Bregman Informa-
tion Trade-off

In this section, we provide an alternate view of
the RDFC problem as a lossy compression prob-
lem where the objective is to balance the trade-off

between compression and loss in Bregman informa-
tion (Banerjee et al., 2004). Further, we show that
the information bottleneck method (Tishby et al.,
1999) is an interesting special case of this setting for
a particular choice of sufficient statistic vector and
Bregman divergence.

The Bregman information Iφ(Z) of any random
variable Z for a specified Bregman divergence dφ
is defined as the expected Bregman divergence be-
tween the random variable Z and its expectation,
i.e., Iφ(Z) = EZ [dφ(Z, EZ [Z])], where the expec-
tations are with respect to the distribution of Z.
Examples of Bregman information include variance
for squared Euclidean distortion and mutual in-
formation for KL-divergence. Since EZ [Z] mini-
mizes the expected Bregman divergence of a ran-
dom variable to a point (Banerjee et al., 2004), i.e.,
EZ [Z] = argmina EZ [dφ(Z,a)], the Bregman in-
formation also corresponds to the minimum achiev-
able expected distortion at zero rate, which indicates
the uncertainty or the “information” contained in
the random variable. Similarly, the Bregman in-
formation of the reproduction random variable Ẑ
is given by Iφ(Ẑ) = EẐ [dφ(Ẑ, EẐ [Ẑ])], where the
expectations are with respect to the distribution of
Ẑ given by p(Ẑ) = EZ|Ẑ [p(Z)]. Further, choosing

Ẑ = EZ|Ẑ [Z] implies that

EẐ [Ẑ] = EẐ [EZ|Ẑ [Z]] = EZ,Ẑ [Z] = EZ [Z] = µ .

Hence, we have Iφ(Z) = EZ [dφ(Z, µ)] and Iφ(Ẑ) =

EẐ [dφ(Ẑ, µ)].

The alternate view of the RDFC problem is based on
the observation that the reproduction random vari-
able Ẑ is a coarser representation of the source ran-
dom variable Z with less “information” than Z. In
rate distortion theory, the loss in “information” is
quantified by the expected Bregman distortion be-
tween Z and Ẑ. Intuitively, if the expected Bregman
distortion is low, then Z and Ẑ are “close” to each
other and it is reasonable to expect that Ẑ contains
most of the “information” in Z. The following theo-
rem provides a direct way of quantifying the intuitive
loss in “information”.

Theorem 6 The expected Bregman distortion be-
tween the source and the reproduction random vari-
ables is exactly equal to the loss in the Bregman in-
formation due to compression, i.e.,

EZ,Ẑ [dφ(Z, Ẑ)] = Iφ(Z)− Iφ(Ẑ),

where Ẑ = EZ|Ẑ [Z].



The RDFC problem (2.3) can, therefore, be viewed
as an optimization problem involving a trade-off be-
tween the mutual information I(Z; Ẑ) that mea-
sures the compression, and the loss in Bregman in-
formation Iφ(Z) − Iφ(Ẑ). Since the source ran-
dom variable Z is known, the Bregman information
Iφ(Z) is a constant and minimizing the expected
distortion is equivalent to maximizing the Bregman
information of the compressed random variable Ẑ.
Hence, this constrained form of the RDFC problem
(2.3) can be written as:

min
p(ẑ|z)

{I(Z; Ẑ)− βIφ(Ẑ)}, (4.7)

where β is the variational parameter corresponding
to the desired point in the rate distortion curve and
Ẑ = EZ|Ẑ [Z]. The variational parameter β also
determines the trade-off between the achieved com-
pression and the preserved Bregman information.
Further, corresponding to each rate distortion curve,
one can obtain a compression vs. Bregman informa-
tion curve where the achieved compression is quanti-
fied by the rate and the preserved Bregman informa-
tion is negatively related to the expected distortion.

4.1. Information Bottleneck Revisited

Let Y ∼ p(y), y ∈ Y be a random variable and let
the sufficient statistic random vector Z correspond-
ing to a source X be the conditional distribution of
Y given X, i.e., Z = p(Y |X). Z is a concrete rep-
resentation of the source X. Similarly, the random
variable Ẑ = p(Y |X̂) represents the reproduction
random variable X̂. This choice of sufficient statis-
tic mapping is appropriate when the joint distribu-
tion of the random variables X and Y contains all
the relevant information about X, e.g., random vari-
ables taking values over documents and words. For
the above choice of sufficient statistic mapping, an
additional constraint that Ẑ is the conditional ex-
pectation of Z leads to the lossy compression prob-
lem (4.7) where we need to find the optimal assign-
ments that balance the trade-off between compres-
sion and the loss in Bregman information. Now, the
Bregman information Iφ(Ẑ) of the random variable

Ẑ taking values over the set of conditional distribu-
tions {p(Y |x̂)} with probability p(x̂) is same as the
mutual information I(X̂;Y ) of X̂ and Y when the
Bregman divergence is the KL-divergence (Banerjee
et al., 2004). Hence, the original problem (4.7) re-
duces to

min
p(x̂|x)

{I(X; X̂)− βI(X̂;Y )}, (4.8)

since p(x̂|x) = p(ẑ|z) and I(X; X̂) = I(Z; Ẑ), where
β is the variational parameter. This problem is ex-
actly the same as the information bottleneck (IB)
problem (Tishby et al., 1999). The IB assumption
that the mutual information with respect to another
random variable Y holds all the relevant information
for comparing the different source entities is equiv-
alent to assuming that (a) P (Y |X) is the appro-
priate sufficient statistic representation and (b) the
KL-divergence between the conditional distributions
of Y is the appropriate distortion measure. Fur-
ther, the assumption about the conditional indepen-
dence of Y and X̂ given X, i.e., the Markov chain
condition Y ↔ X ↔ X̂, is equivalent to the con-
straint that Ẑ is the conditional expectation of Z,
i.e., ẑ = p(Y |x̂) = EX|x̂[p(Y |X)] = EZ|ẑ[Z].

From the above discussion, it follows that the infor-
mation bottleneck problem is a special case of the
rate distortion problem (2.3). Hence, from Theo-
rem 5, it is exactly equivalent to the mixture es-
timation problem based on the exponential family
corresponding to KL-divergence, i.e., the multino-
mial family (Collins et al., 2001). Further, the iter-
ative IB algorithm is the same as the EM algorithm
for multinomial distributions as has been previously
shown in (Slonim & Weiss, 2002).

5. Related Work

Over the years, significant theoretical progress has
been made in rate distortion theory (Berger, 1971;
Cover & Thomas, 1991), with various results involv-
ing optimality (Rose, 1994) and algorithmic compu-
tations (Finamore & Pearlman, 1980) using finite
reproduction alphabets. In this paper, we have sig-
nificantly extended the work of Rose (1994) by pre-
senting new results that provide a way to solve the
rate distortion problem for all Bregman divergences.

Maximum likelihood mixture estimation using the
expectation maximization (EM) algorithm has been
widely applied to a number of unsupervised learn-
ing problems. It was observed (Redner & Walker,
1984) that the EM algorithm can be significantly
simplified when applied for mixture estimation us-
ing exponential families. The variational free energy
interpretation (Neal & Hinton, 1998) broadened the
context of the problem.

The equivalence in Theorem 5 is based on a bijection
between exponential families and Bregman diver-
gences (Forster & Warmuth, 2000; Banerjee et al.,
2004). A few special cases of this equivalence have
been observed in the literature. For example, several



researchers (Kearns et al., 1997; Rose, 1998) have
observed the connection between Euclidean vector
quantization, which corresponds to a special case of
the RDFC problem, and mixture estimation prob-
lem for Gaussian distributions. Further, Slonim and
Weiss (2002) established the connection between the
information bottleneck method (Tishby et al., 1999),
that implicitly uses KL-divergence (Gilad-Bachrach
et al., 2003) in the rate distortion setting, and the
maximum likelihood mixture estimation based on
multinomial distributions.

6. Discussion

The results of theorems 1 and 2 give a way to com-
pute the rate distortion function for all Bregman
divergences. In fact, it maybe possible to get an-
alytic closed form solutions of the rate distortion
function for sources belonging to the exponential
family with the corresponding Bregman divergence.
Analytic solutions for Gaussians with squared Eu-
clidean distance exist to encourage the exploration
of this possibility. Further, the equivalence result of
theorem 5 suggest that analytic results in rate dis-
tortion theory such as bounds on the rate distortion
function, bounds on the appropriate output alpha-
bet size, etc., can possibly be directly translated to
useful results for mixture estimation based on the
corresponding exponential family. Finally, since the
bijection of theorem 4 is the key result used to es-
tablish the equivalence, further investigation of the
bijection theorem may potentially lead to more con-
nections between lossy compression and learning.
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