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Abstract

In this paper we consider the problem of semi-supervisedetdunction learn-
ing. We first propose a general regularized framework fanieg a kernel matrix,
and then demonstrate an equivalence between our proposesl keatrix learn-
ing framework and a general linear transformation learmiraplem. Our result
shows that the learned kernel matrices parameterize a lirseesformation kernel
functionand can be applied inductively to new data points. Furtheemaur re-
sult gives a constructive method for kernelizing most éxgsMahalanobis metric
learning formulations. To make our results practical fogéascale data, we mod-
ify our framework to limit the number of parameters in theiopztation process.
We also consider the problem of kernelized inductive dinmradity reduction in
the semi-supervised setting. To this end, we introduce @Inmoethod for this
problem by considering a special case of our general keeaehing framework
where we select the trace norm function as the regularizerempirically demon-
strate that our framework learns useful kernel functiomgroving thek-NN clas-
sification accuracy significantly in a variety of domainsrtRarmore, our kernel-
ized dimensionality reduction technique significantlyueels the dimensionality
of the feature space while achieving competitive clasgificaaccuracies.

1 Introduction

Learning kernel functions is an ongoing research topic iohiree learning that focuses on learning
an appropriate kernel function for a given task. While sdvaethods have been proposed, many
of the existing techniques can only be applied transdugtijee-3]; i.e., they cannot be applied
inductively to new data points. Of the methods that can béegpmductively, several are either too
computationally expensive for large-scale data (e.g. tkgraels [4]) or are limited to small classes
of possible learned kernels (e.g. multiple kernel learifiy

In this paper, we propose and analyze a general kernel nhgdinixing problem using provided side-
information over the training data. Our learning problemgularizes the desired kernel matrix via
a convex regularizer chosen from a broad class, subjectizegaconstraints on the kernel. While
the learned kernel matrix should be able to capture the geavside-information well, it is not
clear how the information can be propagated to new dataqadditr first main result demonstrates
that our kernel matrix learning problem is equivalent toméag a linear transformation (LT) kernel
function (a kernel of the formp(x)” W ¢(y) for some matrixiv’ = 0) with a specific regularizer.
With the appropriate representationldf, this result implies that the learned LT kernel function can
be naturally applied to new data. Additionally, we demaatstithat a large class of Mahalanobis
metric learning methods can be seen as learning an LT karnetibn and so our result provides a



constructive method for kernelizing these methods. Oulyaisarecovers some recent kernelization
results for metric learning, but also implies several nesults.

As our proposed kernel learning formulation learns a kemafrix over the training points, the
memory requirements scale quadratically in the numberaifitrg points, a common issue arising
in kernel methods. To alleviate such issues, we propose diticathl constraint to the learning
formulation to reduce the number of parameters. We proudhkaquivalence to LT kernel function
learning still holds with the addition of this constrainfcathat the resulting formulation can be
scaled to very large data sets.

We then focus on a novel application of our framework to thabfm of inductive semi-supervised
kernel dimensionality reduction. Our method is a specialecaf our kernel function learning
framework with trace-norm as the regularization functioks a result, we learfow-rank linear
transformations, which correspond to low-dimensional edaings of high- or infinite-dimensional
kernel embeddings; unlike previous kernel dimensionatigthods, which are either unsupervised
(kernel-PCA) or cannot easily be applied inductively to rdata (spectral kernels [6]), our method
intrinsically possesses both desirable properties. Eurtbre, our method can handle a variety of
side-information, e.g., class labels, click-through satgc. Finally, we validate the effectiveness of
our proposed framework. We quantitatively compare severllarizers, including the trace-norm
regularizer for dimensionality reduction, over standaathdsets. We also apply the methods to an
object recognition task in computer vision and qualitdyigdow results of dimensionality reduction
on a handwritten digits data set.

Related Work: Most of the existing kernel learning methods can be claskifi® two broad cat-
egories. The first category includes parametric approackiesre the learned kernel function is
restricted to be of a specific form and then the relevant perars are learned according to the pro-
vided data. Prominent methods include multiple kerneneay [5], hyperkernels [4], infinite kernel
learning [7], and hyper-parameter cross-validation [8hdVof these methods either lack modeling
flexibility, require non-convex optimization, or are rasted to a supervised learning scenario. The
second category includes non-parametric methods, whiaicéky model geometric structure in the
data. Examples include spectral kernel learning [6], nedatibased kernel learning [9], and kernel
target alignment [3]. However, most of these approachesrited to the transductive setting and
cannot be used to naturally generalize to new points. In eoisgn, our method combines both of
the above approaches. We propose a general non-paranetrédrkatrix learning framework, sim-
ilar to methods of the second category. However, we shovotlvdearned kernel matrix corresponds
to a linear transformation kernel function parameterizg@d SD matrix. Hence, our method can
be applied to inductive settings also without sacrificirgngficant modeling power. Furthermore,
our methods can be applied to a variety of domains and withiiatyaof forms of side-information.

Existing work on learning linear transformations has lardecused on learning Mahalanobis dis-
tances; examples include [10-15], among others. POLA [b@]I&ML [12] provide specialized
kernelization techniques for their respective metricié@ag formulations. Kernelization of LMNN
was discussed in [16], though it relied on a convex pertishabased formulation that can lead
to suboptimal solutions. Recently, [17] showed kernelarafor a class of metric learning algo-
rithms including LMNN and NCA [15]; as we will see, our residtmore general and we can prove
kernelization over a larger class of problems and can aldocesthe number of parameters to be
learned. Independent of our work, [18] recently proved aaggnter type of theorem for spectral
regularization functions. However, the framework theysidar is different than ours in that they
are interested in sensing the underlying high-dimensioratix using given measurements.

Kernel dimensionality reduction methods can generally b&leld into two categories: 1) semi-
supervised dimensionality reduction in the transductatérsy, 2) supervised dimensionality reduc-
tion in the inductive setting. Methods in the first categargliide the incomplete Cholesky de-
composition [19], colored maximum variance unfolding [2@fnifold preserving semi-supervised
dimensionality reduction [21]. Methods in the second catginclude the kernel dimensionality re-
duction method [22] and Gaussian Process latent variabiels{23]. Kernel PCA [24] reduces the
dimensionality in the inductive unsupervised setting, levhiarious manifold learning methods can
reduce the dimensionality but only in the unsupervisedslantive setting. In contrast, our dimen-
sionality reduction method, which is an instantiation of ganeral kernel learning framework, can
perform kernel dimensionality reduction simultaneouslyoth the semi-supervised as well as the
inductive setting. Additionally, it can capture the maidfgstructure using an appropriate baseline
kernel function such as the one proposed by [25].



2 Learning Framework

Given an input kernel functior : R? x R? — R, and some side-information over a set of points
X = {x1,xzo,...,x,} the goal is to learn a new kernel functiefy, that is regularized against
x but incorporates the provided side-information (the uséhefsubscripi?” will become clear
later). The initial kernel functiom is of the formx(z,y) = ¢(z)? ¢(y) for some mappingp.
Throughout the rest of this paper, we will dengteas shorthand fop(x;), i.e., data point; after
applying the mapping. We will also assume that the data vectorsXihave been mapped vig
resulting in® = {¢1, ¢2,...,¢,}. Learning a kernel function from the provided side-infotioa
is an ill-posed problem since infinitely many such kernels satisfy the provided supervision. A
common approach is to formulate a transductive learninglpro to learn a new kernel matrix over
the training data. Denoting the input kernel matfixas K = ®7'®, we aim to learn a new kernel
matrix Ky that is regularized againgt’ while satisfying the available side-information. In this
work, we study the following optimization problem:

min f(KTVPKwEK ) stogi(Kw) <bi, 1<i<m, €Y

Kw >0
wheref andg; are functions fronR"*" — R. We call f theregularizerand they; the constraints
Note that if f and constraintg;’s are all convex functions, then the above problem can besdol
optimally using standard convex optimization algorithniote that our results will also hold for
unconstrained variants of the above problem, as well aanmarthat incorporate slack variables.

In general, such learning formulations are limited in thatlearned kernel cannot readily be applied
to new data points. However, we will show that the above psedgroblem is equivalent to learning
linear transformation (LT) kernel functions. Formally, lahkernel functionsyy is a kernel function
of the formew (z,y) = ¢(x)" We(y), whereW is a positive semi-definite (PSD) matrix; we can
think of the LT kernel as describing the linear transformaip; — W'/2¢;. A natural way to
learn an LT kernel function would be to learn the paramed¢ion matrix1¥ using the provided
side-information. To this end, we consider the followinglgem:

. T .

Doin fW)  stgi(@ W) <b;, 1<i<m, )
where, as before, the functighis the regularizer and the functiopsare the constraints that encode
the side information. The constrainisare assumed to be a function of the madFiXIV ® of learned
kernel values over the training data. We make two obsemstébout this problem: first, for data
mapped to high-dimensional spaces via kernel functioris,pitoblem is seemingly impossible to
optimize since the size diV grows quadratically with the dimensionality. We will shohat (2)
need not explicitly be solved for learning an LT kernel fuort Second, most Mahalanobis metric
learning methods may be viewed as a special case of the ataoveviiork, and we will discuss some
of them throughout the paper.

2.1 Examples of Regularizers and Constraints

To make the kernel learning optimization problem concretediscuss a few examples of possible
regularizers and constraints.

For the regularizef(A) = %HA — I||%, the resulting kernel learning objective can be equivéyent

expressed as minimizing|| K —' Ky, —I||%. Thus, the goal is to keep the learned kernel close to the
input kernel subject to the constraintsgn Similarly, for f(A) = tr(A — I), the resulting objective
can be expressed as minimizingir—! Ky, — ). Another interesting regularizer f§ A) = tr(A) —

log det(A). In this case, the resulting objective is to minimize the Degdivergence,,( Kw, K)
subject to the constraints given by For linearg;, this problem was studied in [12, 26].

In terms of constraints, pairwise squared Euclidean digtaronstraint between a pair of points
(¢i, ¢;) in feature space can be formulated Bsy (i,i) + Kw(j,7) — 2Kw(i,j) > b or
Kw(i,i) + Kw(j,7) — 2Kw (i,j) < b; this constraint is clearly linear in the entries &y .
Similarity constraints can be representedigs (i, 7) < b or Ky (i,7) > b and are also linear in
Ky . Relative distance constraints over a triflet, ¢, ¢x.) specify thatg, should be closer t¢;
than¢y, and are often used in metric learning formulations andirengroblems; such constraints
can be easily formulated within our framework. Finally, rmerametric probability estimation con-
straints can be used to constrain the conditional proltloifia class: given a data poing;,

Z]‘ecKW(imj) >
Ztczl Zjet KW@J) a

tp(clz) = +

)



whereC' is the number of classes. This constraint can be written asearl constraint oveky,
after appropriate manipulation.

3 Analysis

We are now ready to analyze the connection between problgjrang (2). We will show that
the solutions to the two problems are equivalent, in theeséimat by optimally solving one of the
problems, the solution to the other can be computed in clas®d. More importantly, this result
will yield insight into the type of kernel that is learned Ihetkernel learning problem.

We begin by defining the class of regularizers consideredumamalysis. Note that each of the
example regularizers discussed earlier satisfy the fatigwlefinition of spectral functions.

Definition 3.1. We say thatf : R"*" — R is aspectral function if f(A) = 3. f.(\;), where
A1, .., Ay are the eigenvalues of and f, : R — R is a real-valued function over the reals. Note
that if f, is a convex function over the reals, théiis also convex.

3.1 Learning Linear Transformation Kernels

Now we present our main result, i.e., for a spectral funcfipproblems (1) and (2) are equivalent.

Theorem 1. Let K = 0 be an invertible matrix,f be a spectral function and denote the global
minima of the corresponding scalar functignasc. LetWW* be an optimal solution t¢2) and K73,
be an optimal solution t¢1). Then,

W* =al + 05 ®T,
whereS* = K~Y(K}, — aK)K~t. Furthermore, K, = ®TW*®.

The first part of the theorem demonstrates that, given amapsgolutionkj;, to (1), one can con-
struct the corresponding solutidiy* to (2), while the second part shows the reverse (this also
demonstrates whyV is used in the subscript of the learned kernel). The proohis theorem
appears in the supplementary material. The main idea behéngroof is to first show that the op-
timal solution to (2) is always of the fori” = ol + ®S®”, and then we obtain the closed form
expression folS using algebraic manipulations.

As a first consequence of this result, we can achieve induai@r the learned kernels. Given
that K1y = ®TW®, we can see that the learned kernel function is a linearfwanation kernel;
that is, kyw (@i, @;) = ¢! We,;. Given a pairs of new data poings,, and¢,,,, we use the fact
that the learned kernel is a linear transformation kerrieh@with the first result of the theorem
(W = al + ®Sd7) to compute the learned kernel as:

n
K’W(wnl ’ wnz) = ¢gl Wd)nz = a’%(wnl ) wnz) + Z Sij"ﬁ(wnl ’ wi)’%(wj’ an)' (3)
i,j=1

As mentioned in Section 2, many Mahalanobis metric learnieghods can be viewed as a special
case of (2). Therefore, a corollary of Theorem 1 is that we aarstructively apply these metric
learning methods in kernel space by solving their corredjpankernel learning problem, and then
compute the learned metrics via (3). Thusg,need not explicitly be constructed to learn the LT ker-
nel. Kernelization of Mahalanobis metric learning has esly been established for some special
cases; our results generalize and extend previous methodgell as provide simpler techniques in
some cases. Below, we elaborate with some special cases.

Example 1 [Information Theoretic Metric Learning (ITML)]: [12] proposed the following Ma-
halanobis metric learning problem formulation:

II/II/IL% Tr(W) - logdet(W)v s.t. dW(d)’Hd)j) S bij7 (Za]) € Sa dW(¢l7¢]) 2 bijv (27]) € D7

where S and D specify pairs of similar and dissimilar points, respedtivand dy (¢;, ¢;) =
(pi — ;)T W(¢; — ¢;) is theMahalanobis distancbetweenp,; ande,. ITML is an instantiation
of our framework with regularizef(A) = tr(A) — logdet(A) and pairwise distance constraints
encoded as the; functions. Furthermore, it is straightforward to show tlias a convex spectral
function with global optiman: = 1, so the optimall}’ can be learned implicitly using (1). The
corresponding kernel learning optimization problem sifigd to:

rlr(lin ng(Kw,K) S.t. gq(Kw) < bi, 1< < m, (4)
w



whereD g ( Ky, K) = tr(Kyw K1) —log detf Ky K ~1) —n is the LogDet divergence [12], and the
positive definiteness akyy is satisfied automatically. This recovers the kernelizetrimkarning
problem analyzed in [12], where kernelization for this spkcase was established and an iterative
projection algorithm for optimization was developed. Ntitat, in the analysis of [12], th¢ were
limited to similarity and dissimilarity constraints; owgsult is therefore more general than the exist-
ing kernelization result, even for this special case.

Example 2 [Pseudo Online Metric Learning (POLA)]: [13] proposed the following metric learn-

ing formulation: . ) o

wherey;; = 1if ¢; and¢; are similar, andy;; = —1 if ¢; and ¢; are dissimilar. P is a set
of pairs of points with known distance constraints. POLA risistantiation of (2) withf(A) =
]| A||% and side-information available in the form of pair-wisetdixe constraints. Note that the

regularizerf(A) = 1[|A||> was also employed in [2, 27], and these methods also fall ruoie
general formulation. In this casé,is once again a convex spectral function, and its global mméni
isa = 0, so we can use (1) to solve for the learned kerkigl as

min | Kw K% st gi(Kw) <bj, 1<i<m, Ky >D0. (5)
w

The constraintg; for this problem can be easily constructed by re-writingheat POLA'S con-
straints as a function cb” W ®. Note that the above approach for kernelization is much lgmp
than the method suggested in [13], which involves a keradlizdram-Schmidt procedure at each
step of the algorithm.

Other Examples: The above two examples show that our analysis recovers tilekmawvn ker-
nelization results for Mahalanobis metric learning. Hoarethere are several other metric learning
approaches that fall into our framework as well, includihg targe margin nearest neighbor met-
ric learning method (LMNN) [11] and maximally collapsing trie learning (MCML) [14], both

of which can be seen as instantiations of our learning fraonlewith a constany, as well as rel-
evant component analysis (RCA) [28] and Xing et al.'s Mahalis metric learning method for
clustering [10]. Given lack of space, we cannot detail then&kzation of all these methods, but
they follow in the same manner as in the above two examplegarticular, each of these methods
may be run in kernel space, and our analysis yields new itsigto these methods; for example,
kernelization of LMNN [11] using Theorem 1 avoids the conyetturbation analysis in [16] that
leads to suboptimal solutions in some cases.

3.2 Parameter Reduction

One of the drawbacks to Theorem 1 is that the size of the neatkg; andS aren x n, and thus
grow quadratically with the number of data points. We wouiké ito have a way to restrict our
optimization over a smaller number of parameters, so we rieeuds a generalization of (2) by
introducing an additional constraint to make it possiblestduce the number of parameters to learn,
permitting scalability to data sets with many training geimnd with very high dimensionality.

Theorem 1 shows that the optimal;;, is of the form®?W*® = oK + KS*K. In order to
accommodate fewer parameters to learn, a natural optioréptace the unknowf matrix with a
low-rank matrix JL.J?, whereJ € R"*" is a pre-specified matri¥, € R"*" is unknown (we use
L instead ofS to emphasize thaf is of sizen x n wheread. isr x r), and the rank is a parameter
of the algorithm. Then, we will explicitly enforce that thegirned kernel is of this form.

By plugging inKy = aK + K SK into (1) and replacing with JL.JT, the resulting optimization
problem is given by:
min f(al + KY2JLJTKY?) st gi(aK + KJLJTK) <b;, 1 <i<m. (6)

While the above problem involves justx r variables, the functiong andg;’s are applied tow x n
matrices and therefore the problem may still be computatipexpensive to optimize. Below, we
show that for any spectral functighand linear constraintg, (K ) = Tr(C; Kw ), (6) reduces to a
problem that applieg andg;’s to  x r matrices only, which provides significant scalability.
Theorem 2. LetK = ®7® = 0 and.J € R"*". Also, let the regularization functiofibe a spectral
function (see Definition 3.1) such that the correspondiradadunction f, has a global minima at
«. Then problent6) is equivalent to the following problem:
. KJ —1/2 KJ K.]LKJ KJ —1/2
Lo min P R JE) ),
St TMLITKC;KJ) <b; — Tr(aKC;), 1 <i<m. (7



Note that (7) is over x r matrices (after initial pre-processing) and is in fact $&mio the kernel
learning problem (1), but with a kern&” of smaller sizer x r, r < n. A proof of the above
theorem is in the supplementary material, and follows bywéhg that for spectral functions the
objective functions of the two problems can be shown to diffea universal constant.

Similar to (1), we can show that (6) is also equivalent todinegansformation kernel function learn-
ing. This enables us to naturally apply the above kernehlagrproblem in the inductive setting.
We provide a proof of the following theorem in the suppleragnmaterial.

Theorem 3. Consider(6) with a spectral functiory so that corresponding scalar functigfy has a
global minima atn and let K - 0 be invertible. Then(6) and (7) are equivalent to the following
linear transformation kernel learning problem (analogdaghe connection betwedhh) and (2)):

Join - f(W) st TOTW®) <b;, 1<i<m, W=al+XJLIXT. (8)

Note that, in contrast to (2), where the last constraint d¥/es achieved automatically, (8) requires
that constraint should be satisfied during the optimizapimtess which leads to a reduced number
of parameters for our kernel learning problem. The abovertra shows that our reduced parame-
ters kernel learning method (6) also implicitly learns a&&ntransformation kernel function, hence
we can generalize the learned kernel to unseen data pointsars expression similar to (3).

The parameter reduction approach presented in this sedgipends critically on the choice of

A few simple heuristics for choosing beyond choosing a subset of the points fréninclude

a randomly sampled coefficient matrix or clusterihginto » clusters such thaf is the cluster
membership indicator function. Also note that using thisapzeter reduction technique, we can
scale the optimization to kernel learning problems withlionils of points of more. For example,
we have applied a special case of this scalable framewodatm lkernels over data sets containing
nearly half a million images, as well as the MNIST data set®060 data points [29].

4 Trace-norm based Inductive Semi-supervised Kernel Dimesionality
Reduction (Trace-SSIKDR)

We now consider applying our framework to the scenario ofismrpervised kernel dimensionality
reduction, which provides a novel and practical applicatbour framework. While there exists a
variety of methods for kernel dimensionality reduction sthaf these methods are unsupervised (e.g.
kernel-PCA) or are restricted to the transductive settingontrast, we can use our kernel learning
framework to learn a low-rank transformation of the featugetors implicitly that in turn provides

a low-dimensional embedding of the dataset. Furthermaneframework permits a variety of side-
information such as pair-wise or relative distance comgsabeyond the class label information
allowed by existing transductive methods.

We describe our method starting from the linear transfoiongiroblem. Our goal is to learn a low-
rank linear transformatiofl” whose corresponding low-dimensional mapped embedding; i
W1/2¢,;. Even when the dimensionality f; is very large, if the rank of/” is low enough, then the
mapped embedding will have small dimensionality. With thanhind, a possible regularizer could
be the rank, i.e.f(A) = rank(A); one can easily show that this satisfies the definition of atsale
function. Unfortunately, optimization is intractable iergeral with the non-convex rank function,
so we use the trace-norm relaxation for the matrix rank fonci.e., we seff(4) = Tr(A4). This
function has been extensively studied as a relaxation #rdhk function [30], and it satisfies the
definition of a spectral function (withh = 0). We also add a small Frobenius norm regularization
for ease of optimization (this does not affect the spectraperty of the regularization function).
Then using Theorem 1, the resulting relaxed kernel learpinblem is:

Jnin TTHK V2K K~Y2) 4 | K~YV2 Ky K~V2)12 st THCiKw) <b;, 1 <i<m, (9)
w

wherer > 0 is a parameter. The above problem can be solved using a me#sed on Uzawa’s
inexact algorithm, similar to [31].

We briefly describe the steps taken by our method at eachidteraFor simplicity, denoteds’ =

K12 Ky, K—1/2: we will optimize with respect td< instead ofKy,. Let K be thet-th iterate.
Associate variable!, 1 < i < m with each constraint at each iteratigrand letz{ = 0, Vi. Letd,



Table 1: UCI Datasets: accuracy achieved by various methbids numbers in parentheses show
the rank of the corresponding learned kernels. Trace-S8IKEhieves accuracy comparable to Frob
(Frobenius norm regularization) and ITML (LogDet regutation) with a significantly smaller rank.

Datase{Method | Gaussian Frob ITML Frob LR | ITML LR-pre | ITML LR-post | Trace-SSIKDR
Iris 0.99(40) 0.99(27) 0.99(40) 0.91(4) 0.93(4) 0.99(4) 0.99(4)
Wine 0.80(105) [ 0.94(36) [ 0.99(105) | 0.72(11) 0.85(11) 0.46(11) 0.94(11)
lonosphere 0.94(337) | 0.98(64) | 0.98(337) | 0.98(19) 0.98(19) 0.93(19) 0.99(19)
Soybean 0.89(624) | 0.96(96) | 0.96(624) | 0.44(40) 0.87(40) 0.35(40) 0.96(40)
Diabetes 0.75(251) | 0.74(154) | 0.76(251) | 0.67(14) 0.62(14) 0.73(14) 0.74(14)
Balance-scale | 0.93(156) | 0.96(106) | 0.97(156) | 0.97(10) 0.80(10) 0.82(10) 0.97(10)
Breast-cancer | 0.72(259) | 0.73(61) | 0.78(259) | 0.69(21) 0.68(21) 0.68(21) 0.75(21)
Spectf-heart 0.74(267) | 0.87(39) | 0.84(267) | 0.84(22) 0.89(22) 0.89(22) 0.84(22)
Heart-c 0.68(228) | 0.78(62) [ 0.79(228) | 0.73(39) 0.61(39) 0.55(39) 0.78(39)
Heart-h 0.59(117) | 0.69(71) | 0.70(117) | 0.56(31) 0.30(31) 0.56(31) 0.68(31)

be the step size at iterationThe algorithm performs the following updates:
UEUT<—K1/2<Z,2£10¢)K1/27 K' — Umax(X —71,0)U7,

2t 2t — S max(Tr(C K2 KU KY?) — b;,0), Vi

The above updates require computationidf' 2 which is expensive for large high-rank matrices.
However, using elementary linear algebra we can show &hand the learned kernel function
can be computed efficiently without computifig'/? by maintainingS = K~ /2K K~'/2 from
step to step. Algorithm 1 details an efficient method for mjiting (9) and returns matricesy,

Dy, andV}, all of which are contain onlyO(nk) parameters, wherg is the rank of K, which
changes from iteration to iteration. Note that step 4 of figerithm computes: singular vectors
and require®) (nk?). Sincek is typically significantly smaller than, the computational cost will
be significantly smaller than computing the whole SVD. Ndtattthe learned embeddiny —

K'2K-1/2k,; wherek; is a vector of input kernel function values betwegnand the training

data, can be computed efficiently aés — E,t/szka:i, which does not requiré/? explicitly.
We defer the proof of correctness for Algorithm 1 to the seppéntary material.

Algorithm 1 Trace-SSIKDR
Require: K, (C,b;),1 <i<m, 7,0
. Initialize: z) =0,t=0
repeat
t=t+1
ComputeV}, and¥;, the topk eigenvectors and eigenvalues(dF, zf‘l(]?;) K, wherek =
argmax,; g; > T
5 Dy(iyi) — /vl Kv;,1 <i<k
6: th — Z;%il - 5max(Tr(CiKVkaEkaVkTK) - bZ,O),VZ //St = VkaEkaVkT
7: until Convergence
8: Return Xy, Dy, Vy,

RobdbrR

5 Experimental Results

We now present empirical evaluation of our kernel learnirgmiework and our semi-supervised
kernel dimensionality approach when applied in conjumctidth k-nearest neighbor classification.
In particular, using different regularization functionge show that our framework can be used to
obtain significantly better kernels than the baseline Kerfar k-NN classification. Additionally,
we show that our semi-supervised kernel dimensionalityetdn approach achieves comparable
accuracy while significantly reducing the dimensionalityte linear mapping.

UCI Datasets: First, we evaluate the performance of our kernel learniaghéwork on standard
UCI datasets. We measure accuracy of the learned kernalg s8N classification with two-fold
cross validation averaged over 10 runs. For training, wepagsvise (dis)similarity constraints as
described in Section 2.1. We select parametarsdw (right-hand side of the pairwise constraints)
using5* and95'" percentiles of all the pairwise distances between poiots the training dataset.
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Figure 1:(a): Mean classification accuracy on Caltech101 dataset aatdig1-NN classification
with learned kernels obtained by various methdb}. Rank of the learned kernel functions obtained
by various methods. The rank of the learned kernel funcg@ame as the reduced dimensionality
of the dataset(c): Two-dimensional embedding of 2000 USPS digits obtaineédgusur method
Trace-SSIKDR for a training set of just 100 USPS digits. Nibi@ we use thénductive setting
here and the embedding is color coded according to the wdlgrdligit. (d): Embedding of the
USPS digits dataset obtained using kernel-PCA.

Table 4 shows th&-NN classification accuracies achieved by our kernel legrfiamework with
different regularization function&aussiarrepresents the baseline Gaussian kefreh represents
an instantiation of our framework with Frobenius norfit4) = || A||%) regularization, whildTML
corresponds to the LogDet regularizatiof({) = Tr(A) — logdet(A) ). For the latter case, our
formulation is same as formulation proposed by [12]. Notg tbr almost all the datasets (except
Iris and Diabetes), both Frob and ITML improve upon the hasgbaussian kernel significantly.

We also compare our semi-supervised dimensionality remuchethodTrace-SSIKDR'see Sec-
tion 4) with baseline kernel dimensionality reduction noethFrob LR ITML LR-pre andITML
LR-post Frob LR reduces the rank of the learned mattix(equivalently, it reduces the dimension-
ality) using Frobenius norm regularization by taking the égenvectors. Similarly, ITML LR-post
reduces the rank of the learned kernel matrix obtained u3ikti. by taking its top eigenvectors.
ITML LR-pre reduces the rank of the kernel function by redgcihe rank of théraining kernel ma-
trix. The learned linear transformatié#i (or equivalently, the learned kernel function) should have
the same rank as that thining kernel matrix as the LogDet divergence preserves the rguaees
of the input kernel. We fix the rank of the learnBdfor Frob LR, ITML LR-pre, ITML LR-post as
the rank of the transformatioi” obtained by our Trace-SSIKDR method. Note that Trace-SRKD
achieves accuracies similar to Frob and ITML, while dedrepthe rank significantly. Furthermore,
it is significantly better than the corresponding baselimesthsionality reduction methods.

Caltech-101: Next, we evaluate our kernel learning framework on the €aHEO1 dataset, a bench-
mark object recognition dataset containing over 3000 irsagiere, we compare various methods
using 1-NN classification method and the accuracy is measured istef the mean recognition
accuracy per class. We use a pool of 30 images per class faxperiments, out of which a vary-
ing number of random images are selected for training andeimaining are used for testing the
learned kernel function. The baseline kernel function lected to be the sum of four different
kernel functions: PMK [32], SPMK [33], Geoblur-1 and GeabRu[34]. Figure 1 (a) shows the
accuracy achieved by various methods (acronyms reprasersaime methods as described in the
previous section). Clearly, ITML and Frob (which are spedifistances of our framework) are able
to learn significantly more accurate kernel functions themttaseline kernel function. Furthermore,
our Trace-SSIKDR method is able to achieve reasonable acguvhile reducing the rank of the
kernel function significantly (Figure 1 (b)). Also note thEtace-SSIKDR achieves significantly
better accuracy than Frob LR, ITML LR-pre and ITML LR-podthaugh all of these methods have
the same rank as Trace-SSIKDR.

USPS Digits: Finally, we qualitatively evaluate our dimensionality vetion method on the USPS
digits dataset. Here, we train our method using 100 exantplésarn a linear mapping to two
dimensions, i.e., a rankmatrix . For the baseline kernel, we use the data-dependent ke f
tion proposed by [25] that also takes data’s manifold stmgcinto account. We then embed 2000
(unseen) test examples into two dimensions using our lddowerank transformation. Figure 1 (c)
shows the embedding obtained by our Trace-SSIKDR methoitk Wigure 1 (d) shows the embed-
ding obtained by the kernel-PCA algorithm. Each point i©cabded according to the underlying
digit. Note that our method is able to separate out most ofliti¢és even in 2D, and is significantly
better than the embedding obtained using kernel-PCA.
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