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Abstract

Inverse Iteration is widely used to compute the eigenvectors of a matrix once accurate eigen-
values are known. We discuss various issues involved in any implementation of inverse itera-
tion for real, symmetric matrices. Current implementations resort to reorthogonalization when
eigenvalues agree to more than three digits relative to the norm. Such reorthogonalization can
have unexpected consequences. Indeed, as we show in this paper, the implementations in EIS-
PACK [18] and LAPACK [1] may fail. We illustrate with both theoretical and empirical failures.
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1 Introduction

Given an eigenvalue λ of the matrix A, a corresponding eigenvector is defined as a non-zero solution
of the homogeneous system

(A− λI)v = 0.

However in a computer implementation we can only expect, in general, to have an approximation
σ to λ. In such a case, we may attempt to compute an approximation to the eigenvector by the
method of inverse iteration (see (3.3) below).

The inverse iteration process is widely used to find the eigenvectors of a symmetric tridiagonal
matrix T . Earlier fears about loss of accuracy due to the near singularity of T − σI were allayed
in [17]. Inverse iteration can easily deliver a vector v̂ that has a small residual, i.e. small ‖(T −
σI)v̂‖, whenever σ is close to λ. However a small residual does not guarantee orthogonality when
eigenvalues are close together. A simple and commonly used “remedy” for clusters of eigenvalues is
to orthogonalize each approximate eigenvector, as soon as it is computed, against any eigenvectors
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already in the cluster. Unfortunately, this strategy is not foolproof as recognized by Wilkinson [20,
p.344] :

‘Inverse Iteration gives a very satisfactory solution to the problem as far as reasonably
well-separated eigenvalues are concerned. The problem of determining reliably full
digital information in the subspace spanned by eigenvectors corresponding to coincident
or pathologically close eigenvalues has never been satisfactorily solved’.

In this paper, we list the various issues involved in implementing inverse iteration. We dis-
cuss the plausible choices that may be made at each step, illustrating with the choices made in
EISPACK [18] and LAPACK [1].

The task of computing eigenvectors has been extensively studied since the 1960s and there is
considerable inverse iteration software in the public domain that is available for use. One would
expect that software for this well-defined and seemingly “simple” task would come with proofs of
correctness. These proofs could be for exact arithmetic (with an approximate eigenvalue) or for
finite precision arithmetic. The effort to construct the proof should bring bugs in the software
to light. However, as this study reveals, most existing inverse iteration software can fail, without
documenting how failure can occur. Indeed a user gets the impression that the method is reliable
and the relevant literature fosters that impression. Although EISPACK and LAPACK implementa-
tions work well in most cases, we have found instances where they deliver unnecessarily inaccurate
answers and we explain the mechanism in this paper.

It is not the goal of this paper to suggest or investigate alternative strategies for the implemen-
tation of inverse iteration. In this paper, we want to carry out the intellectual exercise of examining
difficulties faced by high quality software for this task. This effort is worthwhile since it reveals
somewhat surprising errors in the EISPACK and LAPACK implementations. As far as the author
knows, most of these instances of error have not previously appeared in literature. We feel that
similar endeavors would uncover more pitfalls in existing numerical software, and lead to more
reliable software.

The outline of the paper is as follows. Section 2 lists the goals of any floating point implemen-
tation of inverse iteration while in Section 3, we present and then discuss various issues that any
such implementation must address. In Section 4 we examine in detail how these issues have been
handled in existing EISPACK and LAPACK implementations. Our examination enables us to dis-
cover examples where these routines deliver inaccurate results. Finally in Section 5, we indicate the
aspects of inverse iteration that can be satisfactorily solved at the present, and mention alternate
approaches to the unresolved problems.

A word about notation. Unless explicitly mentioned, all matrices are assumed to be of order n.
We will denote eigenvalues by λ1, λ2, . . . , λn and the corresponding eigenvectors by v1, v2, . . . , vn.
The computed value of a quantity x will usually be denoted by x̂, e.g., λ̂i denotes the computed
value of λi. The ith component of the vector x will be denoted by x(i), while the (i, j) element
of matrix A will be denoted by either Aij or A(i, j). Our usage should be clear from the context.
Unless explicitly mentioned, ‖ · ‖ is the spectral norm, ‖x‖2 =

√
xT x. In many of our expositions,

we will abuse the “big oh” notation and instead of a limiting process, O(x) will informally be used
as a synonym for “of the order of magnitude of” x. The symbol ε will usually denote the machine
precision.

Throughout the paper, A will denote a dense symmetric matrix while T will stand for a sym-
metric tridiagonal. We will use A and T interchangeably during the paper, and this reflects the
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fact that while all the concepts are valid for real and symmetric matrices, inverse iteration software
is typically written only for tridiagonals for purposes of efficiency.

2 Goals in finite precision

What are the proper requirements for any pair (λ̂i, v̂i) to be accepted as a satisfactory approximate
eigenpair for a given (machine representable) real and symmetric matrix A? It is customary to
judge by the norm of the residual vector,

ri := Av̂i − v̂iλ̂i, ‖v̂i‖ ≈ 1.

The standard criterion is
‖ri‖ ≤ O(nε‖A‖). (2.1)

For theory we use the spectral norm but in practice simpler norms are preferred. The presence of n
in the test merits further discussion but that is not our concern here.

What complicates the task considerably is a second requirement concerning mutual orthogonal-
ity of eigenvectors. The customary criterion is

|v̂T
i v̂j | ≤ O(nε), ‖v̂i‖, ‖v̂j‖ ≈ 1, i 6= j, (2.2)

for approximations v̂i and v̂j to eigenvectors of A. We accept (2.2) without further discussion.
Note that in (2.1) and (2.2), the factor ε is generally taken to be the machine precision but may

be larger to reflect the level of accuracy desired by the user.

3 Issues in Inverse Iteration

Inverse Iteration is a method to find an eigenvector when an approximate eigenvalue is known :

v(0) = b, (A− σI)v(i+1) = τ (i)v(i), i = 0, 1, 2, . . . . (3.3)

Here b is the starting vector. Usually ‖v(i)‖ = 1 and τ (i) is a scalar chosen to try and make
‖v(i+1)‖ ≈ 1. We now list the key issues that arise in a computer implementation.

I. Choice of shift. What shift σ should be chosen when doing the inverse iteration steps
of (3.3)? Should σ always equal the best possible approximation to the eigenvalue λ? Should
the closeness of σ to λ be checked?

II. Direction of starting vector. How should b be chosen?

III. Scaling of right hand side. When the shift σ is very close to an eigenvalue, ‖(A− σI)−1‖
is large and solving (3.3) may result in overflow. Can τ (i) be chosen to prevent overflow?

IV. Convergence Criterion. When does an iterate v(i) satisfy (2.1)? If the criterion for accep-
tance is too strict, the iteration may never stop and the danger of too loose a criterion is that
poorer approximations than necessary may be accepted.

V. Orthogonality. Will the vectors for different eigenvalues computed by (3.3) be numerically
orthogonal? If not, what steps must be taken to ensure orthogonality?
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As our upcoming discussion will reveal, most of these questions are inter-related and a decision
to handle any of the above issues can critically influence other decisions.

We now examine these issues in more detail. Before we do so, it is instructive to look at the first
iterate of (3.3) in the eigenvector basis. Suppose that σ is an approximation to the eigenvalue λ1,
and b is the starting vector. Writing b in terms of the eigenvectors, b =

∑n
i=1 ξivi, we get, in exact

arithmetic

v(1) = τ (1)(A− σI)−1b = τ (1)

(
ξ1

λ1 − σ
v1 +

n∑
i=2

ξi

λi − σ
vi

)

⇒ v(1) =
ξ1τ

(1)

λ1 − σ

(
v1 +

n∑
i=2

ξi

ξ1

λ1 − σ

λi − σ
vi

)
. (3.4)

I. Choice of shift. The above equation shows that for v(1) to be a good approximation to v1,
σ must be close to λ1. But in such a case, the linear system in (3.3) is ill-conditioned and
small changes in σ or A can lead to large changes in the solution v(i+1). Initially, it was feared
that roundoff error would destroy these calculations in finite precision arithmetic. However
Wilkinson showed that the errors made in computing v(i+1), although large, are almost entirely
in the direction of v1 when λ1 is isolated. Since we are interested only in computing the
direction of v1 these errors pose no danger, see [17]. Thus to compute the eigenvector of an
isolated eigenvalue, the more accurate the shift is, the better is the approximate eigenvector.

It is common practice nowadays to compute eigenvalues first, and then invoke inverse iteration
with very accurate σ. Due to the fundamental limitations of finite precision arithmetic,
eigenvalues of symmetric matrixes can, in general, only be computed to a guaranteed accuracy
of O(nε‖A‖) [14]. Even when a very accurate eigenvalue approximation is available, the
following may influence the choice of the shift when more than one eigenvector is desired.

• The pairing problem. In [2], Chandrasekaran gives a surprising example showing how
inverse iteration can fail to give small residuals in exact arithmetic if the eigenvalues and
eigenvectors are not paired up properly. We reproduce the example in Section 4. To
prevent such an occurrence, Chandrasekaran proposes perturbing the eigenvalue approx-
imations so that each shift used for inverse iteration lies to the left of, i.e., is smaller
than, the corresponding eigenvalue (see Example 4.1 for more details).

• The separation problem. The solution v(i+1) in (3.3) is very sensitive to small changes
in σ when there is more than one eigenvalue near σ. In [20, p.329], Wilkinson notes that

‘The extreme sensitivity of the computed eigenvector to very small changes in
λ [σ in our notation] may be turned to practical advantage and used to obtain
independent eigenvectors corresponding to coincident or pathologically close
eigenvalues’.

Wilkinson proposed that such nearby eigenvalues be ‘artificially separated’ by a tiny
amount in order to compute orthogonal approximations to eigenvectors.

II. Direction of starting vector. From (3.4), assuming that |λ1− σ| � |λi− σ| for i 6= 1, v(1)

is a good approximation to v1 provided that ξ1 is not “negligible”, i.e., the starting vector b
must have a non-negligible component in the direction of the desired eigenvector. In [20,
pp.315-321], Wilkinson investigates and rejects the choice of e1 or en as a starting vector
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(where ei is the ith column of the n×n identity matrix). However, it can be shown that ek is
a desirable choice for a starting vector if the kth component of v1 is above average (> 1/

√
n).

In the absence of an efficient procedure to find such a k, Wilkinson proposed choosing PLe
as the starting vector, i.e., solving Uv(1) = e in the first iteration, where T − σI = PLU
is the LU decomposition obtained by partial pivoting and e is the vector of all 1’s [19, 20].
A random starting vector is a popular choice since the probability that it has a negligible
component in the desired direction is extremely low, see [13] for a detailed study.

III. Scaling of right hand side. Equation (3.4) implies that ‖v(1)‖ ≥ |ξ1τ
(1)|/|λ1−σ| where τ (1)

is the scale factor in the first iteration of (3.3). If σ is very close to an eigenvalue, ‖v(1)‖ can
be very large and overflow may occur leading to a breakdown in the eigenvector computation.
By choosing τ (1) appropriately, the right hand side may be scaled down to prevent overflow
in certain situations. This approach is taken in EISPACK and LAPACK.

IV. Convergence Criterion. In the iteration (3.3), when is v(i+1) an acceptable eigenvector?
The residual norm is

‖(A− σI)v(i+1)‖
‖v(i+1)‖

=
‖τ (i) · v(i)‖
‖v(i+1)‖

. (3.5)

The reciprocal of the right hand side, ‖v(i+1)‖/‖τ (i) · v(i)‖, is called the norm growth. To
guarantee (2.1), v(i+1) is usually accepted when the norm growth is O(1/nε‖A‖), see [20,
p.324] for details. For the basic iteration of (3.3) this convergence criterion can always be met
in a few iterations, provided the starting vector is not pathologically deficient in the desired
eigenvector and σ is within O(nε‖A‖) of the true eigenvalue. As we have mentioned before,
these requirements are easily met.

Since the eigenvalue approximations are generally input to inverse iteration, what should the
software do if the input approximations are not accurate, i.e., bad data is input to inverse
iteration? We believe that the software should raise some sort of error flag either by testing
for the accuracy of the input eigenvalues, or through non-convergence of the iterates.

When an eigenvalue is isolated, a small residual implies orthogonality of the computed vector
to other eigenvectors (see (3.6) below). However when eigenvalues are close, goal (2.2) is not
automatic. As we now discuss, the methods used to compute numerically orthogonal vectors
can impact the choice of the convergence criterion.

V. Orthogonality. Standard perturbation theory [14, Section 11-7] says that if v̂ is a unit
vector, λ is the eigenvalue closest to σ and v is λ’s eigenvector then

| sin 6 (v, v̂)| ≤ ‖Av̂ − σv̂‖
gap(σ)

(3.6)

where gap(σ) = minλi 6=λ |σ − λi|.
In particular, the above implies that the simple iteration scheme of (3.3) cannot guarantee
orthogonality of the computed “eigenvectors” when eigenvalues are close. To achieve numer-
ical orthogonality, current implementations modify (3.3) by explicitly orthogonalizing each
iterate against previously computed eigenvectors of nearby eigenvalues.

However, orthogonalization can fail to give the desired answer if the vectors are nearly linearly
dependent prior to the orthogonalization. Two difficulties arise in such a situation :
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Inverse Iteration(A,λ̂)
/* assume that v̂1, v̂2, . . . , v̂j−1 have been computed, and that λ̂i, λ̂i+1, . . . , λ̂j form a cluster */

Choose a starting vector bj ;
Orthogonalize bj against v̂i, v̂i+1, . . . , v̂j−1;
l = 0; v(0) = bj ;
do

l = l + 1;
Solve (A− λ̂jI)v(l) = τ (l−1)v(l−1);
Orthogonalize v(l) against v̂i, v̂i+1, . . . , v̂j−1;

while(‖v(l)‖/‖τ (l−1)v(l−1)‖ is not “big” enough)
v̂j = v(l)/‖v(l)‖;

Figure 1: A basic implementation of Inverse Iteration to compute the jth eigenvector

• The orthogonalized vectors may not provide an orthogonal basis of the desired subspace.

• Orthogonalization may lead to cancellation and a decrease in norm of the iterate. Thus
a simple convergence criterion (as suggested above in issue IV) may not be reached.

As we shall show in Section 4.1, the above situation can occur surprisingly often due to
inaccuracies in the computed eigenvalues. In particular, approximations to small eigenvalues
are often incorrect in all their digits (eigenvalues found by the QR algorithm and the Divide
and Conquer method can have an error as large as O(ε‖T‖)). In response to such problems,
Chandrasekaran proposed a new version of inverse iteration in [2] that is considerably different
from the EISPACK and LAPACK implementations. The differences include an alternate
convergence criterion. The drawback of this new version is the potential increase in the
amount of computation required.

4 Existing Implementations

Figure 1 gives the pseudocode for a basic implementation of inverse iteration to compute vj , the jth
eigenvector, assuming that approximations to v1, v2, . . . , vj−1 have already been computed. Note
that in this pseudocode, both the starting vectors and iterates are orthogonalized against previously
computed eigenvectors. Surprisingly, as the following example shows, this implementation can fail
to give small residual norms even in exact arithmetic by incorrectly pairing up the eigenvalues and
eigenvectors.

Example 4.1 [The Pairing Error.] (Chandrasekaran [2]) Let λ1 be an arbitrary real number,
and

λ2 = λ1 + ε, λi+1 − λi = λi − λ1, λn ≥ 1, i = 2, . . . , n− 1

where ε is the machine precision. Explicitly, λi+1 = λ1 + 2i−1ε. Suppose that

λ̂i > λi, i = 1, . . . , n and most importantly λ̂1 − λ1 > λ2 − λ̂1.

6



Figure 2: Eigenvalue Distribution in example

Figure 2 illustrates the situation.
Suppose that we take a conservative approach and orthogonalize each starting vector bj against

all previously computed eigenvectors v̂1, v̂2, . . . , v̂j−1 (see Figure 1). It can be shown that if bT
j vj+1 6=

0, then in exact arithmetic the computed eigenvectors are

v̂j = vj+1, j = 1, . . . , n− 1

and, because v̂n must be orthogonal to v̂1, v̂2, . . . , v̂n−1, the last computed eigenvector is

v̂n = v1.

Since the eigenvalues grow exponentially, the residual norm ‖(A− λ̂nI)v̂n‖ is large. tu

Thus a simple inverse iteration code based on orthogonalization may appear to fail even in exact
arithmetic. To cure this problem, Chandrasekaran proposed that λ̂i − O(nε‖A‖) be used as the
shifts for inverse iteration so that each shift is guaranteed to lie to the left of its true eigenvalue [2].
As we shall see later, neither EISPACK nor LAPACK perform this ‘artificial’ perturbation.

The discerning reader will realize that the above problem is not the failure of the basic inverse
iteration process. Inverse Iteration does the work it is designed for, since the iterates do converge
to the closest eigenvector that is orthogonal to the previously computed eigenvectors. The error
is in the incorrect pairing of the eigenvalues and eigenvectors. Once this elusive error is seen, it
may be argued that such a simple implementation is sloppy. An easy cure, that would correctly
pair up the eigenvalues and eigenvectors, would be to associate each computed eigenvector with its
Rayleigh Quotient, which is available at a modest cost. In particular, the residual norm of each
eigenvector can be measured with respect to its Rayleigh Quotient, i.e., as

‖Av̂i − (v̂T
i Av̂i)v̂i‖,

where we have replaced the input eigenvalue, λ̂i, by v̂T
i Av̂i. Unfortunately, because of the premium

on speed, most current software does not perform such posteriori corrections nor does it verify the
correctness of its output. Thus, errors can go undetected since the task of proving correctness of
numerical software is often compromised by testing it on a finite sample of a multi-dimensional
infinite space of inputs.

We now look in detail at two existing implementations of inverse iteration and see how they
address the issues discussed in the previous section. EISPACK [18] and LAPACK [1] are linear
algebra software libraries that contain routines to solve various eigenvalue problems. EISPACK’s
implementation of inverse iteration is named Tinvit while LAPACK’s inverse iteration subroutine
is called xStein1 (Stein is an acronym for Symmetric Tridiagonal’s Eigenvectors through Inverse

1The prefix ‘x’ stands for the data type: real single(S) or real double(D), or complex single(C) or complex
double(Z).

7



Iteration). xStein was developed to be more accurate than Tinvit as the latter was found to
deliver less than satisfactory results in several test cases. In order to achieve accuracy comparable
to that of the Divide and Conquer and QR/QL methods, the search for a better implementation
of inverse iteration led to xStein [13]. However, as we will see in Section 4.1, xStein also suffers
from some of the same problems as Tinvit in addition to introducing a new serious error.

Both EISPACK and LAPACK solve the dense symmetric eigenproblem by reducing the dense
matrix to tridiagonal form by Householder transformations [11], and then finding the eigenvalues
and eigenvectors of the tridiagonal matrix. Both Tinvit and xStein operate on a symmetric
tridiagonal matrix. In the following, we will further assume that the tridiagonal is unreduced, i.e.,
all its off-diagonal elements are nonzero.

4.1 EISPACK and LAPACK Implementations

Figure 3 gives the pseudocode for Tinvit [18, 16] while Figure 4 outlines the pseudocode for xStein
as it appears in LAPACK release 2.0. The latter code has changed little since it was first released
in 1992. It is not necessary for the reader to absorb all details of the implementations given in
Figures 3 and 4 to follow the ensuing discussion. We provide the pseudocodes as references in case
the reader needs to look in detail at particular aspects of the implementations.

In each iteration, Tinvit and xStein solve the scaled linear system (T− λ̂I)y = τb by Gaussian
Elimination with partial pivoting. If eigenvalues agree in more than three digits relative to the norm,
the iterates are orthogonalized against previously computed eigenvectors by the modified Gram-
Schmidt method. Note that in both these routines the starting vector is not made orthogonal to
previously computed eigenvectors, as is done in Figure 1. Both Tinvit and xStein flag an error if
the convergence criterion is not satisfied within five iterations. To achieve greater accuracy, xStein
does two extra iterations after the stopping criterion is satisfied. We now compare and contrast
how these implementations handle the various issues discussed in Section 3.

I. Choice of shift. Even though in exact arithmetic all the eigenvalues of an unreduced
tridiagonal matrix are distinct, some of the computed eigenvalues may be identical to working
accuracy. In [20, p.329], Wilkinson recommends that pathologically close eigenvalues be
perturbed by a small amount in order to get an orthogonal basis of the desired subspace.
Following this, Tinvit replaces equal approximations λ̂j = λ̂j+1 = · · · = λ̂j+k by

λ̂j < λ̂j + ε‖T‖R < · · · < λ̂j + kε‖T‖R,

where ‖T‖R = maxi |Tii|+ |Ti,i+1| ≤ ‖T‖1.

We now give an example where this perturbation is too big. As a result, the shifts used
to compute the eigenvectors are quite different from the true eigenvalues and prevent the
convergence criterion from being attained.

Example 4.2 [Excessive Perturbation.] Using LAPACK’s test matrix generator [4], we
generated a 200× 200 tridiagonal matrix such that

λ̂1 ≈ · · · ≈ λ̂100 ≈ −ε, λ̂101 ≈ · · · ≈ λ̂199 ≈ ε, λ̂n = 1

8



Tinvit(T ,λ̂)
/* Tinvit computes all the eigenvectors of T given the computed eigenvalues

λ̂1, λ̂2, . . . , λ̂n arranged in non-decreasing order */
for j = 1, n

σj = λ̂j ;
if j > 1 and λ̂j ≤ σj−1 then

σj = σj−1 + ε‖T‖R; /* Perturb identical eigenvalues */
end if
Factor T − σjI = PLU ; /* Gaussian Elimination with partial pivoting */
if Unn == 0 then Unn = ε‖T‖;
τ =

√
nε‖T‖R; /* Compute scale factor */

Solve Uy = τe; /* Solve. Here, e is the vector of all 1’s */
for all k < j such that |σj − σk| ≤ 10−3‖T‖R

y = y − (yT v̂k)v̂k; /* Apply Modified Gram-Schmidt */
end for
b = y; iter = 1;
while(‖y‖1 < 1 and iter ≤ 5) do

τ = nε‖T‖R/‖b‖1; /* Compute scale factor */
Solve PLUy = τb; /* Solve with scaled right hand side */
for all k < j such that |σj − σk| ≤ 10−3‖T‖R do

y = y − (yT v̂k)v̂k; /* Apply Modified Gram-Schmidt */
end for
b = y; iter = iter + 1;

end while
if ‖y‖1 < 1 then

v̂j = 0; ierr = −j; /* set error flag */
print “jth eigenvector failed to converge”;

else
v̂j = y/‖y‖2;

end if
end for

Figure 3: Tinvit — EISPACK’s implementation of Inverse Iteration
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xStein(T ,λ̂)
/* xStein computes all the eigenvectors of T given the computed eigenvalues

λ̂j , 1 ≤ j ≤ n, arranged in non-decreasing order */
for j = 1, n

σj = λ̂j ;
if j > 1 and λ̂j − σj−1 ≤ 10ε|λ̂j | then

σj = σj−1 + 10ε|λ̂j |; /* Perturb nearby eigenvalues */
end if
Factor T − σjI = PLU ; /* Gaussian Elimination with partial pivoting */
Initialize b = random vector;
iter = 0; extra = 0; converged = false;
do

τ = n‖T‖1 max(ε, |Unn|)/‖b‖1; /* Compute scale factor */
Solve PLUy = τb; /* Solve with scaled right hand side */
for all k < j such that |σj − σk| ≤ 10−3‖T‖1 do

y = y − (yT v̂k)v̂k; /* Apply Modified Gram-Schmidt */
end for
b = y; iter = iter + 1;
if converged == true then extra = extra + 1; end if

if ‖y‖∞ ≥
√

1
10n then converged = true; end if

while((converged == false or extra < 2) and iter ≤ 5)
v̂j = y/‖y‖2;
if iter > 5 and extra < 2 then

print “jth eigenvector failed to converge”;
end if

end for

Figure 4: xStein — LAPACK’s implementation of Inverse Iteration
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where ε ≈ 1.2× 10−7 (this run was in single precision). ‖T‖R = O(1), and the shift used by
Tinvit to compute v̂199 is

σ = −ε + 198ε‖T‖R ≈ 2.3× 10−5.

The error |σ − λ199| can be as large as

|σ − λ̂199|+ |λ̂199 − λ199| ≈ 2.3× 10−5 + nε‖T‖R ≈ 4.6× 10−5.

The norm growth when solving (T−σI)y = τb is inversely proportional to this error (see (4.8)
and (4.9) below). Consequently, the norm growth narrowly misses the convergence criterion
of ‖y‖ ≥ 1 in a numerical run. Tinvit flags this as an error and returns ierr = −199. tu

As shown above, perturbing coincident eigenvalues by ε‖T‖ can substantially degrade their
accuracy. However, not perturbing them is also not acceptable in Tinvit as coincident shifts
lead to identical L U factors and starting vectors, which ultimately result in eigenvectors that
are parallel prior to reorthogonalization.

In xStein, coincident eigenvalues are also perturbed. However, the perturbations made are
small relative to each eigenvalue. In particular, equal approximations λ̂j = λ̂j+1 = · · · = λ̂j+k

are replaced by
λ̂j < λ̂j+1 + δλ̂j+1 < · · · < λ̂j+k + δλ̂j+k,

where δλ̂i =
∑i−1

l=j+1 δλ̂l + 10ε|λ̂i|. This choice does not perturb small eigenvalues drastically,
and appears to be better than Tinvit’s. On the other hand, this perturbation is too small in
some cases to serve its purpose of finding a linearly independent basis of the desired subspace
(see Example 4.7, and Wilkinson’s quote given on page 4). Thus it is easier to say “tweak
close eigenvalues” than to find a satisfactory formula for it.

II. Direction of starting vector. Tinvit chooses the starting vector to be PLe where T−σI =
PLU is obtained by partial pivoting, σ being the input eigenvalue approximation and e the
vector of all 1’s. Note that this choice of starting vector reduces the first iteration to simply
solving Uy = τe. On the other hand, xStein chooses a random starting vector, each of
whose elements comes from a uniform (−1, 1) distribution. Neither choice of starting vectors
is likely to be pathologically deficient in the desired eigenvector. The random starting vectors
are designed to be superior to Tinvit’s choice [13].

III. Scaling of right hand side. Both Tinvit and xStein solve the linear system

(T − σI)y = τb as PLUy = τb (4.7)

at each iteration. Suppose that σ is an approximation to λ1. By analysis similar to (3.4), we
see that if b is a good starting vector then

‖y‖ = O

(
τ‖b‖

|λ1 − σ|

)
. (4.8)
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Clearly, when σ is close to λ1, ‖y‖ can be large. Tinvit attempts to prevent overflow when
computing y by choosing the scale factor as

τ =
nε‖T‖R

‖b‖1
. (4.9)

However, if |λ1 − σ| � nε‖T‖R then (4.8) implies that ‖y‖ can still be very large. Tinvit
handles this problem only partially — it prevents a division by zero in (4.7) by replacing
a zero value of the last pivot, Unn, with ε‖T‖. However, as the following example shows,
overflow can still occur.

Example 4.3 [Perturbing zero values is not enough.] Let

T =

 −η 10 0
10 0 10
0 10 η(1 + ε)

 (4.10)

where η is the underflow threshold of the machine (η ≈ 10−308 in IEEE double precision
arithmetic). T is nearly singular and with the shift σ = 0,

partial pivoting in T − σI = PLU ⇒ Unn = ηε.

In the first iteration, Uy = τe and τ =
√

nε‖T‖R, which leads to

y(n) =
τ

Unn
=

√
nε‖T‖R

ηε
≈ 10

√
n

η
⇒ overflow!

Note that to exhibit the above failure, we required gradual underflow in IEEE arithmetic
(we required Unn = ηε to not underflow to zero). However failure can be observed even on
non-IEEE machines — a similar error, where there is no gradual underflow, occurs on (1/ε)T
where T is as in (4.10). tu

In contrast, xStein chooses its scale factor to be

τ =
n‖T‖1 max(ε, |Unn|)

‖b‖1
. (4.11)

The only significant difference from the choice in Tinvit is the term max(ε, |Unn|) instead
of ε [1, 12]. However this difference introduces a serious error not present in Tinvit, which
we now explain. Suppose σ approximates λ1 in (4.7). When σ = λ1, it can be proved that
Unn must be zero in exact arithmetic. We now examine the values Unn takes when σ 6= λ1

(we assume that |σ − λ1| � |σ − λi|, i 6= 1). Since T − σI = PLU ,

U−1L−1 = (T − σI)−1P

⇒ eT
nU−1L−1en = eT

n (T − σI)−1Pen.
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Since L is unit lower triangular, L−1en = en. Letting Pen = ek and T = V ΛV T , we get

1
Unn

= eT
nV (Λ− σI)−1V T ek

⇒ 1
Unn

=
v1(n) · v1(k)

λ1 − σ
+

n∑
i=2

vi(n) · vi(k)
λi − σ

, (4.12)

where vi(k) denotes the kth component of vi. By examining the above equation closely, we
see that |Unn| is “small” only if |λ1 − σ| � |v1(n) · v1(k)|. When the latter condition is not
satisfied, |Unn| can be much larger than ε and its value does not reveal the nearness of σ to
an eigenvalue of T . In such a case, (4.11) implies that τ is also larger and as the next two
examples, this can lead to a myriad of problems.

Example 4.4 [A code may fail but should never lie.] Consider

T =

 1
√

ε 0√
ε 7ε/4 ε/4

0 ε/4 3ε/4

 (4.13)

where ε is the machine precision (ε ≈ 2.2 × 10−16 in IEEE double precision arithmetic). T
has eigenvalues near ε/2, ε, 1 + ε. Suppose an eigenvalue approximation is incorrectly input
as 2. Then by (4.11) and (4.12),

σ = 2 ⇒ |Unn| = O(1) ⇒ τ = O(1)

if ‖b‖ = 1. This means that the right hand side b is not scaled down in (4.7). Thus a large norm
growth, which would imply a small residual norm, is not ensured when the stopping criterion is
satisfied, see Figure 4, (4.8) and (4.15) below. As a result, any arbitrary vector will be accepted
as an approximate eigenvector — in a numerical run, the vector [−0.6446 0.6373 0.4223]T

was output by xStein even though it is nowhere close to any eigenvector of T . tu

The above is clearly a bug in xStein since the convergence criterion does not guarantee a
small residual norm. This example represents one of the more dangerous errors of numerical
software — the software outputs an incorrect answer but does not flag any error at all. The
reader should recall that the goal of inverse iteration is to produce vectors that satisfy (2.1)
and (2.2). When the input eigenvalue approximations do not permit such high accuracy, the
correct response would be to signal a failure to converge to the desired vectors (the author
would like to emphasize that inability to handle incorrect input data can have disastrous
consequences 2). Note that on the above example, Tinvit correctly flags an error indicating
that the computation did not “converge”.

Even if σ is a very good approximation to λ1, (4.12) indicates that Unn may not be small
if v1(n) is tiny. It turns out that a component of an eigenvector of a tridiagonal matrix can

2In the summer of 1996, a core dump on the main computer aboard the Ariane 5 rocket was interpreted as flight
data, causing a violent trajectory correction that led to the disintegration of the rocket
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frequently be very small, see [20, pp.317-321]. In such a case, xStein can choose an unnec-
essary large scale factor which can occasionally lead to overflow, as shown by the following
example.

Example 4.5 [Undeserved overflow.] Consider the matrix given above in (4.13). The
eigenvector corresponding to the eigenvalue λ1 = 1 + ε + O(ε2) is

v1 =

 1− ε/2 + O(ε3)√
ε + O(ε3/2)

ε3/2/4 + O(ε5/2)

 .

If σ = 1, then |v1(n)|/|λ1 − σ| <
√

ε and the
∑n

i=2 term in (4.12) is dominant implying
that |Unn| = O(‖T‖). Combined with (4.11), this gives τ = O(‖T‖2). Thus if ‖T‖ > 1,
the right hand side is scaled up instead of the usual practice of being scaled down. As a
consequence, xStein overflows on the scaled matrix

√
Ω T where Ω is the overflow threshold

of the computer (Ω = 21023 ≈ 10308 in IEEE double precision arithmetic). tu

Note that the above matrix
√

Ω T does not deserve overflow. A similar overflow occurrence
(in IEEE double precision arithmetic) on an 8×8 matrix, with a largest element of magnitude
2484 ≈ 10145, was reported to us by Jeremy DuCroz [7].

The problems reported in the above two examples can be cured by reverting back to the
choice of scale factor in EISPACK’s Tinvit.

IV. Convergence Criterion. Both Tinvit and xStein judge the quality of an approximate
eigenvector by the norm growth obtained in solving the linear system (4.7). For example,
Tinvit accepts y as an eigenvector if

‖y‖1 ≥ 1. (4.14)

Note that (4.7) and (4.9) imply that the residual norm is

‖(T − σI)y‖1

‖y‖1
=

τ‖b‖1

‖y‖1
=

nε‖T‖R

‖y‖1
.

Thus Tinvit’s convergence criterion (4.14) ensures a small residual norm, see (2.2). From (4.8)
and (4.9), it is clear that for ‖y‖ to be bigger than 1, the shift σ must be within O(nε‖T‖) of
a true eigenvalue. If the input approximation is less accurate, the iterates do not “converge”
and Tinvit flags an error.

xStein has a similar stopping criterion; it accepts y if

‖y‖∞ ≥
√

1
10n

. (4.15)

However, as discussed earlier, the choice of scale factor in xStein is unfortunate and the
above convergence criterion does not guarantee a small residual norm. Consequently, xStein
can output poor approximations to eigenvectors without signaling an error, see Example 4.4
for such an instance.
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V. Orthogonality. Tinvit and xStein use the modified Gram-Schmidt (MGS) procedure to
orthogonalize iterates corresponding to eigenvalues whose separation is less than 10−3‖T‖.
In order for MGS to produce numerically orthogonal vectors, it is crucial that the vectors to
be orthogonalized be numerically linearly independent. However, as the following example
shows, inaccuracies in the small eigenvalues can lead to vectors that are almost parallel prior
to MGS.

Example 4.6 [Parallel Iterates.] Consider the matrix of (4.13). T has the eigenvalues

λ1 = ε/2 + O(ε2), λ2 = ε + O(ε2), λ3 = 1 + ε + O(ε2).

The eigenvalues of T as computed by MATLAB’s eig3 function (on an IBM RS/6000-590
processor4) are

λ̂1 = ε, λ̂2 = ε, λ̂3 = 1 + ε.

Note that λ̂1 = λ̂2 and λ̂1 is closer to λ2 than to λ1. We perturb λ̂2 to ε(1+ε) and input these
approximations to Tinvit to demonstrate failure (since otherwise Tinvit would perturb λ̂2

by ε‖T‖, see Example 4.2).

The first eigenvector is computed by Tinvit as

y1 = (T − λ̂1I)−1b1.

In exact arithmetic (taking b1 =
∑

i ξivi),

y1 =
ξ2

λ2 − λ̂1

(
v2 +

ξ1

ξ2

λ2 − λ̂1

λ1 − λ̂1

v1 +
ξ3

ξ2

λ2 − λ̂1

λ3 − λ̂1

v3

)

=
1

O(ε2)

(
v2 + O(ε)v1 + O(ε2)v3

)
where we have assumed that b1 is a good starting vector, i.e., ξ2 = bT

1 v2 is O(1). Due to the
inevitable roundoff errors in finite precision, the best we can hope to compute is

ŷ1 =
1

O(ε2)
(v2 + O(ε)v1 + O(ε)v3) .

This vector is then normalized to remove the 1/O(ε2) factor and give the first approximate
eigenvector v̂1. However, note that v̂1 is actually a very good approximation to the second
eigenvector v2. This should not surprise us as λ̂1 is much closer to λ2 than to λ1.

The second eigenvector is now computed as

y2 = (T − λ̂2I)−1b2.

3MATLAB’s eig function computes eigenvalues by the QR algorithm.
4we suspect that eig returns this set of eigenvalues, where λ̂1 = λ̂2, on all processors that do not accumulate inner

products, such as the IBM RS/6000-590, SUN Ultra and Mac Power PC 604.
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Since λ̂2 ≈ λ̂1, the computed value of y2 is also nearly parallel to v2 (assuming that b2 has a
non-negligible component in the direction of v2), i.e.,

ŷ2 =
1

O(ε2)
(v2 + O(ε)v1 + O(ε)v3) .

As λ̂1 and λ̂2 are nearly coincident, Tinvit orthogonalizes ŷ2 against v̂1 by the MGS process
in an attempt to reveal the second eigenvector :

z = ŷ2 − (ŷT
2 v̂1)v̂1 (4.16)

However, since ŷ2 and v̂1 are nearly parallel, the severe cancellation in the above step leaves
a vector z which, essentially, is random noise :

z =
1

O(ε2)
(O(ε)v1 + O(ε)v2 + O(ε)v3) ,

v̂2 = z/‖z‖.

Clearly z is not orthogonal to v̂1. But Tinvit accepts z as having “converged” since ‖z‖ is big
enough to satisfy the convergence criterion (4.14) even after the severe cancellation in (4.16).
The above observations are confirmed by a numerical run in double precision arithmetic where
the first two eigenvectors output by Tinvit had a dot product of 0.0452. tu

Unlike Tinvit, xStein computes each eigenvector from a different random starting vector.
The hope is to get greater linear independence of the iterates before the MGS step [13].
However, as we now show, the Tinvit error as reported above persists due to inaccuracies in
the small eigenvalues.

Example 4.7 [Linear Dependence Persists.] Consider again the matrix T given in (4.13).
The eigenvalues input to xStein are computed by the eig function in MATLAB as λ̂1 = λ̂2 =
ε and λ̂3 = 1+ε (see the footnote at the bottom of page 15). As in Tinvit, the first computed
eigenvector v̂1 is almost parallel to v2. The iterations to compute the second eigenvector are
summarized in Table 1. Note that we have listed the last few digits of the iterates prior to
MGS to indicate the small changes in the vectors.

From Table 1 we see that at every iteration, the vector y is observed to become parallel to v̂1

just before MGS. This behavior is very similar to that of Tinvit (see Example 4.6). xStein
does two more iterations than Tinvit and alleviates the problem slightly, but a dot product
of 1.9× 10−6 between computed eigenvectors is far from satisfactory (this run was in double
precision). tu

xStein avoids the overflow problems of Tinvit exhibited in Example 4.3. It checks to see if
overflow would occur, and if so, perturbs tiny entries on the diagonal of U [1, 12]. This check is in
the inner loop when solving Uy = x where x = τL−1P−1b. Coupled with the extra iterations done
after convergence, this results in xStein being slower than Tinvit. On an assorted collection of
test matrices of sizes 50 to 1000, we observed xStein to be 2-3 times slower than Tinvit. However
xStein was more accurate than Tinvit in general.
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Step 1 2 3
Before MGS After MGS Before MGS After MGS Before MGS After MGS
−1.05 · 10−8 −1.04 · 10−8 −1.05 · 10−8 −1.05 · 10−8 −1.05 · 10−8 −1.05 · 10−8

Iterate(y) .707 . . . 5471 .697 .707 . . . 5351 .7069 .707 . . . 9587 .707108
.707 . . . 5477 −.716 .707 . . . 5599 −.7073 .707 . . . 1363 −.707105

yT v̂1 1.000 .0014 1.000 3.0 · 10−4 1.000 1.9 · 10−6

yT v̂3 3.9 · 10−24 4.1 · 10−11 5.8 · 10−25 2.9 · 10−12 2.2 · 10−24 1.1 · 10−13

Table 1: Summary of xStein’s iterations to compute the second eigenvector of T .

5 Conclusions and Future Work

In this paper, we have demonstrated how existing EISPACK and LAPACK implementations of
inverse iteration can fail. The modes of failure are revealed by a systematic examination of decisions
made in the software and their impact on the dual goals of small residual norms and orthogonality.
Some of the “worst” errors are easily rectified. We now indicate the current state of knowledge about
the various aspects of inverse iteration discussed in this paper, and mention alternate approaches
to the unresolved issues.

I. Choice of shift. Of the various issues discussed in this paper, the choice of starting vector
and convergence criterion have been extensively studied [20, 16, 17, 13]. Surprisingly, the
choice of shift for inverse iteration seems to have drawn little attention. We feel that the shift
is probably the most important variable in inverse iteration. Examples 4.6 and 4.7 highlight
the importance of shifts that are as accurate as possible.

II. & III. Direction of starting vector and scaling of right hand side. This particular
problem has recently benn solved. It is now possible to deterministically find a starting vec-
tor that is guaranteed to have an above average component in the direction of the desired
eigenvector v. Knowing the position of a large component of v also enables us to avoid the
possibility of overflow in the eigenvector computation. See [5, 15, 8, 10, 9] for more details.

IV. & V. Convergence criterion and Orthogonality. It is easy to find a criterion that guar-
antees small residual norms, see goal (2.1). However, as we saw in earlier sections, the goal
of orthogonality (2.2) can lead to a myriad of problems. Most of the “difficult” errors in
the EISPACK and LAPACK implementations arise due to the explicit orthogonalization of
iterates when eigenvalues are close. In [2], Chandrasekaran gives an explanation of these
failures, and proposes a more robust version of inverse iteration. However, this new version is
more involved and potentially requires much more orthogonalization than existing implemen-
tations. There is no current plan to widely distribute software based on this new version of
inverse iteration [3]. Recently, there has been much work on another approach for computing
numerically orthogonal approximations to eigenvectors. However this work is still ongoing
and beyond the scope of this paper. The interested reader is requested to see [5, 15] and
await [6].
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