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Abstract

A novel approach to clustering co-occurrence data poses
it as an optimization problem in information theory which
minimizes the resulting loss in mutual information. A di-
visive clustering algorithm that monotonically reduces this
loss function was recently proposed. In this paper we show
that sparse high-dimensional data presents special chal-
lenges which can result in the algorithm getting stuck at
poor local minima. We propose two solutions to this prob-
lem: (a) a “prior” to overcome infinite relative entropy val-
ues as in the supervised Naive Bayes algorithm, and (b)
local search to escape local minima. Finally, we combine
these solutions to get a robust algorithm that is computa-
tionally efficient. We present experimental results to show
that the proposed method is effective in clustering document
collections and outperforms previous information-theoretic
clustering approaches.

1 Introduction

Clustering is a central problem in unsupervised learn-
ing [5]. Presented with a set of data points, clustering algo-
rithms group the data into clusters according to some notion
of similarity between data points. However, the choice of
similarity measure is a challenge and often an ad hoc mea-
sure is chosen. Information Theory comes to the rescue in
the important situations where non-negative co-occurrence
data is available. A novel formulation poses the clustering
problem as one in information theory: find the clustering
that minimizes the loss in (mutual) information [8, 4]. This
information-theoretic formulation leads to a “natural” divi-
sive clustering algorithm that uses relative entropy as the
measure of similarity and monotonically reduces the loss in
mutual information [4].

However, sparse and high-dimensional data presents
special challenges and can lead to qualitatively poor local
minima. In this paper, we demonstrate these failures and

then propose two solutions to overcome these problems.
First, we use a prior as in the supervised Naive Bayes al-
gorithm to overcome infinite relative entropy values caused
by sparsity. Second, we propose a local search strategy
that is highly effective for high-dimensional data. We com-
bine these solutions to get an effective, computationally ef-
ficient algorithm. A prime example of high-dimensional
co-occurrence data is word-document data; we show that
our algorithm returns clusterings that are better than those
returned by previous information-theoretic approaches.

The following is a brief outline of the paper. Section 2
presents the information-theoretic framework and divisive
clustering algorithm of [4]. The problems due to sparsity
and high-dimensionality are illustrated in Section 3. We
present our two-pronged solution to the problem in Sec-
tion 4. Detailed experimental results are given in Section 5.

A word about notation. Upper-case letters such as X, Y
will denote random variables, while lower-case letters such
as x, y denote individual set elements. Y denotes a random
variable obtained from a clustering of Y while ¢ denotes an
individual cluster. Probability distributions will be denoted
by p(X), p(X|y). Boldfaced letters, such as y,y, will de-
note p(X |y), p(X|g) for brevity. The logarithmic base 2 is
used throughout this paper.

2 Divisive Information-Theoretic Clustering

Let X and Y be two discrete random variables that take
values in the sets {z1, Z2,...,Zm } and {y1,y2, ..., Yn} re-
spectively. Suppose that we know their joint probability
distribution p(X,Y"); often this can be estimated using co-
occurrence data. Consider the case where we want to clus-
ter Y. Let Y denote the “clustered” random variable that
ranges over the disjoint clusters ¢, . . ., Jk, i.€.,

U9 ={y1,--,yn}, and ;NG =, i#j.

A novel information-theoretic approach to clustering is to
seek the clustering which gives the smallest loss in mutual
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information [8, 4], i.e. to minimize

I(X;Y) - I(X;Y) =Y ) py)KL(p(X|y), p(X]9)),
Yy Yyey (1)

where I(X;Y') is mutual information between random vari-
able X and Y and K L stands for Kullback-Leibler diver-
gence [1]. The above expression for the loss in mutual
information suggests a “natural” divisive clustering algo-
rithm (DITC), which iteratively (i) re-partitions the distri-
butions p(X |y) by their closeness in KL-divergence to the
cluster distributions p(X|g), and (ii) subsequently, given
the new clusters, re-computes the new cluster distributions.
This procedure is iterated until change in objective function
value as given in (1) is less than, say, 1073, See [4] for
details.

3 Challenges due to Sparsity and High-
Dimensionality

Unfortunately, Algorithm DITC can falter in the pres-
ence of sparsity and high-dimensionality.

Example 1 (Sparsity) Consider the three conditional dis-

| Y1 y2 ¥s3

oo d 0 0
tributions: 9 0 I Suppose we want to clus-

o .1 9

ter y1,y2 and ys into two clusters; clearly the optimal
clustering puts {y1,y2} in one cluster and {ys} in the
other. However suppose the initial clusters are §1 =
{y1} and 32 = {y2,ys}. Then the cluster distribu-
tions will be §1 = (.1,.9,0) and §» = (0,.5,.5), re-
spectively. The Kullback-Leibler divergences K L(y1,¥2),
KL(ys,¥1) and K L(ys,¥1) are infinite. Therefore Algo-
rithm DITC gets stuck in this initial clustering and misses
the optimal partition due to the presence of zeros in the
cluster distributions §1 and ¥ that result in infinite KL-
divergences.

Example 2 (High dimensionality) For the second exam-
ple, we took a collection of 30 documents consisting of 10
documents each from the three distinct classes MEDLINE,
CISI and CRAN (see Section 5 for details). These 30 doc-
uments contain a total of 1073 words and so the data is
very high-dimensional. However, when we run DITC using
the word-document co-occurrence data, there is hardly any
movement of documents between clusters irrespective of the
starting partition.

4 Proposed Algorithm

In this section, we propose a computationally efficient
algorithm that avoids the above problems due to sparsity

and high-dimensionality. As in the supervised Naive Bayes
method, we wish to perturb p(X|3) to avoid zero probabili-
ties. Recall that in our unsupervised case p(X|§) refers to a
cluster distribution. The important question is: what should
be the perturbation? For reasons outlined below, we perturb
the cluster distribution to:

1
1+ a

p(X[9) = (p(X19) + - u(X)), 2

where « is a constant and u(X) is the uniform distribution
(£,..., ). The value of this prior has a pleasing property:
the perturbed cluster distribution p' (X |§) can be interpreted
as the mean distribution for ¢ obtained after perturbing each

element of the input joint distribution p(z, y) to

1 o
/ — —
p'(z,y) = 1ta (p(ﬂv,y) + mp(y)) .
Note that if o = m

m in (2), where N(x, g) is the

frequence of z in cluster g, we get Laplace’s rule of suc-
cession used in supervised Naive Bayes, i.e., p'(z|g) =

M What should be the value of « in our cluster-
m+y N(z,9)

ing algorithm? Experimental results reveal that an “anneal-
ing” approach helps, i.e., start the algorithm with a large
value of o and decrease o progressively as the number of
iterations increase. Algorithm DITC _prior is same as DITC
except that the cluster distributions are computed as in (2)
and « is halved at every iteration. Our prior has the same
influence as the temperature in deterministic annealing [7]
through a slightly different mechanism: when the prior is
big all the p(X|g)’s are uniform, i.e., the joint entropy
H(X,Y) is large, thus K L(p(X|y), p(X|§)) is almost the
same for all y and §j. As the prior decreases H(X,Y) is
decreased.

To further improve our algorithm, we turn to a local
search strategy, called first variation in [3], that allows us
to escape undesirable local minimum, especially in the case
of high-dimensionality. Precisely, a first variation of a par-
tition {g;}5_, is a partition {g;}5_, obtained by remov-
ing a distribution y from a cluster §; and assigning it to an
existing cluster ;. Among all the kn possible first varia-
tions, corresponding to each combination of y and ¢;, we
choose the one that gives the smallest loss in mutual infor-
mation. Asin [3], a chain of first variations are implemented
for our DITC_LocalSearch algorithm, which iterates over
DITC followed by a chain first variations. Finally, our algo-
rithm DITC_PLS incorporates both the ideas of priors and
local search, i.e., it iteratively runs DITC_prior and a chain
of first variations till it converges. Lack of space prevents
us from giving a more detailed description of the algorithm
which may be found in [2].
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| MED CRAN CISI | MED CRAN CISI

| MED CRAN CISI | MED CRAN CISI

01 | 847 41 275 g1 | 1016 I 2
g2 | 142 954 86  gp | 1 1389 1
gs | 44 405 1099 g5 | 16 9 1457

DITC results DITC _prior results

Table 1. Confusion matrices for 3893 docu-
ments, 4303 words (CLASSIC3)

5 Experimental Results

We now present experimental results for our
information-theoretic algorithm applied to the task of
clustering document collections using word-document
co-occurrence data.

For our test data, we use various subsets of the 20-
newsgroup data (NG20) [6] and the SMART collection
(ftp://ftp.cs.cornell.edu/pub/smart). NG20 consists of ap-
proximately 20,000 newsgroup postings collected from 20
different usenet newsgroups. We report results on NG20
and various subsets of this data set of size 500 each: Bi-
nary, Multi5, Multil0 and NG10 (see [2] for details). In
order for our results to be comparable, we applied the same
preprocessing as in [8] to all the news group data sets, i.e.
we removed stopwords and selected the 2000 words with
the highest contribution to the mutual information, removed
documents with less than 10 word occurrences and removed
all the headers except the subject line.

From SMART, we used MEDLINE, CISI, and CRANFIELD
subcollections, which consist of 1033, 1460 and 1400 ab-
stracts respectively. We also created 3 subsets of 30, 150,
and 300 documents respectively; each data set was created
by equal sampling of the three collections. After remov-
ing stopwords, the number of words for the 30, 150 and 300
document data sets is 1073, 3658 and 5577 respectively. We
refer to the entire data set as CLASSIC3 and the subsets as
C30, C150 and C300 respectively.

Since we know the underlying class labels for our data
sets, we can evaluate clustering results by forming a con-
fusion matrix where entry(z, j) gives the number of docu-
ments in cluster ¢ that belong to the true class j. For an
objective evaluation measure, we use micro-averaged pre-
cision which was also used in [8].

We first demonstrate that Algorithm DITC_PLS (with
prior and local search) is superior to Algorithms DITC_prior
and DITC_LocalSearch.

Algorithm DITC prior cures the problem of sparsity to
some extent and its results are superior to DITC, for exam-
ple, Table 1 shows the confusion matrices resulting from
the two algorithms. An interesting option in DITC_prior
is the starting value of «. Indeed, as Figures 1 show, the
starting values of « can result in quite different values of

9| 1 15 29 g1 | 50 0 1
g2 | 13 11 8 g2 | 0 50 0
gs | 36 24 13 45| 0 0 49

DITC _prior results DITC LocalSearch results

Table 2. Algorithm DITC_LocalSearch yields
better confusion matrix than DITC prior (150
documents, 3652 words)

| MED CRAN CISI | MED CRAN CISI

01| 45 38 35 G| 97 0 0
g2 | 31 26 3 g | 1 100 0
gs | 24 36 2 g | 2 0 100

DITC _prior results DITC _LocalSearch results

Table 3. Algorithm DITC_LocalSearch yields
better confusion matrix than DITC prior (300
documents, 5577 words)

. . (XY .
mutual information preserved, ﬁ, and micro-averaged

precision. The trend for DITC_prior in Figures 1 appears to
be that larger starting values of « lead to better results (we
observe this trend over other data sets too). This behavior
is interesting and needs further study. Note that larger o
values correspond to starting with “smeared” cluster distri-
butions, or in other words, with high joint entropy values
H(X,Y).

However, the starting values of « cease to be an issue
when we use DITC_PLS, which is seen to be “immune” to
different starting values in Figure 1. Note that these fig-
ures validate our optimization criterion: there is a definite
correlation between the mutual information preserved and
micro-averaged precision, which was also observed in [8].
DITC_PLS is seen to be more stable than DITC_ prior in
addition to yielding higher quality results. Tables 2 and
3 further show that DITC_LocalSearch also yields better
clustering than DITC prior. However, DITC_PLS is com-
putationally more efficient than DITC_LocalSearch since it
has better starting partitions before invoking the slower lo-
cal search procedure; hence DITC_PLS is our method of
choice.

We now compare our Algorithm DITC_PLS with previ-
ously proposed information-theoretic algorithms. [9] pro-
posed the use of an agglomerative algorithm that first clus-
ters words, and then uses this clustered feature space to
cluster documents using the same agglomerative informa-
tion bottleneck method. More recently [8] improved the
clustering results in [9] by using sequential information bot-
tleneck (sIB). We implemented the sIB algorithm for pur-
pose of comparison; since the sIB method starts with a ran-
dom partition we ran 10 trials and report the average per-
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Figure 1. Mutual information preserved and
Micro-averaged precision for DITC_prior with
various starting a-values on Multi10
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Figure 2. Micro-averaged precision results.

formance numbers in Figures 2 and 3, which also contain
performance results for our algorithms (recall that our algo-
rithm is deterministic due to the deterministic initialization
shceme we use). Figures 2 and 3 again reveal the correla-
tion between the preserved mutual information and micro-
averaged precision. DITC_PLS is seen to be the best algo-
rithm, and beats sIB on at least 3 of the data sets; for exam-
ple, the average micro-averaged precision of sIB on Multi5
is .8 while DITC_PLS yields .95. Note that numbers for our
sIB implementation are averages of 10 runs while the pub-
lished numbers in [8] are the best among 15 restarts. Also,
the Binary, Multi10 and Multi5 datasets in our work and in
[8] are formed by a random sampling of the newsgroups,
so the data sets are a bit different. However, the NG10 and
NG20 data sets used by us and [8] are identical, and so are
the micro-averaged precision values (see [8, Table 2]).

For the large data sets, CLASSIC3, NGI10, NG20,
DITC prior gives results that are comparable to those with
prior and local search, see Figures 2 and 3. This leads
to considerable savings in time since DITC_prior is much
faster than sIB as shown in Table 5.
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Figure 3. Fraction of mutual information pre-
served

Data set sIB  DITC DITC_prior
Classic3 (3893 documents) 95 1.35 1.67
NG10 (20000 documents) 2459  16.71 14.75
NG20 (20000 documents) 6244  35.87 29.92

Table 4. Computation time (in seconds) on
large data sets (> 3000 documents)
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