Iterative Clustering of High Dimensional Text Data Augmented by Local Search

Inderjit S. Dhillon* and Yuqgiang Guan*
Department of Computer Sciences
University of Texas
Austin, TX 78712-1188, USA
inderjit, yguan @cs.utexas.edu

Abstract

The k-means algorithm with cosine similarity, also
known as the spherical k-means algorithm, is a popu-
lar method for clustering document collections. However,
spherical k-means can often yield qualitatively poor results,
especially when cluster sizes are small, say 25-30 docu-
ments per cluster, where it tends to get stuck at a local
maximum far away from the optimal solution. In this pa-
per, we present a local search procedure, which we call
“first-variation” that refines a given clustering by incre-
mentally moving data points between clusters, thus achiev-
ing a higher objective function value. An enhancement of
first variation allows a chain of such moves in a Kernighan-
Lin fashion and leads to a better local maximum. Com-
bining the enhanced first-variation with spherical k-means
vields a powerful “ping-pong” strategy that often qualita-
tively improves k-means clustering and is computationally
efficient. We present several experimental results to high-
light the improvement achieved by our proposed algorithm
in clustering high-dimensional and sparse text data.

1. Introduction

Clustering or grouping document collections into con-
ceptually meaningful clusters is a well-studied problem.
A starting point for applying clustering algorithms to un-
structured document collections is to create a vector space
model, alternatively known as a bag-of-words model [16].
The basic idea is (a) to extract unique content-bearing words
from the set of documents treating these words as features
and (b) to then represent each document as a vector of cer-
tain weighted word frequencies in this feature space. Typ-
ically, a large number of words exist in even a moderately
sized set of documents where a few thousand words or more
are common; hence the document vectors are very high-
dimensional. In addition, a single document typically con-
tains only a small fraction of the total number of words in
the entire collection; hence, the document vectors are gen-
erally very sparse, i.e., contain a lot of zero entries.

*This research was supported by NSF Grant No. ACI-0093404.

J. Kogan

Department of Mathematics and Statistics
University of Maryland Baltimore County

Baltimore, MD 21228, USA
kogan @math.umbc.edu

The k-means algorithm is a popular method for cluster-
ing a set of data vectors [5]. The classical version of k-
means uses squared Euclidean distance, however this dis-
tance measure is often inappropriate for its application to
document clustering [18]. An effective measure of sim-
ilarity between documents, and one that is often used in
information retrieval, is cosine similarity, which uses the
cosine of the angle between document vectors [16]. The
k-means algorithm can be adapted to use the cosine simi-
larity metric to yield the spherical k-means algorithm, so
named because the algorithm operates on vectors that lie on
the unit sphere [4]. Since it uses cosine similarity, spheri-
cal k-means exploits the sparsity of document vectors and
is highly efficient [3].

The spherical k-means algorithm, similar to the Eu-
clidean algorithm, is a hill-climbing procedure and is prone
to getting stuck at a local optimum (finding the global opti-
mum is NP-complete). For large document clusters, it has
been found to yield good results in practice, i.e., the local
optimum found yields good conceptual clusters [4, 18, 3].
However, as we show in Section 3, spherical k-means often
produces poor results on small and moderately sized clus-
ters where it tends to get stuck in a qualitatively inferior
local optimum.

In this paper, we present an algorithm that uses local
search to refine the clusters produced by spherical k-means.
Our refinement algorithm alternates between two phases:
(a) first-variation and (b) spherical k-means itself. A first-
variation step moves a single document from one cluster
to another, thereby increasing the objective function value.
A sequence of first-variation moves allows an escape from
a local maximum, so that fresh iterations of spherical k-
means can be applied to further increase the objective func-
tion value. This ping-pong strategy yields a powerful re-
finement algorithm which often qualitatively improves k-
means clustering and is computationally efficient. Note that
our refinement algorithm always improves upon the input
clustering in terms of the objective function value.

Many variants of k-means, such as “batch” and “incre-

mental” versions have been proposed in the literature, see
Section 6 for a discussion. The main contribution of this
paper is our use of local search for document clustering.
Our strategy leads to a “ping-pong” algorithm which al-
ternates between “batch” k-means and first-variation iter-
ations, thereby harnessing the power of both in terms of im-
proved quality of results and computational speed.

We now give an outline of the paper. In Section 2, we
present the spherical k-means algorithm while Section 3
presents scenarios in which this algorithm performs poorly.
In Section 4, we introduce the first-variation method and
present our proposed refinement algorithm. Experimental
results in Section 5 show that our algorithm yields qualita-
tively better results giving higher objective function values.
In Section 6 we discuss related work and finally, in Sec-
tion 7 we present our conclusions and future work.

2. Spherical k-means algorithm

We start with some necessary notation. Let d be the num-
ber of documents, w be the number of words and let X =
{X1,X2,...,X4} denote the set of non-negative document
vectors, where each x; € R™ and ||x;[|(= ||xi]l2) = 1,
i.e., each x; lies on the unit sphere. A clustering of the
document collection is its partitioning into disjoint subsets
T, Ty eeey Ty 1.€., szl mj =Xand 7wy Nm = ¢, j # L.
For a cluster 7 we denote the sum Z x by s(m). The con-

xem
cept vector of the cluster 7 is defined by

s(m)
c(m) =)
[Is(m)l
i.e., the concept vector of the cluster is its normalized ex-
pectation. We define the “quality” or “coherence” of a non-
empty cluster 7 as

a(m) = 3 xTe(m) = s(m)]l 0
XETT
We set ¢(¢) = 0 for convenience. Finally, for a partition
{m; }?:1 we define the objective function to be the sum of
the qualities of the k clusters:

k k
Qfm1i) = Yalm) = 3 3 xe,.

j=1lxem;

where we have written c; for c(m;). The goal is to find a
clustering that maximizes the value of the above objective
function. In what follows we present the spherical k-means
algorithm which is an iterative process that generates a se-

quence of partitions {Wl(t)}le, t=0,1,..., such that

o ™) z e ((nn). @

To emphasize the relationship between successive partitions
we shall denote the “next” partition generated by k-means,

{7r§t+1)}§:1, by nextKM ({77’;”};;1). With the above no-
tation, we now present the spherical k-means algorithm.
Given a user supplied tolerance tol > 0 do the following:

1. Start with a partitioning {’/Tl(o) M | and the concept
vectors Cgo)’ céo), ceey C](€0) associated with the parti-
tioning. Set the index of iteration ¢ = 0.

2. For each document vector x € X find the concept vec-
tor ¢« (x) closest in cosine similarity to x (unless stated
otherwise we break ties arbitrarily), i.e.,

I*(x) = arg max xTcgt) .

Next, compute the new partitioning {771(”1)};“:1 =

nextkM ({TFl(t) fitl)) induced by the old concept vec-

tors {cl(t)}lez

a) —xeX : IF(x) =1}, 1<I<k (3

3. Compute the new concept vectors corresponding to the
partitioning computed in (3):

@ s(aY)
¢

- t+1 :
Is({)|

4. If Q (nextKM ({Wl(t)}ffl))) - Q ({ﬂl(t)}le) is
greater than tol, increment ¢ by 1 and go to step 2
above. Otherwise, stop.

As noted in (2), it can be shown that the above algo-
rithm is a gradient-ascent scheme, i.e., the objective func-
tion value increases from one iteration to the next. For de-
tails, including a proof, see [4]. However, like any gradient-
ascent scheme, the spherical k-means algorithm is prone to
local maxima.

3 Inadequacy of £-means

We now present some scenarios in which spherical k-
means can get stuck in a qualitatively poor local maximum.

Example 3.1 Consider the three unit vectors in R?:
x; = (1,0)7, xo = (cos8,sin)T, x3 = (0,1).

Let the initial partition be 77%0) = {x1,x2}, Wéo) = {x3}.
The value of the objective function for this partition is Qg =
2cos (0/2)+1. When 0 < 6 < 7/3 the concept vector ¢, =
cos(0/2) of the cluster 7r§0) is closest in cosine similarity to
vectors x1 and Xo. Hence, an application of spherical k-
means does not change the partition(see figure below).

The partition 71'51) = {x1}, Wél) = {x2,%3}, has the
objective function value Q; = 2cos(7w/4—6/2) + 1. If
0 = /3, then Qy = 2cos (7/6)+1 < 2cos (n/12) +1 =
Q;, and so the optimal partition is missed by k-means.

In Section 4, we show that a “first variation” iteration
corrects the above problem and generates the optimal parti-
tion w%l) ={x1}, wél) = {x9,x3} starting from wgo) and

(0)
Ty .

INITIAL PARTITION
1. 1.5

? |9
. A . | &

35 [) 05 1

OPTIMAL PARTITION

0.
15 -85 0 05 1 15

Example 3.2 Consider the set of vectors arranged as
columns of the (k? + k) x k matrix:

K: Ky ... K;
I 0 0

X = [Xl,XQ,...,Xk2] = 0 I 0 y
0 I

where 1 is the k x k identity matrix and K; is the k x k
matrix with entries % in the ™ row and 0’s elsewhere. Note

2
that all vectors x; € R¥ 1% have the same norm, ||x;|| =

1+ 1/k2, and they form k natural clusters with Xiy;
being placed in cluster i + 1.

The intra-cluster and inter-cluster dot products are re-
spectively given by

1. XTX]' = %,where(l—l)k<i<jglkandl:

2. xI'x; = 0, otherwise.

As mentioned above, the best clustering would have
X1,...,X in the first cluster, X541, ..., Xox in the second
cluster, and so on. For this optimal clustering, the cosine

oy . 144
of any x; with its own concept vector is % =

+ 5 VE+L

v/ 152—111, and 0 with any other concept vector.

But suppose we initialize the k clusters as follows: clus-
ter 1 consists of X1, Xg41,...,Xk2_k+1, cluster 2 con-
sists of X2, Xk 42, . . ., Xg2_+2, and generally cluster [con-
sists of X, Xg41,...,Xp2_gyy, for 1 < [< k. Then it
can be seen that spherical k-means does not change this

initial clustering at all. This is because the cosine of x;
1+ 1
k

Sl HVErE | VR

1 .
ERSA with any other concept vec-

with its own concept vector is and

1
K2, /1+ & \/kHE
tor. The situation is similar with most other starting parti-
tions. In a set of experiments for k = 5, we observed that
all 100 runs of spherical k-means with random initializa-
tions stopped without a change in the initial clustering.

Example 3.3 The above behavior is often seen in real-life
applications. As a concrete example, we took a collection
of 30 documents consisting of 10 documents each from the
three distinct classes MEDLINE, CISI and CRAN (see Sec-
tion 5 for more details). These 30 documents contain a to-
tal of 1073 words (after removing stop words). Due to this
high-dimensionality, the cosine similarities between the 30
document vectors are quite low. The average cosine simi-
larity between all documents is 0.025; however the average
cosine between documents in the same class is 0.294 while
the average inter-class cosine is 0.0068. Thus there is a
clear separation between intra-class cosines and inter-class
cosines and so it seems that a good clustering algorithm
should be easily able to recover the original class structure.

However, when we run spherical k-means on this data
set, there is hardly any movement of document vectors be-
tween clusters irrespective of the starting partition — indeed
we observed that 96% of 1000 different starting partitions
resulted in no movement at all, i.e., k-means returned a fi-
nal partition that was identical to the initial partition. This
behavior is unusual; in contrast, for large data sets the first
few iterations of spherical k-means typically lead to a lot of
movement of data points between clusters [4, 3]. However,
a closer look reveals the reasons for this failure. Consider
a document vector x, and consider an initial cluster 7; such
that x & ;. Due to the small number of data points and the
small average cosine similarity between documents, x”'c;
turns out to be quite small in magnitude for an arbitrary ini-
tial partitioning. However, it is instructive to take a closer
look at x and its own cluster. If x € m;, the cosine similarity
x%'c; may be broken down into two parts:

T
o = Tt 2 el
yem —{x}
where the first term has 1 in the numerator since x’x = 1
(due to the contribution of x in ¢;). For data sets that are
high-dimensional and contain a small number of points, this
first term itself is typically much larger in magnitude than
xT¢;, x ¢ m;. As a result, a spherical k-means iteration
retains each document vector in its original cluster. Thus,
in this case we start with an arbitrarily poor clustering and
the k-means algorithm returns this poor clustering as the
final output. We now see how to overcome this difficulty.

n

4 Refinement Algorithm

This section describes algorithms to “fix” the above
problems.

4.1 First Variation

Definition 4.1 A first variation of a partition {m,}y_, is a
partition {r]}¥_, obtained by removing a single vector x
Sfrom a cluster m; of {wl}le and assigning this vector to an
existing cluster 7; of {m .

We denote the set of all first variation partitions of {m,}F_,
by FV ({m}}_1). Among all the elements of this set, we
seek to select the “steepest ascent” partition. The formal
definition of this partition is given next.

Definition 4.2 The partition nextFV ({m}}_,) is a first
variation of {m,}}_, so that for each first variation {m)}}_,,

Q (nextFV ({m}le)) >Q ({Wf}f:ﬂ .

The proposed first variation algorithm generates a sequence
of partitions {Wl(t)}le, t > 0, so that

{Wl(t+1)}é€:1 = nextFV ({wl(t)}f:1> ,t=0,1,....

We now pause briefly to illustrate differences between first
variation iterations and the spherical k-means iterations. To
simplify the presentation we consider a two cluster partition
{Z,Y} where Z = {z1,...,2,},and Y = {y1,...,Ym}-
Our goal is to examine whether a single vector, say z,,
should be removed from Z, and assigned to Y. We de-
note the potential new clusters by Z~ and Y+, ie., Z~ =
{z1,...,2Zn_1}and Yt = {y1,...,Ym,2,}. Note that
spherical k-means examines the quantity

Akmeans = Zz; [C(Y) — C(Z)} . 4)

If Agmeans > 0, then the spherical k-means algorithm
moves z,, from Z to Y. Otherwise z,, remains in Z.
Unlike k-means, first variation computes

A=1[q(Z7) —a@)] + [a(YT) —q(Y)],

where the quality ¢ is as in (1). A straightforward computa-
tion shows that

n—1
ZziTc(Zz c(

[z:yz (Y +zle(YT)
i=1

—z:yz

Z Z;r [C(Zi) - C(Z)] + Akmeansa (5)

) —zle(Z)| +

Zyz

c(YH) — (V)] + 27 [e(Y) — e(Y)] +

where Agneans 18 defined in (4). By the Cauchy-Schwarz
inequality, we have

"2*: 7! c(Z7) > ni: z! c(Z) and so
i=1 i=1
z_: z] [¢(Z7)—¢c(Z)] >0

For the same reason,
> vl [e(YT) —e(Y)] + 2 [e(YT) —c(Y)] > 0.
i=1

These two inequalities along with (5) imply that:
A > Akmeans-

The last inequality shows that even when Agpeqns < 0
and cluster affiliation of z,, is not changed by spherical k-
means, the quantity A may still be positive. Thus, while
Q({z~,Y"}) > Q({Z,Y}), the partition {Z~, Y™}
will be missed by spherical k-means (see Example 3.1). We
now turn to the magnitude of A — Agmeans. From (5),

S(Z7)" [¢(Z7) —c(Z)] +
—¢(Y)] .(6)

0 < A — Ak:means

Since the vectors s(Z~) and ¢(Z~) are proportional, a
large value of ¢(Z~) — c(Z) results in a large dot prod-
uct s(Z7)T [¢(Z™) — c(Z)]. A similar argument holds for
the second term on the right hand side of (6). Hence we can
expect a “substantial” difference between A and Agmeans
when removing a vector from cluster Z and assigning it
to cluster Y “significantly” changes locations of the corre-
sponding concept vectors. This phenomenon is unlikely to
happen when clusters are large. However, first variation it-
erations become effective in the case of small clusters (clus-
ters of size 100 or less in our experience). The “spherical
first variation” algorithm is formally presented below.
Given a user supplied tolerance tol > 0 do the following:

1. Start with a partitioning {wl(o)}le. Set the index of
iteration ¢ = 0.

— nextFV({r\"},).
3.If Q (nextFV ({Wl(t)}le)) Q ({Wl(t)}le) is

greater than tol, increment ¢ by 1, and go to step 2.
Otherwise, stop.

2. Generate {Wl(tﬂ)}?:l

It is easy to see that a single “spherical first variation” itera-
tion applied to the initial partition of Example 3.1 generates
the “optimal partition”.

We now address the time and memory complexity of first
variation iterations The computational bottleneck is in
computing ¢(m'") — {x}) — g(m") and (=" U {x}) -

q(J()) for all the document vectors x € X. Note that

0(m” b)) —a(m) =

(sl — 2 e(x®) +1) 7 =)i

and
q (W](.t) U {x}) —q (W§t)) =
1/2
(IsriI2 + 2lis(m) IxTe(x?) +1) 7 =

We remark that computation of the quantities ||s(7 l(t)) ,and

xTc(wl(t)), x € X, =1,...,k are needed for iterations of
the spherical k-means algorithm as well. When these quan-
tities are available, a first variation iteration can be com-
pleted in O(d + k) amortized time, where d is the number
of document vectors.

4.2 Kernighan-Lin Chains

A first variation iteration moves a single vector that max-
imally increases the objective function value. One way to
enhance first variation is by expanding the local search to
seek a chain of moves instead of just one move. Note that
the first few moves in this chain might lead to a temporary
decrease in objective function value, but overall we seek the
chain that leads to a maximal increase. We implement this
idea by following the well known Kernighan-Lin heuristic
for graph partitioning [10].

The search for the optimal chain proceeds as follows.
We generate a first variation move, record the improvement
in objective function value, and then “mark” the moved
vector so that it is not moved again in this chain. We
repeat this step, say, f times where f is a user defined
parameter. Finally, we search for that prefix of moves
that leads to the greatest increase in objective function
value. This idea is formally described below (the notation
nextFV ({m}_,, U) restricts the search for the vector to
be moved to the set of unmarked vectors U).

Given a user supplied tolerance tol > 0 and a number f,
do the following:

1. Start with a partitioning {ﬂl(o)}le. Set the index of
iteration ¢t = 0.
2. Set j = 0, U = X and do the following f times:
(@) Set {7 Tk — nextFV ({ﬂl(tﬂ)}f:l, U).
Mark the vector moved and delete it from U.
(b) Record Q (nextFV ({wl(tﬂ)}f:l, U)) -

Q ({wl(tﬂ)}f:l) in ObjChange[j]. Incre-
ment j by 1.

3. Set MaxChange = max; Z;':o ObjChange[]]
and MaxI = arg max; Z;‘:o ObjChange[j], i =
0, 1oy f — 1.

4. If MaxChange > tol, increment ¢t by MaxI+1, and

go to step 2. Otherwise, output the partition {’R'I(t) [
and Max I, and then stop.

Is($)]](8)

Given an initial partitioning {m;}}_,, tol and f, this
KL-chain first variation algorithm outputs the partition
nextKLFV ({m}}_,).

4.3 The Refinement Algorithm

The advantage of “spherical first variation” is that it com-
putes an exact change in the value of the objective func-
tion; however these iterations lead to small increases in the
objective function value. On the other hand, k-means it-
erations typically lead to larger increases. To achieve best
results we combine these iterations. Our “ping-pong” re-
finement algorithm is a two step procedure — the first step
runs spherical k-means; if the first step fails the second step
runs the Kernighan-Lin heuristic outlined in the previous
section. The proposed refinement algorithm is as follows.
Given a user supplied tolerance tol > 0 do the following:

1. Start with a partitioning {ﬂl(o)}le. Set the index of
iteration ¢ = 0.
2. Generate the partition nextKM ({wl(t)}le . If

Q (neXtKM ({ﬂ'l(t)}f:l)) -Q ({Trl(t)}le) is greater
than tol, set {7rl(t+1)}f:1 = nextKkM ({Wl(t)}f:l), in-
crement ¢ by 1 and repeat step 2.

3. Generate the partition nextKLFV ({Wl(t)}le). If

Q(nextKLFV ({Fl(t)}fﬂ)) - Q({F;t)};?:l) is
greater than tol, increment ¢ by MaxI+1, set
{Wl(t)};czl = nextKLFV ({wl(t)}le), and go to step 2.
Otherwise, stop.

We emphasize that most of the computations associated
with step 3 above have already been performed in step 2,
see (7) and (8). Hence the computational overhead of run-
ning a first variation iteration just after an iteration of spher-
ical k-means is small. Note also that the above algorithm
can do no worse than spherical k-means. Indeed, as we
show below, in many cases the quality of clusters produced
is much superior.

5 Experimental Results

In this section, we present experimental results which
demonstrate that our proposed algorithm often qualitatively
improves k-means clustering results. In all our experi-
ments with spherical k-means, we tried several initialization
schemes varying from random initial partitions to choosing
the initial centroids as data vectors that are “maximally” far
apart from each other [2].

For our first experiment we created the data set described
in Example 3.2 setting £ = 5. We observed that all 100 runs
of spherical k-means with different initializations stopped
without changing the initial partition. However, on apply-
ing our refinement algorithm to this initial partitioning and

Table 1. Confusion matrices for Exam-
ple 3.2 (k = 5).

|2 0 0 0 1 m |5 0 0 0 O
m |0 2 2 0 1 m |0 5 0 0 0
|0 0 1 0 O m |0 0 5 0 O
m |0 1 1 4 1 m |0 0 0 5 O
w3 2 1 1 2 m™ |0 0 0 0 5

Obj. fun. value for spherical
k-means partition:10.8193

12p

Obj. fun. value for final
partition:12.0096

s

Figure 1. Increase in objective function value
for Example 3.2 (k =5, f = 1).

setting f = 1, i.e. only one first variation move is allowed
in the KL chain, we were able to recover the optimal clus-
tering in all 100 cases. For a particular run, Table 1 shows
the confusion matrices for the initial and final partitions.
Note that entry(4, j) in a confusion matrix gives the number
of vectors in cluster ¢ that belong to the true class j; thus,
a diagonal confusion matrix is desirable. Figure 1 shows
the percentage increase in objective function value as our
algorithm progresses.

For experiments with real-life text data, we used the
MEDLINE, CISI, and CRANFIELD collections (avail-
able from ftp://ftp.cs.cornell.edu/pub/smart). MEDLINE
consists of 1033 abstracts from medical journals, CISI con-
sists of 1460 abstracts from information retrieval papers,
while CRANFIELD consists of 1400 abstracts from aero-
dynamical systems papers.

For our experiments we created three data sets of 30,
150, and 300 documents respectively (see Example 3.3).
Each data set was created by an equal sampling of the three
collections. After removing stopwords, the document vec-
tors obtained are very high-dimensional and sparse. The
dimensions for the 30, 150 and 300 document data sets are
1073, 3658 and 5577 respectively. In all runs the spherical
k-means algorithm did not change the initial partition. We
then applied our refinement algorithm to generate the final
partitions (using f = 1). These results are summarized in
Tables 2, 3 and 4 by the resulting confusion matrices. In
addition, Figures 2, 3 and 4 plot the percentage increase in
objective function values.

Table 2. Confusion matrices for 30 documents
with 1073 words.

s 5 1 2 T 9 1 0
mp | 2 T 1 m |0 9 0
w3 |3 2 7 w3 | 1 0 10

Obj. fun. value for spherical
k-means partition:11.0422

o

Ob;. fun. value for final
partition:11.9669

—o— First variation move

Percentage increase in objective function value

2 8 10 12 14 16
of iterations

Figure 2. Increase in objective function value
for 30 documents (k =3, f = 1).

All the final partitions generated have almost diagonal
confusion matrices and about 8% — 25% higher objective
function values, which shows that our ping-pong strategy
qualitatively improves spherical k-means clustering. The
confusion matrices in Table 2 and 3 are almost optimal,
while the final partition generated in Table 4 is qualitatively
better than the spherical k-means result, but is not optimal.
As testified by Figures 2, 3 and 4, the significant fraction
of the clustering work is done by first variation iterations.

To improve the final partitioning of the 300 documents
and show how KL-chain moves lead to a better local opti-
mum, we applied our refinement algorithm with KL-chains
to the partitioning of the 300 documents in Table 4 by set-
ting f = 30. Figure 5 shows that during the first 18 moves
there is a steady decrease in the objective function value.
But from moves 22 to 30 the objective function value in-
creases and becomes greater than the starting value. If we
set f < 22, then the refinement algorithm will quit without
changing the input partition. Figure 5 shows that the first
KL-chain of 30 moves triggers a fresh spherical k-means it-
eration, which substantially increases the objective function
value. In the second KL-chain, the maximum increase oc-
curs at the 10th first variation and all the subsequent moves
decrease the objective function value. The resulting confu-
sion matrix shown in Table 5 is almost diagonal.

The following experiment shows that our algorithm is
more beneficial as the number of clusters k increases. For
this experiment we used a much larger collection — the 20-
newsgroup data set consists of approximately 20,000 news-
group postings collected from 20 different usenet news-
groups [12]. Some of the newsgroups are closely related to

Table 3. Confusion matrices for 150 docu-
ments with 3652 words.

m 25 10 17 T 149 0 0
™| 5 18 10 ™| 1 49 0
T | 20 22 23 ™| 0 1 50

Obj. fun. value for spherical Obj. fun. value for final
k-means partition:28.1934 partition:35.0355

& Firstv
- Spheri

b

a

S

Figure 3. Increase in objective function value
for 150 documents (k = 3, f = 1).

Table 4. Confusion matrices for 300 docu-
ments with 5577 words.

m | 31 28 49 m | 99 0 o0
my | 26 36 34 e 1 100 19
w3 | 43 36 17 w3 | 0 0 81

Obj. fun. value for spherical ~Obj. fun. value for final
k-means partition:52.7753 partition:58.7598

5= Frst varialion move
& Spherical k-means move

Figure 4. Increase in objective function value
for 300 documents (k = 3, f = 1).

Table 5. Confusion matrices for the 300 doc-
uments. using KL-chains with f = 30. The
objective function values for the final partition
59.5886.

m | 99 0 0 m | 99 0 0
T I 100 19 T2 1 100 0
m3 | 0 0 81 w3 | 0 0 100

Obj. fun. value for
final partition:59.5886

Obj. fun. value for
initial partition:58.7598

30 40
#of iterations

Figure 5. KL-chain moves and change in ob-
jective function value for 300 documents (k =
3, f = 30).

Figure 6. The percentage increase in ob-
jective function value of our refinement al-
gorithm over spherical k-means on the 20-
newsgroup data set (f = 20).

each other (e.g., comp.graphics, comp.os.ms-windows.misc
and comp.windows.x), while others are unrelated (e.g.,
alt.atheism, rec.sport.baseball and sci.space). The headers
for each of the messages were removed so that they do not
bias clustering results, and 1169 duplicate messages were
also taken out of the collection. After removing common
stopwords and words that occur in less than 2 documents,
the documents are represented by 59534-dimensional vec-
tors, which are more than 99.87% sparse.

Figure 6 shows the percentage increase in objective func-
tion due to the refinement algorithm over spherical k-means
as k increases. The main trend is that as k increases, i.e.,
when the average cluster size becomes smaller our refine-
ment algorithm leads to greater improvement.

6 Related Work

The k-means algorithm has been well-studied and is one
of the most widely used clustering methods [5]. Some of the
important early work is due to Forgy[6] and MacQueen[13].
In the vector quantization literature, k-means clustering is
also referred to as the Lloyd-Max algorithm[7]; see [8] for
a comprehensive history of quantization and its relations to
statistical clustering. Many variants of k-means exist; the
version we presented in Section 2 is generally attributed to

Forgy (see [6, 13]) and is similar to the one given in [5,
10.4.3]; we call this “batch” k-means since the centroids
are updated after a batch of points has been reassigned. An-
other version, which we call “incremental” k-means, ran-
domly selects a single vector x whose re-assignment from
a cluster 7; to a cluster 7; leads to a better objective func-
tion value (see [5, 10.8] where this incremental algorithm
is referred to as “Basic Iterative Minimum-Squared-Error
Clustering”). Incremental k-means is similar to our first-
variation iterations. The ISODATA algorithm introduces an
additional step in each k-means iteration, in which the num-
ber of clusters is adjusted[1].

However, as we have found, neither the batch nor the
incremental version is satisfactory for our purposes. As
shown in Section 3, batch k-means can give poor results
in high-dimensional settings. On the other hand, the incre-
mental version can be computationally expensive. Our main
contribution in the paper is the “ping-pong” strategy which
exploits the strong points of both batch and incremental k-
means.

Other clustering algorithms use “medoids” instead of
centroids for clustering, for example, the PAM clustering
algorithm swaps a single medoid with a non-selected object
as long as the swap results in an improvement of the quality
of the clustering (see [9, 14]).

7 Conclusions and Future Research

In this paper, we have presented a refinement algorithm
that uses local search after completion of spherical k-means
iterations. The resulting improvements in the quality of
clustering can be substantial, especially when the data is
highly dimensional and sparse and when clusters contain a
small number of data vectors. Note that while many im-
plementations of k-means can return empty clusters, our re-
finement strategy guarantees that all & clusters will be non-
empty.

Future enhancement of our algorithm will allow variable
number of clusters at each iteration [11]. To accomplish this

we plan to modify the objective function as follows:
k

Qu (ko Am}ja) = > | D xTey| + f(k)w
j=1 | xemw J
where w is a scalar parameter and f(k) is an increasing
function of k. When w = 0 the trivial partition maximizes
the objective function. A negative w imposes a penalty
on the number of clusters, and prevents the trivial partition
from becoming the optimal one.

We plan to push this idea further. Instead of keeping w
constant, we plan to select w at each iteration. The selection
will be based on the current partition, and the parameter w
will then become a feedback, and the iterative process can
considered to be a discrete control system (see e.g. [17]).
We also plan to explore the use of MDL and MML princi-
ples to decide on the “right” number of clusters [15].

References

(1]

(2]

(3]

(4]

(5]
(6]

(7]
8]
(9]

(10]

(1]

[12]

[13]

(14]

[15]

[16]

(17]

[18]

G. Ball and D. Hall. ISODATA: a novel method of data
analysis and pattern classification. Technical report, Stan-
ford Research Institute, Menlo Park, CA, 1965.

P. Bradley, U. Fayyad, and C. Reina. Scaling clustering al-
gorithms to large databases. In KDD’03. AAAI Press, 1998.
I. S. Dhillon, J. Fan, and Y. Guan. Efficient clustering of
very large document collections. In Data Mining for Scien-
tific and Engineering Applications, pages 357-381. Kluwer
Academic Publishers, 2001.

I. S. Dhillon and D. S. Modha. Concept decompositions for
large sparse text data using clustering. Machine Learning,
42(1):143-175, January 2001.

R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classifica-
tion. John Wiley & Sons, 2nd edition, 2000.

E. Forgy. Cluster analysis of multivariate data: Efficiency
vs. interpretability of classifications. Biometrics, 21(3):768,
1965.

A. Gersho and R. M. Gray. Vector quantization and signal
compression. Kluwer Academic Publishers, 1992.

R. M. Gray and D. L. Neuhoff. Quantization. /[EEE Trans.
Inform. Theory, 44(6):1-63, 1998.

L. Kaufman and P. Rousseeuw. Finding Groups in Data.
Wiley, New York, 1990.

B. Kernighan and S. Lin. An efficient heuristic procedure
for partitioning graphs. The Bell System Technical Journal,
49(2):291-307, 1970.

J. Kogan. Means clustering for text data. In M.W.Berry, ed-
itor, Workshop on Text Mining at the st SIAM International
Conference on Data Mining, pages 47-54, 2001.

K. Lang. News Weeder: Learning to filter netnews. In
Proc. 12th Int’l Conf. Machine Learning, pages 331-339,
San Francisco, 1995.

J. MacQueen. Some methods for classification and analy-
sis of multivariate observations. In Proceedings of the Fifth
Berkeley Symposium on Math., Stat. and Prob., pages 281—
296, 1967.

R. Ng and J. Han. Efficient and effective clustering methods
for spatial data mining. In Proc. of the 20th Int’l Conf. on
Very Large Data Bases (VLDB), pages 144—155, Santiago,
Chile, 1994.

J. Rissanen. Stochastic Complexity in Statistical Inquiry.
Series in Computer Science -Vol. 15. World Scientific, Sin-
gapore, 1989.

G. Salton and M. J. McGill. Introduction to Modern Re-
trieval. McGraw-Hill Book Company, 1983.

E. D. Sontag. Mathematical Control Theory: Deterministic
Finite Dimensional Systems. Springer, New York, second
edition, 1998.

A. Strehl, J. Ghosh, and R. Mooney. Impact of similarity
measures on web-page clustering. In AAAI 2000 Workshop
on Al for Web Search, pages 58—64, July 2000.

