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Abstract
High dimensionality of text can be a deterrent in applying complex learners such as Support Vector
Machines to the task of text classification. Feature clustering is a powerful alternative to feature
selection for reducing the dimensionality of text data. In this paper we propose a new information-
theoretic divisive algorithm for feature/word clustering and apply it to text classification. Existing
techniques for such “distributional clustering” of words are agglomerative in nature and result in (i)
sub-optimal word clusters and (ii) high computational cost. In order to explicitly capture the opti-
mality of word clusters in an information theoretic framework, we first derive a global criterion for
feature clustering. We then present a fast, divisive algorithm that monotonically decreases this ob-
jective function value. We show that our algorithm minimizes the “within-cluster Jensen-Shannon
divergence” while simultaneously maximizing the “between-cluster Jensen-Shannon divergence”.
In comparison to the previously proposed agglomerative strategies our divisive algorithm is much
faster and achieves comparable or higher classification accuracies. We further show that feature
clustering is an effective technique for building smaller class models in hierarchical classification.
We present detailed experimental results using Naive Bayes and Support Vector Machines on the
20Newsgroups data set and a 3-level hierarchy of HTML documents collected from the Open Di-
rectory project (www.dmoz.org).

Keywords: Information theory, Feature Clustering, Classification, Entropy, Kullback-Leibler Di-
vergence, Mutual Information, Jensen-Shannon Divergence.

1. Introduction

Given a set of document vectors{d1,d2, . . . ,dn} and their associated class labelsc(di)∈{c1,c2, . . . ,cl},
text classification is the problem of estimating the true class label of a new documentd. There ex-
ist a wide variety of algorithms for text classification, ranging from the simple but effective Naive
Bayes algorithm to the more computationally demanding Support Vector Machines (Mitchell, 1997,
Vapnik, 1995, Yang and Liu, 1999).

A common, and often overwhelming, characteristic of text data is its extremely high dimension-
ality. Typically the document vectors are formed using a vector-space or bag-of-words model (Salton
and McGill, 1983). Even a moderately sized document collection can lead to a dimensionality in
thousands. For example, one of our test data sets contains 5,000 web pages fromwww.dmoz.org
and has a dimensionality (vocabulary size after pruning) of 14,538. This high dimensionality can
be a severe obstacle for classification algorithms based on Support Vector Machines, Linear Dis-
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criminant Analysis,k-nearest neighbor etc. The problem is compounded when the documents are
arranged in a hierarchy of classes and a full-feature classifier is applied at each node of the hierarchy.

A way to reduce dimensionality is by the distributional clustering of words/features (Pereira
et al., 1993, Baker and McCallum, 1998, Slonim and Tishby, 2001). Each word cluster can then be
treated as a single feature and thus dimensionality can be drastically reduced. As shown by Baker
and McCallum (1998), Slonim and Tishby (2001), such feature clustering is more effective than
feature selection(Yang and Pedersen, 1997), especially at lower number of features. Also, even
when dimensionality is reduced by as much as two orders of magnitude the resulting classifica-
tion accuracy is similar to that of a full-feature classifier. Indeed in some cases of small training
sets and noisy features, word clustering can actually increase classification accuracy. However the
algorithms developed by both Baker and McCallum (1998) and Slonim and Tishby (2001) are ag-
glomerative in nature making a greedy move at every step and thus yield sub-optimal word clusters
at a high computational cost.

In this paper, we use an information-theoretic framework that is similar to Information Bottle-
neck (see Chapter 2, Problem 22 of Cover and Thomas, 1991, Tishby et al., 1999) to derive a global
criterion that captures the optimality of word clustering (see Theorem 1). Our global criterion is
based on the generalized Jensen-Shannon divergence (Lin, 1991) among multiple probability dis-
tributions. In order to find the best word clustering, i.e., the clustering that minimizes this objective
function, we present a new divisive algorithm for clustering words. This algorithm is reminiscent of
thek-means algorithm but uses Kullback Leibler divergences (Kullback and Leibler, 1951) instead
of squared Euclidean distances. We prove that our divisive algorithmmonotonicallydecreases the
objective function value. We also show that our algorithm minimizes “within-cluster divergence”
and simultaneously maximizes “between-cluster divergence”. Thus we find word clusters that are
markedly better than the agglomerative algorithms of Baker and McCallum (1998) and Slonim and
Tishby (2001). The increased quality of our word clusters translates to higher classification accura-
cies, especially at small feature sizes and small training sets. We provide empirical evidence of all
the above claims using Naive Bayes and Support Vector Machines on the (a) 20 Newsgroups data
set, and (b) an HTML data set comprising 5,000 web pages arranged in a 3-level hierarchy from the
Open Directory Project (www.dmoz.org).

We now give a brief outline of the paper. In Section 2, we discuss related work and contrast it
with our work. In Section 3 we briefly review some useful concepts from information theory such as
Kullback-Leibler(KL) divergence and Jensen-Shannon(JS) divergence, while in Section 4 we review
text classifiers based on Naive Bayes and Support Vector Machines. Section 5 poses the question
of finding optimal word clusters in terms of preserving mutual information between two random
variables. Section 5.1 gives the algorithm that directly minimizes the resulting objective function
which is based on KL-divergences, and presents some pleasing aspects of the algorithm, such as
convergence and simultaneous maximization of “between-cluster JS-divergence”. In Section 6 we
present experimental results that highlight the benefits of our word clustering, and the resulting
increase in classification accuracy. Finally, we present our conclusions in Section 7.

A word about notation: upper-case letters such asX, Y, C, W will denote random variables,
while script upper-case letters such asX , Y , C , W denote sets. Individual set elements will often
be denoted by lower-case letters such asx, w or xi , wt . Probability distributions will be denoted by
p, q, p1, p2, etc. when the random variable is obvious or byp(X), p(C|wt) to make the random
variable explicit. We use logarithms to the base 2.
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2. Related Work

Text classification has been extensively studied, especially since the emergence of the internet. Most
algorithms are based on the bag-of-words model for text (Salton and McGill, 1983). A simple but
effective algorithm is the Naive Bayes method (Mitchell, 1997). For text classification, different
variants of Naive Bayes have been used, but McCallum and Nigam (1998) showed that the vari-
ant based on the multinomial model leads to better results. Support Vector Machines have also
been successfully used for text classification (Joachims, 1998, Dumais et al., 1998). For hierar-
chical text data, such as the topic hierarchies of Yahoo! (www.yahoo.com) and the Open Directory
Project (www.dmoz.org), hierarchical classification has been studied by Koller and Sahami (1997),
Chakrabarti et al. (1997), Dumais and Chen (2000). For some more details, see Section 4.

To counter high-dimensionality various methods of feature selection have been proposed by Yang
and Pedersen (1997), Koller and Sahami (1997) and Chakrabarti et al. (1997). Distributional clus-
tering of words has proven to be more effective than feature selection in text classification and was
first proposed by Pereira, Tishby, and Lee (1993) where “soft” distributional clustering was used
to cluster nouns according to their conditional verb distributions. Note that since our main goal is
to reduce the number of featuresand the model size, we are only interested in “hard clustering”
where each word can be represented by its unique word cluster. For text classification, Baker and
McCallum (1998) used such hard clustering, while more recently, Slonim and Tishby (2001) have
used the Information Bottleneck method for clustering words. Both Baker and McCallum (1998)
and Slonim and Tishby (2001) use similar agglomerative clustering strategies that make a greedy
move at every agglomeration, and show that feature size can be aggressively reduced by such clus-
tering without any noticeable loss in classification accuracy using Naive Bayes. Similar results have
been reported for Support Vector Machines (Bekkerman et al., 2001). To select the number of word
clusters to be used for the classification task, Verbeek (2000) has applied the Minimum Description
Length (MDL) principle (Rissanen, 1989) to the agglomerative algorithm of Slonim and Tishby
(2001).

Two other dimensionality/feature reduction schemes are used in latent semantic indexing (LSI)
(Deerwester et al., 1990) and its probabilistic version (Hofmann, 1999). Typically these methods
have been applied in theunsupervisedsetting and as shown by Baker and McCallum (1998), LSI
results in lower classification accuracies than feature clustering.

We now list the main contributions of this paper and contrast them with earlier work. As our
first contribution, we use an information-theoretic framework to derive a global objective function
that explicitly captures the optimality of word clusters in terms of the generalized Jensen-Shannon
divergence between multiple probability distributions. As our second contribution, we present a
divisive algorithm that uses Kullback-Leibler divergence as the distance measure, and explicitly
minimizes the global objective function. This is in contrast to Slonim and Tishby (2001) who
considered the merging ofjust twoword clusters at every step and derived a local criterion based
on the Jensen-Shannon divergence oftwo probability distributions. Their agglomerative algorithm,
which is similar to the algorithm of Baker and McCallum (1998), greedily optimizes this merging
criterion (see Section 5.3 for more details). Thus, their resulting algorithm does not directly optimize
a global criterion and is computationally expensive — the algorithm of Slonim and Tishby (2001)
is O(m3l) in complexity wherem is the total number of words andl is the number of classes.
In contrast the complexity of our divisive algorithm isO(mklτ) wherek is the number of word
clusters (typicallyk � m), andτ is the number of iterations (typicallyτ = 15 on average). Note
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that our hard clustering leads to a model size ofO(k), whereas “soft” clustering in methods such
as probabilistic LSI (Hofmann, 1999) leads to a model size ofO(mk). Finally, we show that our
enhanced word clustering leads to higher classification accuracy, especially when the training set is
small and in hierarchical classification of HTML data.

3. Some Concepts from Information Theory

In this section, we quickly review some concepts from information theory which will be used heavily
in this paper. For more details on some of this material see the authoritative treatment in the book
by Cover and Thomas (1991).

Let X be a discrete random variable that takes on values from the setX with probability distri-
bution p(x). The entropy of X (Shannon, 1948) is defined as

H(p) =− ∑
x∈X

p(x) log p(x) .

The relative entropy or Kullback-Leibler(KL) divergence (Kullback and Leibler, 1951) between two
probability distributionsp1(x) andp2(x) is defined as

KL(p1, p2) = ∑
x∈X

p1(x) log
p1(x)
p2(x)

.

KL-divergence is a measure of the “distance” between two probability distributions; however it is
not a true metric since it is not symmetric and does not obey the triangle inequality (Cover and
Thomas, 1991, p.18). KL-divergence is always non-negative but can be unbounded; in particular
when p1(x) 6= 0 andp2(x) = 0, KL(p1, p2) = ∞. In contrast, the Jensen-Shannon(JS) divergence
betweenp1 andp2 defined by

JSπ(p1, p2) = π1KL(p1,π1p1+π2p2)+ π2KL(p2,π1p1 + π2p2)
= H(π1p1 + π2p2)−π1H(p1)−π2H(p2) ,

whereπ1 + π2 = 1, πi ≥ 0, is clearly a measure that is symmetric in{π1, p1} and{π2, p2}, and is
bounded (Lin, 1991). The Jensen-Shannon divergence can be generalized to measure the distance
between any finite number of probability distributions as:

JSπ({pi : 1≤ i ≤ n}) = H

(
n

∑
i=1

πi pi

)
−

n

∑
i=1

πiH(pi) , (1)

which is symmetric in the{πi , pi}’s (∑i πi = 1,πi ≥ 0).
Let Y be another random variable with probability distributionp(y). The mutual information

between X and Y,I(X;Y), is defined as the KL-divergence between the joint probability distribution
p(x,y) and the product distributionp(x)p(y):

I(X;Y) = ∑
x

∑
y

p(x,y) log
p(x,y)

p(x)p(y)
. (2)

Intuitively, mutual information is a measure of the amount of information that one random variable
contains about the other. The higher its value the less is the uncertainty of one random variable due
to knowledge about the other. Formally, it can be shown thatI(X;Y) is the reduction in entropy of
one variable knowing the other:I(X;Y) = H(X)−H(X|Y) = H(Y)−H(Y|X) (Cover and Thomas,
1991).
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4. Text Classification

Two contrasting classifiers that perform well on text classification are (i) the simple Naive Bayes
method and (ii) the more complex Support Vector Machines.

4.1 Naive Bayes Classifier

Let C = {c1,c2, . . . ,cl} be the set ofl classes, and letW = {w1, . . . ,wm} be the set of words/features
contained in these classes. Given a new documentd, the probability thatd belongs to classci is given
by Bayes rule,

p(ci |d) =
p(d|ci)p(ci)

p(d)
.

Assuming a generative multinomial model (McCallum and Nigam, 1998) and further assuming
class-conditional independence of words yields the well-known Naive Bayes classifier (Mitchell,
1997), which computes the most probable class ford as

c∗(d) = argmaxci
p(ci |d) = argmaxci

p(ci)
m

∏
t=1

p(wt |ci)n(wt ,d) (3)

wheren(wt ,d) is the number of occurrences of wordwt in documentd, and the quantitiesp(wt |ci)
are usually estimated using Laplace’s rule of succession:

p(wt |ci) =
1+ ∑dj∈ci

n(wt ,dj)
m+ ∑m

t=1 ∑dj∈ci
n(wt ,dj)

. (4)

The class priorsp(ci) are estimated by the maximum likelihood estimatep(ci) = |ci |
∑ j |cj | . We now

manipulate the Naive Bayes rule in order to interpret it in an information theoretic framework.
Rewrite formula (3) by taking logarithms and dividing by the length of the document|d| to get

c∗(d) = argmaxci

(
log p(ci)

|d| +
m

∑
t=1

p(wt |d) log p(wt |ci)

)
, (5)

where the documentd may be viewed as a probability distribution over words:p(wt |d)= n(wt ,d)/|d|.
Adding the entropy ofp(W|d), i.e.,−∑m

t=1 p(wt |d) log p(wt |d) to (5), and negating, we get

c∗(d) = argminci

(
m

∑
t=1

p(wt |d) log
p(wt |d)
p(wt |ci)

− logp(ci)
|d|

)
(6)

= argminci

(
KL(p(W|d), p(W|ci))− log p(ci)

|d|
)

,

whereKL(p,q) denotes the KL-divergence betweenp and q as defined in Section 3. Note that
here we have usedW to denote the random variable that takes values from the set of wordsW .
Thus, assuming equal class priors, we see that Naive Bayes may be interpreted as finding the class
distribution which has minimum KL-divergence from the given document. As we shall see again
later, KL-divergence seems to appear “naturally” in our setting.

By (5), we can clearly see that Naive Bayes is a linear classifier. Despite its crude assumption
about the class-conditional independence of words, Naive Bayes has been found to yield surpris-
ingly good classification performance, especially on text data. Plausible reasons for the success of
Naive Bayes have been explored by Domingos and Pazzani (1997), Friedman (1997).
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4.2 Support Vector Machines

The Support Vector Machine(SVM) (Boser et al., 1992, Vapnik, 1995) is an inductive learning
scheme for solving the two-class pattern recognition problem. Recently SVMs have been shown
to give good results for text categorization (Joachims, 1998, Dumais et al., 1998). The method
is defined over a vector space where the classification problem is to find the decision surface that
“best” separates the data points of one class from the other. In case of linearly separable data, the
decision surface is a hyperplane that maximizes the “margin” between the two classes and can be
written as

〈w,x〉−b = 0

wherex is a data point and the vectorw and the constantb are learned from the training set. Let
yi ∈ {+1,−1}(+1 for positive class and−1 for negative class) be the classification label for input
vectorxi . Finding the hyperplane can be translated into the following optimization problem

Minimize : ‖w‖2

subject to the following constraints

〈w,xi〉 − b≥+1 for yi = +1,

〈w,xi〉 − b≤−1 for yi =−1 .

This minimization problem can be solved using quadratic programming techniques (Vapnik,
1995). The algorithms for solving the linearly separable case can be extended to the case of data
that is not linearly separable by either introducing soft margin hyperplanes or by using a non-linear
mapping of the original data vectors to a higher dimensional space where the data points are linearly
separable (Vapnik, 1995). Even though SVM classifiers are described for binary classification prob-
lems they can be easily combined to handle multiple classes. A simple, effective combination is to
train N one-versus-restclassifiers for theN class case and then classify the test point to the class
corresponding to the largest positive distance to the separating hyperplane. In all our experiments
we used linear SVMs as they are faster to learn and to classify new instances compared to non-linear
SVMs. Further linear SVMs have been shown to do well on text classification (Joachims, 1998).

4.3 Hierarchical Classification

Hierarchical classification utilizes a hierarchical topic structure such as Yahoo! to decompose the
classification task into a set of simpler problems, one at each node in the hierarchy. We can simply
extend any classifier to perform hierarchical classification by constructing a (distinct) classifier at
each internal node of the tree using all the documents in its child nodes as the training data. Thus
the tree is assumed to be “is-a” hierarchy, i.e., the training instances are inherited by the parents.
Then classification is just a greedy descent down the tree until the leaf node is reached. This way
of classification has been shown to be equivalent to the standard non-hierarchical classification over
a flat set of leaf classes if maximum likelihood estimates forall features are used (Mitchell, 1998).
However, hierarchical classification along with feature selection has been shown to achieve better
classification results than a flat classifier (Koller and Sahami, 1997). This is because each classifier
can now utilize a different subset of features that are most relevant to the classification sub-task at
hand. Furthermore each node classifier requires only a small number of features since it needs to
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distinguish between a fewer number of classes. Our proposed feature clustering strategy allows us
to aggressively reduce the number of features associated with each node classifier in the hierarchy.
Detailed experiments on the Dmoz Science hierarchy are presented in Section 6.

5. Distributional Word Clustering

Let C be a discrete random variable that takes on values from the set of classesC = {c1, . . . ,cl},
and letW be the random variable that ranges over the set of wordsW = {w1, . . . ,wm}. The joint
distribution p(C,W) can be estimated from the training set. Now suppose we cluster the words into
k clustersW 1, . . . ,W k. Since we are interested in reducing the number of featuresand the model
size, we only look at “hard” clustering where each word belongs to exactly one word cluster, i.e,

W = ∪k
i=1W i , and W i ∩W j = φ, i 6= j .

Let the random variableWC range over the word clusters. To judge the quality of word clusters
we use an information-theoretic measure. The information aboutC captured byW can be mea-
sured by the mutual informationI(C;W). Ideally, in forming word clusters we would like toexactly
preserve the mutual information; however a non-trivial clustering always lowers mutual informa-
tion (see Theorem 1 below). Thus we would like to find a clustering that minimizes the decrease in
mutual information,I(C;W)− I(C;WC), for a given number of word clusters. Note that this frame-
work is similar to the one in Information Bottleneck when hard clustering is desired (Tishby et al.,
1999). The following theorem appears to be new and states that the change in mutual information
can be expressed in terms of the generalized Jensen-Shannon divergence of each word cluster.

Theorem 1 The change in mutual information due to word clustering is given by

I(C;W)− I(C;WC) =
k

∑
j=1

π(W j)JSπ′({p(C|wt) : wt ∈ W j})

whereπ(W j) = ∑wt∈W j
πt , πt = p(wt), π′t = πt/π(W j) for wt ∈ W j , and JS denotes the general-

ized Jensen-Shannon divergence as defined in (1).

Proof. By the definition of mutual information (see (2)), and usingp(ci ,wt) = πt p(ci |wt) we get

I(C;W) = ∑
i
∑
t

πt p(ci |wt) log
p(ci |wt)

p(ci)

and I(C;WC) = ∑
i
∑

j

π(W j)p(ci |W j) log
p(ci |W j)

p(ci)
.

We are interested in hard clustering, so

π(W j) = ∑
wt∈W j

πt , and p(ci |W j) = ∑
wt∈W j

πt

π(W j)
p(ci |wt) ,

thus implying that for all clustersW j ,

π(W j)p(ci |W j) = ∑
wt∈W j

πt p(ci |wt) , (7)

p(C|W j) = ∑
wt∈W j

πt

π(W j)
p(C|wt) . (8)
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Note that the distributionp(C|W j) is the (weighted) mean distribution of the constituent distribu-
tions p(C|wt). Thus,

I(C;W)− I(C;WC) = ∑
i

∑
t

πt p(ci |wt) logp(ci |wt)−∑
i

∑
j

π(W j)p(ci |W j) log p(ci |W j) (9)

since the extra log(p(ci)) terms cancel due to (7). The first term in (9), after rearranging the sum,
may be written as

∑
j

∑
wt∈W j

πt

(
∑

i

p(ci |wt) logp(ci |wt)

)
= −∑

j
∑

wt∈W j

πtH(p(C|wt))

= −∑
j

π(W j) ∑
wt∈W j

πt

π(W j)
H(p(C|wt)) . (10)

Similarly, the second term in (9) may be written as

∑
j

π(W j)

(
∑

i

p(ci |W j) log p(ci |W j)

)
= −∑

j

π(W j)H(p(C|W j))

= −∑
j

π(W j)H


 ∑

wt∈W j

πt

π(W j)
p(C|wt)


 (11)

where (11) is obtained by substituting the value ofp(C|W j) from (8). Substituting (10) and (11)
in (9) and using the definition of Jensen-Shannon divergence from (1) gives us the desired result.

Theorem 1 gives a global measure of the goodness of word clusters, which may be informally
interpreted as follows:

1. The quality of word clusterW j is measured by the Jensen-Shannon divergence between the
individual word distributionsp(C|wt) (weighted by the word priors,πt = p(wt)). The smaller
the Jensen-Shannon divergence the more “compact” is the word cluster, i.e., smaller is the
increase in entropy due to clustering (see (1)).

2. The overall goodness of the word clustering is measured by the sum of the qualities of indi-
vidual word clusters (weighted by the cluster priorsπ(W j) = p(W j)).

Given the global criterion of Theorem 1, we would now like to find an algorithm that searches
for the optimal word clustering that minimizes this criterion. We now rewrite this criterion in a way
that will suggest a “natural” algorithm.

Lemma 2 The generalized Jensen-Shannon divergence of a finite set of probability distributions
can be expressed as the (weighted) sum of Kullback-Leibler divergences to the (weighted) mean,
i.e.,

JSπ({pi : 1≤ i ≤ n}) =
n

∑
i=1

πiKL(pi,m) (12)

whereπi ≥ 0,∑i πi = 1 and m is the (weighted) mean probability distribution, m= ∑i πi pi .

Proof. Use the definition of entropy to expand the expression for JS-divergence given in (1). The
result follows by appropriately grouping terms and using the definition of KL-divergence.
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Algorithm Divisive Information Theoretic Clustering(P ,Π,l ,k,W )

Input: P is the set of distributions,{p(C|wt) : 1≤ t ≤ m},
Π is the set of all word priors,{πt = p(wt) : 1≤ t ≤m},
l is the number of document classes,
k is the number of desired clusters.

Output: W is the set of word clusters{W 1,W 2, . . . ,W k}.

1. Initialization: for every wordwt , assignwt to W j such thatp(cj |wt) = maxi p(ci |wt). This
gives l initial word clusters; ifk ≥ l split each cluster arbitrarily into at leastbk/lc clusters,
otherwise merge thel clusters to getk word clusters.

2. For each clusterW j , compute

π(W j) = ∑
wt∈W j

πt , and p(C|W j) = ∑
wt∈W j

πt

π(W j)
p(C|wt) .

3. Re-compute all clusters: For each wordwt , find its new cluster index as

j∗(wt) = argmini KL(p(C|wt), p(C|W i)) ,

resolving ties arbitrarily. Thus compute the new word clustersW j , 1≤ j ≤ k, as

W j = {wt : j∗(wt) = j} .

4. Stop if the change in objective function value given by (13) is “small” (say 10−3);
Else go to step 2.

Figure 1: Information-Theoretic Divisive Algorithm for word clustering

5.1 The Algorithm

By Theorem 1 and Lemma 2, the decrease in mutual information due to word clustering may be
written as

k

∑
j=1

π(W j) ∑
wt∈W j

πt

π(W j)
KL(p(C|wt), p(C|W j)) .

As a result the quality of word clustering can be measured by the objective function

Q({W j}k
j=1) = I(C;W)− I(C;WC) =

k

∑
j=1

∑
wt∈W j

πtKL(p(C|wt), p(C|W j)) . (13)

Note that it is natural that KL-divergence emerges as the distance measure in the above ob-
jective function since mutual information is just the KL-divergence between the joint distribution
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and the product distribution. Writing the objective function in the above manner suggests an iter-
ative algorithm that repeatedly (i) re-partitions the distributionsp(C|wt) by their closeness in KL-
divergence to the cluster distributionsp(C|W j), and (ii) subsequently, given the new word clusters,
re-computes these cluster distributions using (8). Figure 1 describes this Divisive Information-
Theoretic Clustering algorithm in detail — note that our algorithm is easily extended to give a
top-down hierarchy of clusters. Our divisive algorithm bears some resemblance to thek-means or
Lloyd-Max algorithm, which usually uses squared Euclidean distances (also see Gray and Neuhoff,
1998, Berkhin and Becher, 2002, Vaithyanathan and Dom, 1999, Modha and Spangler, 2002, to
appear). Also, just as the Euclideank-means algorithm can be regarded as the “hard clustering”
limit of the EM algorithm on a mixture of appropriate multivariate Gaussians, our divisive algo-
rithm can also be regarded as a divisive version of the hard clustering limit of the “soft” Information
Bottleneck algorithm of Tishby et al. (1999), which is an extension of the Blahut-Arimoto algo-
rithm (Cover and Thomas, 1991). Note, however, that the previously proposed hard clustering limit
of Information Bottleneck is the agglomerative algorithm of Slonim and Tishby (2001).

Our initialization strategy is important, see step 1 in Figure 1 (a similar strategy was used by
Dhillon and Modha, 2001, Section 5.1, to obtain word clusters), since it guarantees that the support
set of everyp(C|wt) is contained in the support set of at least one cluster distributionp(C|W j),
i.e., guarantees that at least one KL-divergence forwt is finite. This is because our initialization
strategy ensures that every wordwt is part of some clusterW j . Thus by the formula forp(C|W j)
in step 2, it cannot happen thatp(ci |wt) 6= 0, andp(ci |W j) = 0. Note that we can still get some
infinite KL-divergence values but these do not lead to any implementation difficulties (indeed in
an implementation we can handle such “infinity problems” without an extra “if” condition thanks
to the handling of “infinity” in the IEEE floating point standard defined by Goldberg 1991, ANS
1985).

We now discuss the computational complexity of our algorithm. Step 3 of each iteration re-
quires the KL-divergence to be computed for every pair,p(C|wt) and p(C|W j). This is the most
computationally demanding task and costs a total ofO(mkl) operations. Thus the total complexity
is O(mklτ), which grows linearly withm (note thatk� m) and the number of iterations,τ. Gener-
ally, we have found that the number of iterations required is 10-15. In contrast, the agglomerative
algorithm of Slonim and Tishby (2001) costsO(m3l) operations.

The algorithm in Figure 1 has certain pleasing properties. As we will prove in Theorem 5, our
algorithm decreases the objective function value at every step and thus is guaranteed to terminate
at a local minimum in a finite number of iterations (note that finding the global minimum is NP-
complete, see Garey et al., 1982). Also, by Theorem 1 and (13) we see that our algorithm minimizes
the “within-cluster” Jensen-Shannon divergence. It turns out that (see Theorem 6) our algorithm
simultaneously maximizesthe “between-cluster” Jensen-Shannon divergence. Thus the different
word clusters produced by our algorithm are “maximally” far apart.

We now give formal statements of our results with proofs.

Lemma 3 Given probability distributions p1, . . . , pn, the distribution that is closest (on average) in
KL-divergence is the mean probability distribution m, i.e., given any probability distribution q,

∑
i

πiKL(pi ,q)≥∑
i

πiKL(pi,m) , (14)

whereπi ≥ 0, ∑i πi = 1 and m= ∑i πi pi .
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Proof. Use the definition of KL-divergence to expand the left-hand side(LHS) of (14) to get

∑
i

πiKL(pi ,q) = ∑
i

πi ∑
x

pi(x)(log pi(x)− logq(x)) .

Similarly the RHS of (14) equals

πiKL(pi,m) = ∑
i

πi ∑
x

pi(x)(logpi(x)− logm(x)) .

Subtracting the RHS from LHS leads to

∑
i

πi ∑
x

pi(x)(logm(x)− logq(x)) = ∑
x

m(x) log
m(x)
q(x)

= KL(m,q) .

The result follows since the KL-divergence is always non-negative (Cover and Thomas, 1991, The-
orem 2.6.3).

Theorem 4 The algorithm in Figure 1 monotonically decreases the value of the objective function
given in (13).

Proof. Let W (i)
1 , . . . ,W (i)

k be the word clusters at iterationi, and letp(C|W (i)
1 ), . . . , p(C|W (i)

k ) be
the corresponding cluster distributions. Then

Q({W (i)
j }k

j=1) =
k

∑
j=1

∑
wt∈W (i)

j

πtKL(p(C|wt), p(C|W (i)
j ))

≥
k

∑
j=1

∑
wt∈W (i)

j

πtKL(p(C|wt), p(C|W (i)
j∗(wt)

))

≥
k

∑
j=1

∑
wt∈W (i+1)

j

πtKL(p(C|wt), p(C|W (i+1)
j ))

= Q({W (i+1)
j }k

j=1)

where the first inequality is due to step 3 of the algorithm, and the second inequality follows from the
parameter estimation in step 2 and from Lemma 3. Note that if equality holds, i.e., if the objective
function value is equal at consecutive iterations, then step 4 terminates the algorithm.

Theorem 5 The algorithm in Figure 1 terminates in a finite number of steps at a cluster assign-
ment that is locally optimal, i.e., the loss in mutual information cannot be decreased by either
(a) re-assignment of a word distribution p(C|wt) to a different class distribution p(C|W i), or by
(b) defining a new class distribution for any of the existing clusters.

Proof. The result follows since the algorithm monotonically decreases the objective function value,
and since the number of distinct clusterings is finite (see Bradley and Mangasarian, 2000, for a
similar argument).

We now show that the total Jensen-Shannon(JS) divergence can be written as the sum of two
terms.
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Theorem 6 Let p1, . . . , pn be a set of probability distributions and letπ1, . . . ,πn be corresponding
scalars such thatπi ≥ 0, ∑i πi = 1. Suppose p1, . . . , pn are clustered into k clustersP 1, . . . ,P k, and
let mj be the (weighted) mean distribution ofP j , i.e.,

mj = ∑
pt∈P j

πt

π(P j)
pt , where π(P j) = ∑

pt∈P j

πt . (15)

Then the total JS-divergence between p1, . . . , pn can be expressed as the sum of “within-cluster
JS-divergence” and “between-cluster JS-divergence”, i.e.,

JSπ({pi : 1≤ i ≤ n}) =
k

∑
j=1

π(P j)JSπ′({pt : pt ∈ P j})+JSπ′′({mi : 1≤ i ≤ k}) ,

whereπ′t = πt/π(P j) and we useπ′′ as the subscript in the last term to denoteπ′′j = π(P j).

Proof. By Lemma 2, the total JS-divergence may be written as

JSπ({pi : 1≤ i ≤ n}) =
n

∑
i=1

πiKL(pi ,m) =
n

∑
i=1

∑
x

πi pi(x) log
pi(x)
m(x)

(16)

wherem= ∑i πi pi. With mj as in (15), and rewriting (16) in order of the clustersP j we get

k

∑
j=1

∑
pt∈P j

∑
x

πt pt(x)
(

log
pt(x)
mj(x)

+ log
mj(x)
m(x)

)

=
k

∑
j=1

π(P j) ∑
pt∈P j

πt

π(P j)
KL(pt ,mj)+

k

∑
j=1

π(P j)KL(mj ,m)

=
k

∑
j=1

π(P j)JSπ′({pt : pt ∈ P j})+JSπ′′({mi : 1≤ i ≤ k}) ,

whereπ′′j = π(P j), which proves the result.
Our divisive algorithm explicitly minimizes the objective function in (13), which by Lemma 2

can be interpreted as the average within-cluster JS-divergence. Thus, since the total JS-divergence
between the word distributions is constant, our algorithm also implicitly maximizes the between-
cluster JS-divergence.

This concludes our formal treatment. We now see how to use word clusters in our text classifiers.

5.2 Classification using Word Clusters

The Naive Bayes method can be simply translated into using word clusters instead of words. This is
done by estimating the new parametersp(W s|ci) for word clusters similar to the word parameters
p(wt |ci) in (4) as

p(W s|ci) =
∑dj∈ci

n(W s,dj)

∑k
s=1∑dj∈ci

n(W s,dj)

wheren(W s,dj) = ∑wt∈W s
n(wt ,dj). Note that when estimates ofp(wt |ci) for individual words are
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1. Sort the entire vocabulary by Mutual Information with the class variable and select topM
words (usuallyM = 2000).

2. Initialize M singleton clusters with the topM words.

3. Compute the inter-cluster distances between every pair of clusters.

4. Loop untilk clusters are obtained:

• Merge the two clusters which are most similar (see (17)).

• Update the inter-cluster distances.

Figure 2: Agglomerative Information Bottleneck Algorithm (Slonim and Tishby, 2001)
.

1. Sort the entire vocabulary by Mutual Information with the class variable.

2. Initializek singleton clusters with the topk words.

3. Compute the inter-cluster distances between every pair of clusters.

4. Loop until all words have been put into one of thek clusters:

• Merge the two clusters which are most similar (see (17)) resulting ink−1 clusters.

• Add a new singleton cluster consisting of the next word from the sorted list of words.

• Update the inter-cluster distances.

Figure 3: Agglomerative Distributional Clustering Algorithm (Baker and McCallum, 1998)
.

relatively poor, the corresponding word cluster parametersp(W s|ci) provide more robust estimates
resulting in higher classification scores.

The Naive Bayes rule (5) for classifying a test documentd can be rewritten as

c∗(d) = argmaxci

(
log p(ci)

|d| +
k

∑
s=1

p(W s|d) log p(W s|ci)

)
,

wherep(W s|d) = n(W s|d)/|d|. Support Vector Machines can be similarly used with word clusters
as features.

5.3 Previous Word Clustering Approaches

Previously two agglomerative algorithms have been proposed for distributional clustering of words
applied to text classification. In this section we give details of their approaches.

Figures 2 and 3 give brief outlines of the algorithms proposed by Slonim and Tishby (2001)
and Baker and McCallum (1998) respectively. For simplicity we will refer to the algorithm in
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Figure 2 as “Agglomerative Information Bottleneck” (AIB) and the algorithm in Figure 3 as “Ag-
glomerative Distributional Clustering” (ADC). AIB is strictly agglomerative in nature resulting in
high computational cost. Thus, AIB first selectsM features (M is generally much smaller than
the total vocabulary size) and then runs an agglomerative algorithm untilk clusters are obtained
(k�M). In order to reduce computational complexity so that it is feasible to run on the full feature
set, ADC uses an alternate strategy. ADC uses the entire vocabulary but maintains onlyk word clus-
ters at any instant. A merge of two of these clusters results ink−1 clusters after which a singleton
cluster is created to get backk clusters (see Figure 3 for details). Incidentally both algorithms use
the following identical merging criterion for merging two word clustersW i andW j :

δI(W i ,W j) = p(W i)KL(p(C|W i), p(C|Ŵ ))+ p(W j)KL(p(C|W j), p(C|Ŵ ))
= (p(W i)+ p(W j))JSπ(p(C|W i), p(C|W j)), (17)

whereŴ refers to the merged cluster andp(C|Ŵ )= πi p(C|W i)+π j p(C|W j), πi = p(W i)/(p(W i)+
p(W j)), andπ j = p(W j)/(p(W i)+ p(W j)).

Computationally both the agglomerative approaches are expensive. The complexity of AIB is
O(M3l) while that of ADC isO(mk2l) wherem is the number of words andl is the number of classes
in the data set (typicallyk, l � m). Moreover both these agglomerative approaches are greedy in
nature and do a local optimization. In contrast our divisive clustering algorithm is computationally
superior,O(mklτ), and optimizes not just across two clusters but overall clusters simultaneously.

6. Experimental Results

This section provides empirical evidence that our divisive clustering algorithm of Figure 1 outper-
forms various feature selection methods and previous agglomerative clustering approaches. We
compare our results with feature selection by Information Gain and Mutual Information (Yang and
Pedersen, 1997), and feature clustering using the agglomerative algorithms of Baker and McCallum
(1998) and Slonim and Tishby (2001). As noted in Section 5.3 we will use AIB to denote “Agglom-
erative Information Bottleneck” and ADC to denote “Agglomerative Distributional Clustering”. It
is computationally infeasible to run AIB on the entire vocabulary, so as suggested by Slonim and
Tishby (2001), we use the top 2000 words based on the mutual information with the class variable.
We denote our algorithm by “Divisive Clustering” and show that it achieves higher classification ac-
curacies than the best performing feature selection method, especially when training data issparse
and show improvements over similar results reported by using AIB (Slonim and Tishby, 2001).

6.1 Data Sets

The20 Newsgroups (20Ng)data set collected by Lang (1995) contains about 20,000 articles evenly
divided among 20 UseNet Discussion groups. Each newsgroup represents one class in the classifi-
cation task. This data set has been used for testing several text classification methods (Baker and
McCallum, 1998, Slonim and Tishby, 2001, McCallum and Nigam, 1998). During indexing we
skipped headers but retained the subject line, pruned words occurring in less than 3 documents and
used a stop list but did not use stemming. After converting all letters to lowercase the resulting
vocabulary had 35,077 words.

We collected theDmozdata from the Open Directory Project (www.dmoz.org). The Dmoz
hierarchy contains about 3 million documents and 300,0000 classes. We chose the topScience
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Figure 4: Fraction of Mutual Information lost while clustering words with Divisive Clustering is
significantly lower compared to ADC at all feature sizes (on 20Ng and Dmoz data).

category and crawled some of the heavily populated internal nodes beneath it, resulting in a 3-deep
hierarchy with 49 leaf-level nodes, 21 internal nodes and about 5,000 total documents. For our
experimental results we ignored documents at internal nodes. While indexing, we skipped the text
between html tags, pruned words occurring in less than five documents, used a stop list but did not
use stemming. After converting all letters to lowercase the resulting vocabulary had 14,538 words.

6.2 Implementation Details

Bow (McCallum, 1996) is a library of C code useful for writing text analysis, language modeling
and information retrieval programs. We extended Bow to index BdB (www.sleepycat.com) flat file
databases where we stored the text documents for efficient retrieval and storage. We implemented
the agglomerative and divisive clustering algorithms within Bow and used Bow’s SVM implemen-
tation in our experiments. To perform hierarchical classification, we wrote a Perl wrapper to invoke
Bow subroutines. For crawlingwww.dmoz.org we usedlibwww libraries from the W3C consortium.

6.3 Results

We first give evidence of the improved quality of word clusters obtained by our algorithm as com-
pared to the agglomerative approaches. We define the fraction of mutual information lost due to
clustering words as:

I(C;W)− I(C;WC)
I(C;W)

.

Intuitively, lower the loss in mutual information the better is the clustering. The termI(C;W)−
I(C;WC) in the numerator of the above equation is precisely the global objective function that
Divisive Clustering attempts to minimize (see Theorem 1). Figure 4 plots the fraction of mutual
information lost against the number of clusters for Divisive Clustering and ADC algorithms on
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20Ng and Dmoz data sets. Notice that less mutual information is lost with Divisive Clustering
compared to ADC atall number of clusters, though the difference is more pronounced at lower
number of clusters. Note that it is not meaningful to compare against the mutual information lost
in AIB since the latter method works on a pruned set of words (2000) due to its high computational
cost.

Next we provide some anecdotal evidence that our word clusters are better at preserving class
information as compared to the agglomerative approaches. Figure 5 shows five word clusters, Clus-
ters 9 and 10 from Divisive Clustering, Clusters 8 and 7 from AIB and Cluster 12 from ADC.
These clusters were obtained while forming 20 word clusters with a 1/3-2/3 test-train split (note
that word clustering is done only on the training data). While the clusters obtained by our algorithm
and AIB could successfully distinguish betweenrec.sport.hockeyandrec.sport.baseball, ADC com-
bined words from both classes in a single word cluster. This resulted in lower classification accuracy
for both classes with ADC compared to Divisive Clustering. While Divisive Clustering achieved
93.33% and 94.07%accuracy onrec.sport.hockeyandrec.sport.baseballrespectively, ADC could
only achieve76.97% and 52.42%. AIB achieved89.7% and 87.27%respectively — these lower
accuracies appear to be due to the initial pruning of the word set to 2000.

Divisive Clustering ADC (Baker & McCallum) AIB (Slonim & Tishby)
Cluster 10 Cluster 9 Cluster12 Cluster 8 Cluster 7
(Hockey) (Baseball) (Hockey and Baseball) (Hockey) (Baseball)
team hit team detroit goals game
game runs hockey pitching buffalo minnesota
play baseball games hitter hockey bases
hockey base players rangers puck morris
season ball baseball nyi pit league
boston greg league morris vancouver roger
chicago morris player blues mcgill baseball
pit ted nhl shots patrick hits
van pitcher pit vancouver ice baltimore
nhl hitting buffalo ens coach pitch

Figure 5: Top few words sorted by Mutual Information in Clusters obtained by Divisive Clustering,
ADC and AIB on 20 Newsgroups data.

6.3.1 CLASSIFICATION RESULTS ON20 NEWSGROUPS DATA

Figure 6.3 shows the classification accuracy results on the 20 Newsgroups data set for Divisive
Clustering and the feature selection algorithms considered. The vertical axis indicates the percent-
age of test documents that are classified correctly while the horizontal axis indicates the number
of features/clusters used in the classification model. For the feature selection methods, the features
are ranked and only the top ranked features are used in the corresponding experiment. The results
are averages of 10 trials of randomized 1/3-2/3 test-train splits of the total data. Note that we
cluster only the words belonging to the documents in thetraining set. We used two classification
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Figure 6: 20 Newsgroups data with 1/3-2/3 test-train split. (left) Classification Accuracy (right)
Divisive Clustering vs. Agglomerative approaches (with Naive Bayes).
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Figure 8: Classification Accuracy on Dmoz data
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techniques, SVMs and Naive Bayes (NB) for the purpose of comparison. Observe that Divisive
Clustering (SVM and NB) achieves significantly better results at lower number of features than the
Feature Selection methods Information Gain and Mutual Information. With only 50 clusters Divi-
sive Clustering (NB) achieves 78.05% accuracy just 4.1% short of the accuracy achieved by a full
feature NB classifier. We also observed that the largest gain occurs when the number of clusters
equals the number of classes (for 20Ng data this occurs at 20 clusters). When we manually viewed
these word clusters we found that many of them contained words representing a single class in
the data set, for example see Figure 5. We attribute this observation to our effective initialization
strategy.

Figure 6.3 compares the classification accuracies of Divisive Clustering and Agglomerative ap-
proaches on the 20 Newsgroups data using Naive Bayes and 1/3-2/3 test-train split. Notice that
Divisive Clustering achieves either better or similar classification results than Agglomerative ap-
proaches at all feature sizes, though again the improvements are significant at lower number of
features. ADC performs close to Divisive Clustering while AIB is consistently poorer. We hypoth-
esize that the latter is due to the pruning of features to 2000 while using AIB.

A note here about the running times of ADC and Divisive Clustering. On a typical run on 20Ng
data with 1/3-2/3 test-train split for obtaining 100 clusters from 35077 words, ADC took 80.16
minutes while Divisive Clustering ran in just 2.29 minutes. Thus, in terms of computational times,
Divisive Clustering is much superior than the agglomerative algorithms.

In Figure 7, we plot the classification accuracy on 20Ng data using Naive Bayes when the
training data issparse. We took 2% of the available data, that is 20 documents per class for training
and tested on the remaining 98% of the documents. The results are averages of 10 trials. We
again observe that Divisive Clustering obtains better results than Information Gain at all number of
features. It also achieves a significant 12% increase over the maximum possible accuracy achieved
by Information Gain. This is in contrast to larger training data, where Information Gain eventually
catches up as we increase the number of features. When the training data is small the word-by-class
frequency matrix contains many zero entries. By clustering words we obtain more robust estimates
of word class probabilities which lead to higher classification accuracies. This is the reason why all
word clustering approaches (Divisive Clustering, ADC and AIB) perform better than Information
Gain. While ADC is close to Divisive Clustering in performance, AIB is relatively poorer.

6.3.2 CLASSIFICATION RESULTS ONDMOZ DATA SET

Figure 8 shows the classification results for theDmozdata set when we build a flat classifier over
the leaf set of classes. Unlike the previous plots, feature selection here improves the classification
accuracy since web pages appear to be inherently noisy. We observe results similar to those ob-
tained on 20 Newsgroups data, but note that Information Gain(NB) here achieves a slightly higher
maximum, about 1.5% higher than the maximum accuracy observed with Divisive Clustering(NB).
Baker and McCallum (1998) tried a combination of feature-clustering and feature-selection meth-
ods to overcome this. More rigorous approaches to this problem are a topic of future work. Further
note that SVMs fare worse than NB at low dimensionality but better at higher dimensionality. In
future work we plan to use non-linear SVMs at lower dimensions to alleviate this problem.

Figure 9 plots the classification accuracy on Dmoz data using Naive Bayes when the training
set is just 2%. Note again that we achieve a 13% increase in classification accuracy with Divisive
Clustering over the maximum possible with Information Gain. This reiterates the observation that
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Figure 9: (left) Classification Accuracy on Dmoz data with 2% Training data (using Naive Bayes).
(right) Divisive Clustering versus Agglomerative approaches on Dmoz data (1/3-2/3 test
train split with Naive Bayes).
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Figure 10: Classification results on Dmoz Hierarchy using Naive Bayes. Observe that the Hier-
archical Classifier achieves significant improvements over the Flat classifiers with very
few number of features per internal node.

feature clustering is an attractive option when training data is limited. AIB and ADC too outperform
Information Gain but Divisive Clustering achieves slightly better results (see Figures 9 and 9).
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6.3.3 HIERARCHICAL CLASSIFICATION ON DMOZ HIERARCHY

Figure 10 shows the classification accuracies obtained by three different classifiers on Dmoz data
(Naive Bayes was the underlying classifier). ByFlat, we mean a classifier built over the leaf set of
classes in the tree. In contrast,Hierarchical denotes a hierarchical scheme that builds a classifier
at each internal node of the topic hierarchy (see Section 4.3). Further we apply Divisive Clustering
at each internal node to reduce the number of features in the classification model at that node. The
number of word clusters is the same at each internal node.

Figure 10 compares the Hierarchical Classifier with two flat classifiers, one that employs Infor-
mation Gain for feature selection while the other uses Divisive Clustering. A note about how to
interpret the number of features for the Hierarchical Classifier. Since we are comparing a Flat Clas-
sifier with Hierarchical Classifier we need to be fair regarding the number of features used by the
classifiers. If we use 10 features at each internal node of the Hierarchical Classifier we denote that
as 210 features in Figure 10 since we have 21 internal nodes in our data set. Observe that Divisive
Clustering performs remarkably well for Hierarchical Classification even at very low number of
features. With just 10 (210 total) features, Hierarchical Classifier achieves 64.54% accuracy, which
is slightly better than the maximum obtained by the two flat classifiers at any number of features. At
50 (1050 total) features, Hierarchical Classifier achieves 68.42%, a significant 6% higher than the
maximum obtained by the flat classifiers. Thus Divisive Clustering appears to be a natural choice for
feature reduction in case of hierarchical classification as it allows us to maintain high classification
accuracies at very small number of features.

7. Conclusions and Future Work

In this paper, we have presented an information-theoretic approach to “hard” word clustering for
text classification. First, we derived a global objective function to capture the decrease in mutual
information due to clustering. Then we presented a divisive algorithm that directly minimizes this
objective function, converging to a local minimum. Our algorithm minimizes the within-cluster
Jensen-Shannon divergence, and simultaneously maximizes the between-cluster Jensen-Shannon
divergence.

Finally, we provided an empirical validation of the effectiveness of our word clustering. We
have shown that our divisive clustering algorithm is much faster than the agglomerative strategies
proposed previously by Baker and McCallum (1998), Slonim and Tishby (2001) and obtains better
word clusters. We have presented detailed experiments using the Naive Bayes and SVM classifiers
on the 20 Newsgroups and Dmoz data sets. Our enhanced word clustering results in improvements
in classification accuracies especially at lower number of features. When the training data is sparse,
our feature clustering achieves higher classification accuracy than the maximum accuracy achieved
by feature selection strategies such as information gain and mutual information. Thus our divisive
clustering method is an effective technique for reducing the model complexity of a hierarchical
classifier.

In future work we intend to conduct experiments at a larger scale on hierarchical web data
to evaluate the effectiveness of the resulting hierarchical classifier. We also intend to explore local
search strategies (such as in Dhillon et al., 2002) to increase the quality of the local optimal achieved
by our divisive clustering algorithm. Furthermore, our information-theoretic clustering algorithm
can be applied to other applications that involve non-negative data.
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An important topic for exploration is the choice of the number of word clusters to be used for
the classification task. We intend to apply the MDL principle for this purpose (Rissanen, 1989).
Reducing the number of features makes it feasible to run computationally expensive classifiers such
as SVMs on large collections. While soft clustering increases the model size, it is not clear how it
affects classification accuracy. In future work, we would like to experimentally evaluate the tradeoff
between soft and hard clustering. Other directions for exploration include feature weighting and
combination of feature selection and clustering strategies.
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