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ABSTRACT
Co-clustering is a powerful data mining technique with var-
ied applications such as text clustering, microarray anal-
ysis and recommender systems. Recently, an information-
theoretic co-clustering approach applicable to empirical joint
probability distributions was proposed. In many situations,
co-clustering of more general matrices is desired. In this
paper, we present a substantially generalized co-clustering
framework wherein any Bregman divergence can be used
in the objective function, and various conditional expec-
tation based constraints can be considered based on the
statistics that need to be preserved. Analysis of the co-
clustering problem leads to the minimum Bregman infor-
mation principle, which generalizes the maximum entropy
principle, and yields an elegant meta algorithm that is guar-
anteed to achieve local optimality. Our methodology yields
new algorithms and also encompasses several previously known
clustering and co-clustering algorithms based on alternate
minimization.

Categories and Subject Descriptors: I.2.6 [Artificial
Intelligence]: Learning

General Terms: Algorithms

Keywords: Co-clustering, Matrix Approximation, Breg-
man divergences

1. INTRODUCTION
Co-clustering, or bi-clustering [9, 4], is the problem of si-

multaneously clustering rows and columns of a data matrix.
The problem of co-clustering arises in diverse data mining
applications, such as simultaneous clustering of genes and
experimental conditions in bioinformatics [4, 5], documents
and words in text mining [8], users and movies in recom-
mender systems, etc. In order to design a co-clustering
framework, we need to first characterize the “goodness” of
a co-clustering. Existing co-clustering techniques [5, 4, 8]
achieve this by quantifying the “goodness” of a co-clustering
in terms of the approximation error between the original
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data matrix and a reconstructed matrix based on co-clustering.
Of these techniques, the most efficient and scalable algo-
rithms are those based on alternate minimization schemes [5,
8], but these are restricted to only two distortion measures
namely, KL-divergence and the squared Euclidean distance,
and a few specific matrix reconstruction schemes. These two
limitations restrict the applicability of these techniques to a
small range of data matrices.

In this paper, we address the following two questions:
(a) what class of distortion functions admit efficient co-
clustering algorithms based on alternate minimization?, and
(b) what are the different possible matrix reconstruction schemes
for these co-clustering algorithms? We show that alternate
minimization based co-clustering algorithms work for a large
class of distortion measures called Bregman divergences [3],
which include squared Euclidean distance, KL-divergence,
Itakura-Saito distance, etc., as special cases. Further, we
demonstrate that for a given co-clustering, a large variety
of approximation models are possible based on the type of
summary statistics that need to be preserved. Analysis of
this general co-clustering problem leads to the minimum
Bregman information principle that simultaneously general-
izes the maximum entropy and the least squares principles.
Based on this principle, and other related results, we develop
an elegant meta-algorithm for the Bregman co-clustering
problem with a number of desirable properties. Most pre-
viously known parametric clustering and co-clustering al-
gorithms based on alternate minimization follow as special
cases of our methodology.

1.1 Motivation
We start by reviewing information-theoretic co-clustering [8]

and motivating the need for a more general co-clustering
framework. Let [u]m1 denote an index u running over {1, · · · ,m}
and let X and Y be discrete random variables that take
values in the sets {xu}, [u]m1 , and {yv}, [v]n1 , respectively.
Suppose we are in the idealized situation where the joint
probability distribution p(X,Y ) is known. In practice, p
may be estimated from a contingency table or co-occurrence
matrix. Suppose we want to co-cluster, or, simultaneously
cluster X into k disjoint (row) clusters {x̂g}, [g]k1 , and Y

into l disjoint (column) clusters, {ŷh}, [h]l1. Let X̂ and Ŷ
denote the corresponding clustered random variables that
range over these sets. An information theoretic formulation
of finding the optimal co-clustering is to solve the problem

min
X̂,Ŷ

I(X;Y )− I(X̂; Ŷ ) , (1.1)



where I(X;Y ) is the mutual information betweenX and Y [6].
In [8], it was shown that

I(X;Y )− I(X̂, Ŷ ) = D(p(X,Y )||q(X,Y )), (1.2)

where q(X,Y ) is a distribution of the form

q(X,Y ) = p(X̂, Ŷ )p(X|X̂)p(Y |Ŷ ), (1.3)

and D(·||·) denotes the Kullback-Leibler(KL) divergence.
Thus, the search for the optimal co-clustering may be con-
ducted by searching for the nearest approximation q(X,Y )
that has the form in (1.3). We note that q(X,Y ) depends
only on (m − k + n − l + kl − 1) independent parameters,
which is much smaller than the (mn − 1) parameters that
determine a general p(X,Y ). Hence, we call q(X,Y ) a “low
complexity” or low parameter matrix approximation.

The above is the viewpoint presented in [8]. We now
present an alternate viewpoint that highlights the key maxi-
mum entropy property that makes q(X,Y ) a “low complex-
ity” or low parameter approximation.1

Lemma 1 Given a fixed co-clustering X̂, Ŷ , consider the
set of joint distributions p′ that preserve the following statis-
tics of the input distribution p:

X

x∈x̂

X

y∈ŷ
p′(x, y) = p(x̂, ŷ) =

X

x∈x̂

X

y∈ŷ
p(x, y), ∀x̂, ŷ,

p′(x) = p(x), p′(y) = p(y), ∀x, y.
Among all such distributions p′, the distribution q in (1.3)
has the maximum Shannon entropy, i.e., H(q) ≥ H(p′).

Thus, among all distributions that preserve marginals and
co-cluster statistics, the maximum entropy distribution has
the form in (1.3). Thus, by (1.2) and Lemma 1, the co-
clustering problem (1.1) is equivalent to the problem of find-
ing the nearest (in KL-divergence) maximum entropy dis-
tribution that preserves the marginals, and the co-cluster
statistics of the original data matrix.

The above formulation is applicable when the data ma-
trix directly corresponds to an empirical joint distribution.
However, there are important situations when the data ma-
trix is more general, for example, the matrix may contain
negative entries and/or a distortion measure other than KL-
divergence, such as the squared Euclidean distance, or the
Itakura-Saito distance might be more appropriate.

This paper addresses the general situation by extending
information-theoretic co-clustering along three directions.
First, “nearness” is now measured by any Bregman diver-
gence. Second, we allow specification of a larger class of con-
straints that preserve various statistics of the data. Lastly,
to accomplish the above, we generalize the maximum en-
tropy approach: we guide our co-clustering generalization by
appealing to the minimum Bregman information principle
that we shall introduce shortly. The optimal co-clustering
is guided by the search for the nearest (in Bregman diver-
gence) matrix approximation that has minimum Bregman
information while satisfying the desired constraints.

2. FORMULATION AND ANALYSIS
In this section, we formulate the Bregman co-clustering

problem in terms of the Bregman divergence between a given
matrix and an approximation based on the co-clustering.

1Proofs omitted due to lack of space, see [1] for details.

We start by defining Bregman divergences [3, 2]. Let φ
be a real-valued strictly convex function defined on the con-
vex set S = dom(φ) ⊆ R, the domain of φ, such that φ
is differentiable on int(S), the interior of S. The Breg-
man divergence dφ : S × int(S) 7→ [0,∞) is defined as
dφ(z1, z2) = φ(z1)− φ(z2)− 〈z1 − z2,∇φ(z2)〉, where ∇φ is
the gradient of φ.

Example 1.A (I-Divergence) Given z ∈ R+, let φ(z) =
z log z. For z1, z2 ∈ R+, dφ(z1, z2) = z1 log(z1/z2)−(z1−z2).

Example 2.A (Squared Euclidean Distance) Given z ∈
R, let φ(z) = z2. For z1, z2 ∈ R, dφ(z1, z2) = (z1 − z2)2.

Based on Bregman divergences, it is possible to define a use-
ful concept called Bregman information, which captures
the “spread” or the “information” in a random variable.
More precisely, for any random variable Z taking values
in S = dom(φ), its Bregman information is defined as
the expected Bregman divergence to the expectation, i.e.,
Iφ(Z) = E[dφ(Z,E[Z])].

Example 1.B (I-Divergence) Given a real non-negative
random variable Z, the Bregman information corresponding

to I-divergence is given by Iφ(Z) = E[Z log
ş

Z
E[Z]

ť
]. When

Z is uniformly distributed over the set {p(xu, yv)}[u]m1 [v]n1 ,
i.e., Pr(Z = p(xu, yv)) = 1

mn
, ∀u, v, then E[Z] = 1

mn
and

the Bregman information of Z is proportional to D(p||p0) =
−H(p) + constant, where D(·||·) is KL-divergence, p0 is the
uniform distribution and H(·) is the Shannon entropy.

Example 2.B (Squared Euclidean Distance) Given any
real random variable Z, the Bregman information corre-
sponding to squared Euclidean distance is given by Iφ(Z) =
E[(Z − E[Z])2], and when Z is uniformly distributed over
the elements of a matrix, it is proportional to the squared
Frobenius norm of the matrix + constant.

We focus on the problem of co-clustering a given m × n
data matrix Z whose entries take values in a convex set
S = dom(φ), i.e., Z ∈ Sm×n. With a slight abuse of nota-
tion, we can consider the matrix Z as a random variable in S
that is a known deterministic function of two underlying ran-
dom variables U and V , which take values over the set of row
indices {1, · · · ,m} and the set of column indices {1, · · · , n}
respectively. Further, let ν = {νuv : [u]m1 , [v]n1 } denote the
joint probability measure of the pair (U, V ), which is either
pre-specified or set to be the uniform distribution. Through-
out the paper, all expectations are with respect to ν.

Example 1.C (I-Divergence) Let (X,Y ) ∼ p(X,Y ) be
jointly distributed random variables with X,Y taking values
in {xu}, [u]m1 and {yv}, [v]n1 respectively. Then, p(X,Y ) can
be written in the form of the matrix Z = [zuv], [u]m1 , [v]n1 ,
where zuv = p(xu, yv) is a deterministic function of u and v.
This example with a uniform measure ν corresponds to the
setting described in Section 1.1 (originally in [8])2.

Example 2.C (Squared Euclidean Distance) Let Z ∈
Rm×n denote a data matrix whose elements may assume

2Note that in [8] KL-divergence was used, which is a special
case of I-divergence applicable to probability distributions.



any real values. This example with a uniform measure ν
corresponds to the setting described in [5, 4].

A k × l co-clustering of a given data matrix Z is a pair
of maps: ρ : {1, · · · ,m} 7→ {1, · · · , k}, γ : {1, · · · , n} 7→
{1, · · · , l}. A natural way to quantify the “goodness” of a
co-clustering is in terms of the accuracy of an approximation
Ẑ = [ẑuv] obtained from the co-clustering, i.e., the quality
of the co-clustering can be defined as

E[dφ(Z, Ẑ)] =

mX

u=1

nX

v=1

νuvdφ(zuv, ẑuv). (2.4)

where Ẑ is uniquely determined by the co-clustering (ρ, γ).
Given a co-clustering (ρ, γ), there can be a number of

different matrix approximations Ẑ based on the informa-
tion we choose to retain. Let Û and V̂ be random vari-
ables for row and column clusterings respectively, taking
values in {1, · · · , k} and {1, · · · , l} such that Û = ρ(U) and

V̂ = γ(V ). Then, the co-clustering (ρ, γ) involves four un-

derlying random variables U , V , Û , and V̂ corresponding
to the various partitionings of the matrix Z. We can now
obtain different matrix approximations based solely on the
statistics of Z corresponding to the non-trivial combinations
of {U, V, Û , V̂ } given by

Γ = {{U, V̂ }, {Û , V }, {Û , V̂ }, {U}, {V }, {Û}, {V̂ }} .
If π(Γ) denotes the power set of Γ, then every element of
π(Γ) is a set of constraints that leads to a (possibly) different
matrix approximation. Hence, π(Γ) can be considered as the
class of matrix approximation schemes based on a given co-
clustering (ρ, γ). For the sake of illustration, we consider
four examples corresponding to the non-trivial constraint
sets in π(Γ) that are symmetric in U, Û and V, V̂ :

C1 = {{Û}, {V̂ }}, C2 = {{Û , V̂ }},
C3 = {{Û , V̂ }, {U}, {V }}, C4 = {{U, V̂ }, {Û , V }} .

Now, for a specified constraint set C ∈ π(Γ) and a co-
clustering (ρ, γ), the set of possible approximationsMA(ρ, γ, C)
consists of all Z ′ ∈ Sm×n that depend only on the rel-
evant statistics of Z, i.e., E[Z|C], C ∈ C, or more pre-
cisely, satisfy the following conditional independence condi-
tion: Z → {E[Z|C] : C ∈ C} → Z ′. Hence, the approxima-
tions Z ′ can be a function of only {E[Z|C] : C ∈ C}.

We can now define the “best” approximation Ẑ corre-
sponding to a given co-clustering (ρ, γ) and the constraint
set C as the one in the classMA(ρ, γ, C) that minimizes the
approximation error, i.e.,

Ẑ = argmin
Z′∈MA(ρ,γ,C)

E[dφ(Z,Z ′)]. (2.5)

2.1 Minimum Bregman Information
Interestingly, it can be shown [1] that the “best” matrix

approximation Ẑ turns out to be the minimum Bregman
information matrix among the class of random variables
MB(ρ, γ, C) consisting of all Z ′ ∈ Sm×n that preserve the
relevant statistics of Z or more precisely, satisfy the linear
constraints: ∀C ∈ C, E[Z|C] = E[Z ′|C]. Hence, the best

approximation Ẑ of the original matrix Z for a specified
co-clustering (ρ, γ) and constraint set C is given by

Ẑ = argmin
Z′∈MA(ρ,γ,C)

E[dφ(Z,Z ′)] = argmin
Z′∈MB(ρ,γ,C)

Iφ(Z′). (2.6)

This leads to a new minimum Bregman information
principle: the best estimate given certain statistics is one
that has the minimum Bregman information subject to the
linear constraints for preserving those statistics. It is easy to
see that the widely used maximum entropy principle [6] is a
special case of the proposed principle for I-divergence since
the entropy of a joint distribution is negatively related to the
Bregman information (Example 1.B). In fact, even the least
squares principle [7] can be obtained as a special case when
the Bregman divergence is squared Euclidean distance.

The following theorem characterizes the solution to the
minimum Bregman information problem (2.6). For a proof,
see [1].

Theorem 1 For a Bregman divergence dφ, any random vari-
able Z ∈ Sm×n, a specified co-clustering (ρ, γ) and a speci-

fied constraint set C, the solution Ẑ to (2.6) is given by

∇φ(Ẑ) = −
X

r

Λ?r , (2.7)

where Λ? ≡ {Λ?r} are the optimal Lagrange multipliers corre-
sponding to the set of linear constraints: E[Z ′|Cr] = E[Z|Cr],
∀Cr ∈ C. Furthermore, Ẑ always exists, and is unique.

2.2 Bregman Co-clustering Problem
We can now quantify the goodness of a co-clustering in

terms of the expected Bregman divergence between the orig-
inal matrix Z and the minimum Bregman information so-
lution Ẑ. Thus, the Bregman co-clustering problem can be
concretely defined as follows:

Definition 1 Given k, l, a Bregman divergence dφ, a data
matrix Z ∈ Sm×n, a set of constraints C ∈ π(Γ), and an
underlying probability measure ν, we wish to find a co-
clustering (ρ?, γ?) that minimizes:

(ρ?, γ?) = argmin
(ρ,γ)

E[dφ(Z, Ẑ)] (2.8)

where Ẑ = argmin
Z′∈MB(ρ,γ,C)

Iφ(Z′).

The problem is NP-complete by a reduction from the kmeans
problem. Hence, it is difficult to obtain a globally optimal
solution. However, in Section 3, we analyze the problem in
detail, and prove that it is possible to come up with an itera-
tive update scheme that provides a locally optimal solution.

Example 1.D (I-Divergence) The Bregman co-clustering

objective function is given by E[Z log(Z
Ẑ

)−Z+Ẑ]= E[Z log(Z
Ẑ

)]

where Ẑ is the minimum Bregman information solution (Ta-
ble 1). Note that for the constraint set C3 and Z based on
a joint distribution p(X,Y ), the objective function reduces
to D(p||q) where q is of the form (1.3) that was used in [8]

Example 2.D (Squared Euclidean Distance) The Breg-

man co-clustering objective function is E[(Z − Ẑ)2] where

Ẑ is the minimum Bregman information solution (Table
2). Note that for the constraint set C4, this reduces to

E[(Z−E[Z|U, V̂ ]−E[Z|Û , V ]+E[Z|Û , V̂ ])2], which is iden-
tical to the objective function in [5, 4].



3. A META ALGORITHM
In this section, we shall develop an alternating minimiza-

tion scheme for the general Bregman co-clustering problem
(2.8). Our scheme shall serve as a meta algorithm from
which a number of special cases (both new and previously
known) can be derived. Throughout this section, let us sup-
pose that the underlying measure ν, the Bregman divergence
dφ, the data matrix Z ∈ Sm×n, number of row clusters k,
number of column clusters l, and the constraint set C are
specified. We first outline the essence of our scheme.

Step 1: Start with an arbitrary row and column clustering,
say, (ρ0, γ0). Set t = 0. With respect to this clustering,

compute the matrix approximation Ẑt by solving the
minimum Bregman information problem (2.6).

Step 2: Repeat one of the two steps below till convergence:

Step 2A: Hold the column clustering γt fixed, and
find a new row co-clustering, say, ρt+1. Set γt+1 =
γt. With respect to the co-clustering (ρt+1, γt+1),

compute the matrix approximation Ẑt+1 by solv-
ing the minimum Bregman information problem
(2.6). Set t = t+ 1.

Step 2B: Hold the row clustering ρt fixed, and find a
new column co-clustering, say, γt+1. Set ρt+1 =
ρt. With respect to the co-clustering (ρt+1, γt+1),

compute the matrix approximation Ẑt+1 by solv-
ing the minimum Bregman information problem
(2.6). Set t = t+ 1.

Note that at any time in Step 2, the algorithm may choose
to perform either Step 2A or 2B.

3.1 Updating Row and Column Clusters
From the above outline, it is clear that the key steps in our

algorithm involve finding a solution of the minimum Breg-
man information problem (2.6) and appropriately updating
the row and column clusters. First, we focus on the latter
task. Consider matrix approximations based on the func-
tional form for the minimum Bregman solution Ẑ given in
(2.7). For a given (ρ, γ, C), there exist a unique set of optimal
Lagrange multipliers Λ∗ so that (2.7) uniquely specifies the

minimum Bregman information solution Ẑ. In general, (2.7)

provides a unique approximation, say Z̃, for any set of La-
grange multipliers Λ (not necessarily optimal) and (ρ, γ, C)
since ∇φ(·) is a monotonic function [3, 2]. To underscore the

dependence of Z̃ on the Lagrange multipliers, we shall use
the notation Z̃ = ζ(ρ, γ,Λ) = (∇φ)−1(−Ps

r=1 Λr). The ba-
sic idea in considering approximations of the form ζ(ρ, γ,Λ)
is that alternately optimizing the co-clustering and the La-
grange multipliers leads to an efficient update scheme that
does not require solving the minimum Bregman information
problem anew for each possible co-clustering.

Further, the matrix approximations of the form ζ(ρ, γ,Λ)
have a nice separability property [1] that enables us to de-
compose the matrix approximation error in terms of either
the rows and columns:

E[dφ(Z, Z̃)] = EU [EV |U [ξ(U, ρ(U), V, γ(V ))]]

= EV [EU|V [ξ(U, ρ(U), V, γ(V ))]],

where Z̃ = ζ(ρ, γ,Λ) and ξ(U, ρ(U), V, γ(V )) = dφ(Z, Z̃).
Using the above separability property, we can efficiently ob-

Table 1: Minimum Bregman information solution
for I-Divergence leads to multiplicative models.

Constraints C Approximation Ẑ

C1 E[Z|Û ]×E[Z|V̂ ]
E[Z]

C2 E[Z|Û , V̂ ]

C3 E[Z|U ]×E[Z|V ]×E[Z|Û,V̂ ]

E[Z|Û ]×E[Z|V̂ ]

C4 E[Z|U,V̂ ]×E[Z|Û,V ]

E[Z|Û,V̂ ]

Table 2: Minimum Bregman information solution
for squared Euclidean distance leads to additive
models.

Constraints C Approximation Ẑ

C1 E[Z|Û ] + E[Z|V̂ ]− E[Z]

C2 E[Z|Û , V̂ ]

C3 E[Z|U ] + E[Z|V ] + E[Z|Û , V̂ ]

−E[Z|Û ]− E[Z|V̂ ]

C4 E[Z|U, V̂ ] + E[Z|Û , V ]− E[Z|Û , V̂ ]

tain the best row clustering by optimizing over the indi-
vidual row assignments while keeping the column clustering
fixed and vice versa. In particular, optimizing the contribu-
tion of each row to the overall approximation error leads to
the row cluster update step,

ρt+1(u) = argmin
g:[g]k1

EV |u[ξ(u, g, V, γt(V ))], [u]m1 .

Similarly, we obtain the column cluster update step,

γt+1(v) = argmin
h:[h]l1

EU|v[ξ(U, ρt(U), v, h)], [v]n1 .

So far, we have only considered updating the row (or
column clustering) keeping the Lagrange multipliers fixed.

After row (or column) updates, the approximation Z̃t =
ζ(ρt+1, γt+1,Λ∗t) is closer to the original matrix Z than

the earlier minimum Bregman information solution Ẑt, but
it is not necessarily the best approximation to Z of the
form ζ(ρt+1, γt+1,Λ). Hence, we need to now optimize over
the Lagrange multipliers keeping the co-clustering fixed. It
turns out [1] that the Lagrange multipliers that result in the
best approximation to Z are same as the optimal Lagrange
multipliers of the minimum Bregman information problem
based on the new co-clustering (ρt+1, γt+1). Based on this

observation, we set Ẑt+1 to be the minimum Bregman in-
formation solution in steps 2A and 2B.

3.2 The Algorithm
Finally, we state the meta algorithm for generalized Breg-

man co-clustering (see Algorithm 1) that is a concrete “im-
plementation” of our outline at the beginning of Section 3.
Further, since the row/column cluster update steps and the
minimum Bregman solution steps all progressively decrease
the matrix approximation error, i.e., the Bregman co-clustering
objective function, the alternate minimization scheme shown
in Algorithm 1 is guaranteed to achieve local optimality.

Theorem 2 The general Bregman co-clustering algorithm
(Algorithm 1) converges to a solution that is locally optimal
for the Bregman co-clustering problem (2.8), i.e., the objec-
tive function cannot be improved by changing either the row
clustering, or the column clustering.



Table 3: Row and column cluster updates for I-
divergence.

C ξ(u, g, V, γ(V )) ξ(U, ρ(U), v, h)

C1 EV |u[Z log
ş

Z
E[Z|g]

ť
] EU|v [Z log

ş
Z

E[Z|h]

ť
]

C2 EV |u[Z log
ş

Z
E[Z|g,V̂ ]

ť
] EU|v [Z log

ş
Z

E[Z|Û,h]

ť
]

C3 EV |u[Z log
ş
Z×E[Z|g]

E[Z|g,V̂ ]

ť
] EU|v [Z log

ş
Z×E[Z|h]

E[Z|Û,h]

ť
]

C4 EV |u[Z log
ş
Z×E[Z|g,V̂ ]
E[Z|g,V ]

ť
] EU|v [Z log

ş
Z×E[Z|Û,h]
E[Z|U,h]

ť
]

Table 4: Row and column cluster updates for
squared Euclidean distance.

C ξ(u, g, V, γ(V )) ξ(U, ρ(U), v, h)
C1 EV |u[(Z − E[Z|g])2] EU|v [(Z − E[Z|h])2]

C2 EV |u[(Z − E[Z|g, V̂ ])2] EU|v [(Z − E[Z|Û , h])2]

C3 EV |u[(Z − E[Z|g, V̂ ] EU|v [(Z − E[Z|Û , h]
+ E[Z|g])2] + E[Z|h])2]

C4 EV |u[(Z − E[Z|g, V ] EU|v [(Z − E[Z|U, h]

+ E[Z|g, V̂ ])2] + E[Z|Û , h])2]

When the Bregman divergence is I-divergence or squared
Euclidean distance, the minimum Bregman information prob-
lem has a closed form analytic solution as shown in Tables
1 and 2. Hence, it is straightforward to obtain the row and
column cluster update steps (Tables 3 and 4) and implement
the Bregman co-clustering algorithm (Algorithm 1). The
resulting algorithms involve a computational effort that is
linear in the size of the data and are hence, scalable. In
general, the minimum Bregman information problem need
not have a closed form solution and the update steps need to
be determined using numerical computation. However, since
the Lagrange dual L(Λ) in the minimum Bregman informa-
tion problem (2.6) is convex in the Lagrange multipliers Λ, it
is possible to obtain the optimal Lagrange multipliers using
convex optimization techniques [3]. The minimum Bregman
information solution and the row and column cluster update
steps can then be obtained from the optimal Lagrange mul-
tipliers.

4. EXPERIMENTS
There are a number of experimental results in existing

literature [4, 5, 8, 10] that illustrate the usefulness of par-
ticular instances of our Bregman co-clustering framework.
In fact, a large class of parametric partitional clustering al-
gorithms [2] including kmeans can be shown to be special
cases of the proposed framework wherein only rows or only
columns are being clustered.

In recent years, co-clustering has been successfully applied
to various application domains such as text mining [8] and
analysis of microarray gene-expression data. Hence, here we
do not experimentally re-evaluate the Bregman co-clustering
algorithms against other methods. Instead, we present brief
case studies to demonstrate two salient features of the pro-
posed co-clustering algorithms: (a) dimensionality reduc-
tion, and (b) missing value prediction.

4.1 Dimensionality Reduction
Dimensionality reduction techniques are widely used for

text clustering to handle sparsity and high-dimensionality
of text data. Typically, the dimensionality reduction step
comes before the clustering step, and the two steps are al-
most independent. In practice, it is not clear which dimen-

Algorithm 1 Bregman Co-clustering Algorithm

Input: Matrix Z ⊆ Sm×n, probability measure ν, Bregman
divergence dφ : R × R 7→ R, number of row clusters l, number
of column clusters k, constraint set C.

Output: Co-clustering (ρ∗, γ∗) that (locally) optimizes the ob-
jective function in (2.8).

Method:
{Initialize ρ, γ }
Û ← ρ(U), V̂ ← γ(V )
repeat
{Step A: Update Row Clusters (ρ)}
for u = 1 to m do
ρ(u)← argmin

g:[g]k1

EV |u[ξ(u, g, V, γ(V ))]

where ξ(U, ρ(U), V, γ(V )) = dφ(Z, Z̃), Z̃ = ζ(ρ, γ,Λ)
and Λ are optimal Lagrange multipliers before updates.

end for
Û ← ρ(U)
{Step B:Update Column Clusters (γ)}
for v = 1 to n do
γ(v)← argmin

h:[h]l1

EU|v [ξ(U, ρ(U), v, h)]

where ξ(U, ρ(U), V, γ(V )) = dφ(Z, Z̃), Z̃ = ζ(ρ, γ,Λ)
and Λ are optimal Lagrange multipliers before updates.

end for
V̂ ← γ(V )

until convergence

Table 5: Effect of Implicit Dimensionality Reduction
by Co-clustering on Classic3. Each subtable is for a
fixed number of (document,word) co-clusters.

(3,20) (3,500) (3,2500)
1389 1 2 1364 3 18 920 49 292

9 1455 33 5 1446 21 31 1239 404
0 4 998 29 11 994 447 172 337

sionality reduction technique to use in order to get a good
clustering. Co-clustering has the interesting capability of
interleaving dimensionality reduction and clustering. This
implicit dimensionality reduction often results in superior
results than regular clustering techniques [8].

Using the bag-of-words model for text, let each column
of the input matrix represent a document, and let each row
represent a word. Keeping the number of document clus-
ters fixed, we present results by varying the number of word
clusters. We ran the experiments on the Classic3 dataset,
a document collection from the SMART project at Cornell
University with 3 classes. Co-clustering was performed with-
out looking at the class labels. We present confusion matri-
ces between the cluster labels assigned by co-clustering and
the true class labels, over various numbers of word clusters.
The number of document clusters were fixed at 3 for all ex-
periments reported. As we can clearly see from Table 5 (for
Classic3), implicit dimensionality reduction by co-clustering
actually gives better document clusters, in the sense that
the cluster labels agree more with the true class labels with
fewer word clusters.

4.2 Missing Value Prediction
To illustrate missing value prediction, we consider a col-

laborative filtering based recommender system. The main
problem in this setting is to predict the preference of a given
user for a given item using the known preferences of all other
users. A popular approach to handle this is by computing
the Pearson correlation of each user with all other users



Table 6: Mean Absolute Error for Movie Ratings

Algo. C2,SqE C3,SqE C2,IDiv C3,IDiv Pearson
Error 0.8398 0.7639 0.8397 0.7723 1.4211

based on the known preferences and predict the unknown
rating by proportionately combining the other users’ rat-
ings. We adopt a co-clustering approach to address the same
problem. The main idea is to simultaneously compute the
user and item co-clusters by assigning zero measure to the
missing values. As a result, the co-clustering algorithm tries
to recover the original structure of the data while disregard-
ing the missing values and the reconstructed approximate
matrix can be used for prediction.

For our experimental results, we use a subset of the Each-
Movie dataset3 consisting of 500 users, 200 movies and con-
taining 25809 ratings, each rating being an integer between
0 (bad) to 5 (excellent). Of these, we use 90% ratings for
co-clustering, i.e., as the training data and 10% ratings as
the test data for prediction. We applied four different co-
clustering algorithms (k = 10, l = 10) corresponding to con-
straint sets C2 and C3 with squared Euclidean (SqE) distance
and I-divergence (IDiv) to the training data and used the re-
constructed matrix for predicting the test ratings. We also
implemented a simple collaborative filtering scheme based
on Pearson’s correlation. Table 6 shows the mean absolute
error between the predicted ratings and the actual ratings
for the different methods. From the table, we observe that
the co-clustering techniques achieve superior results. For
constraint set C3, the individual biases of the users (row av-
erage) and the movies (column average) are accounted for,
hence resulting in a better prediction. The co-clustering al-
gorithms are computationally efficient since the processing
time is linear in the number of the known ratings.

5. RELATED WORK
Our work is primarily related to three main areas: co-

clustering, matrix approximation and learning based on Breg-
man divergences.

Co-clustering has been a topic of much interest in the
recent years because of its applications to problems in mi-
croarray analysis [4, 5] and text mining [8]. In fact, there
exist many formulations of the co-clustering problem such
as the hierarchical co-clustering model [9], the bi-clustering
model [4] that involves finding the best co-clusters one at a
time, etc. In this paper, we have focussed on the partitional
co-clustering formulation first introduced in [9].

Matrix approximation approaches based on singular value
decomposition (SVD) have been widely studied and used.
However, they are quite often inappropriate for data ma-
trices such as co-occurrence and contingency tables, since
SVD-based decompositions are difficult to interpret, which
is necessary for data mining applications. Alternative tech-
niques involving non-negativity constraints [11] using KL-
divergence as the approximation loss function [10, 11] have
been proposed. However, these approaches apply to spe-
cial types of matrices. A general formulation that is both
interpretable and applicable to various classes of matrices
would be invaluable. The proposed Bregman co-clustering
formulation attempts to address this requirement.

Recent research [2] has shown that several results involv-
ing the KL-divergence and the squared Euclidean distance

3http://www.research.compaq.com/src/eachmovie/

are in fact based on certain convexity properties and hence,
generalize to all Bregman divergences. This intuition mo-
tivated us to consider co-clustering based on Bregman di-
vergences. Further, the similarities between the maximum
entropy and the least squares principles [7] prompted us to
explore a more general minimum Bregman information prin-
ciple for all Bregman divergences.

6. DISCUSSION
This paper makes three main contributions. First, we

generalized parametric co-clustering to loss functions cor-
responding to all Bregman divergences. The generality of
the formulation makes the technique applicable to practi-
cally all types of data matrices. Second, we showed that
approximation models of various complexities are possible
depending on the statistics that are to be preserved. Third,
we proposed and extensively used the minimum Bregman
information principle as a generalization of the maximum
entropy principle. For the two Bregman divergences that
we focussed on, viz., I-divergence and squared Euclidean
distance, the proposed algorithm has linear time complexity
and is hence scalable.
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