Kernel k-means, Spectral Clustering and Normalized Cuts

Inderjit S. Dhillon
Dept. of Computer Sciences
University of Texas at Austin

Austin, TX 78712

inderjit@cs.utexas.edu

ABSTRACT

Kernel k-means and spectral clustering have both been used
to identify clusters that are non-linearly separable in input
space. Despite significant research, these methods have re-
mained only loosely related. In this paper, we give an ex-
plicit theoretical connection between them. We show the
generality of the weighted kernel k-means objective func-
tion, and derive the spectral clustering objective of normal-
ized cut as a special case. Given a positive definite similarity
matrix, our results lead to a novel weighted kernel k-means
algorithm that monotonically decreases the normalized cut.
This has important implications: a) eigenvector-based algo-
rithms, which can be computationally prohibitive, are not
essential for minimizing normalized cuts, b) various tech-
niques, such as local search and acceleration schemes, may
be used to improve the quality as well as speed of kernel
k-means. Finally, we present results on several interest-
ing data sets, including diametrical clustering of large gene-
expression matrices and a handwriting recognition data set.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Information
Search and Retrieval; 1.5.3 [Pattern Recognition]: Clus-
tering

General Terms
Algorithms, Theory

Keywords

Spectral Clustering, Kernel k-means, Graph Partitioning

1. INTRODUCTION

Clustering has received a significant amount of attention
in the last few years as one of the fundamental problems in
data mining. k-means is one of the most popular clustering
algorithms. Recent research has generalized the algorithm

Permission to make digital or hard copies of all or part of this work for

Yugiang Guan
Dept. of Computer Sciences
University of Texas at Austin

Austin, TX 78712

yguan@cs.utexas.edu

Brian Kulis
Dept. of Computer Sciences
University of Texas at Austin
Austin, TX 78712

kulis@cs.utexas.edu

in many ways; for example, similar algorithms for clustering
can be obtained using arbitrary Bregman divergences as the
distortion measure [2]. Other advances include using local
search to improve the clustering results [5] and using the
triangle inequality to speed up the computation [4].

A major drawback to k-means is that it cannot separate
clusters that are non-linearly separable in input space. Two
recent approaches have emerged for tackling such a prob-
lem. One is kernel k-means, where, before clustering, points
are mapped to a higher-dimensional feature space using a
nonlinear function, and then kernel k-means partitions the
points by linear separators in the new space. The other
approach is spectral clustering algorithms, which use the
eigenvectors of an affinity matrix to obtain a clustering of
the data. A popular objective function used in spectral clus-
tering is to minimize the normalized cut [12].

On the surface, kernel k-means and spectral clustering
appear to be completely different approaches. In this pa-
per we first unite these two forms of clustering under a sin-
gle framework. By generalizing the k-means objective func-
tion to use both weights and kernels, we show how the two
approaches to clustering are related. Specifically, we can
rewrite the weighted kernel k-means objective function as a
trace maximization problem whose relaxation can be solved
with eigenvectors. The result shows how a particular kernel
and weight scheme is connected to the spectral algorithm of
Ng, Jordan, and Weiss [10]. However, the advantage to our
approach is that we can generalize the clustering algorithm
to use arbitrary kernels and weights.

Further, we show that by choosing the weights in particu-
lar ways, the weighted kernel k-means objective function is
identical to the normalized cut. Thus far, only eigenvector-
based algorithms have been employed to minimize normal-
ized cuts in spectral clustering and image segmentation.
However, software to compute eigenvectors of large sparse
matrices (often based on the Lanczos algorithm) can have
substantial computational overheads, especially when a large
number of eigenvectors are to be computed. In such situa-
tions, our equivalence has an important implication: we can
use k-means-like iterative algorithms for directly minimizing
the normalized-cut of a graph.

We show the usefulness of our approach to the application
of clustering gene expression data by applying a quadratic

personal or classroom use is granted without fee provided that copies arekernel (squared correlation) to obtain anti-correlated gene
not made or distributed for profit or commercial advantage and that copies clusters and we illustrate the scalability of our algorithms in

bear this notice and the full citation on the first page. To copy otherwise, 10 ;..\« of computation time by applying it to a large hand-
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
KDD’'04, August 22-25, 2004, Seattle, Washinton, USA
Copyright 2004 ACM 1-58113-888-1/04/000855.00.

writing recognition data set.
A word about notation. Capital letters such as A, X,Y

Polynomial Kernel | x(a,b) = (a- b + ¢)?
Gaussian Kernel k(a, b) = exp(—|[a — b]|?/207)
Sigmoid Kernel k(a,b) = tanh(c(a - b) + 0)

Table 1: Examples of kernel functions

and ® denote matrices; lower-case bold letters such as a,b
denote column vectors; script letters such as A, B, V, £ rep-
resent sets; ||a|| denotes the L? norm of a vector; and || X||r
denotes the Frobenius norm of a matrix, and is given by

1X|r = (3, X352

2. THE ESSENTIALS

In this section, we summarize the seemingly different ap-
proaches of weighted kernel k-means and spectral clustering.

2.1 Weighted Kernel k-means

The k-means clustering algorithm can be enhanced by the
use of a kernel function; by using an appropriate nonlin-
ear mapping from the original (input) space to a higher-
dimensional feature space, one can extract clusters that are
non-linearly separable in input space. Furthermore, we can
generalize the kernel k-means algorithm by introducing a
weight for each point a, denoted by w(a). As we shall see
later, this generalization is powerful and encompasses the
normalized cut of a graph.

Let us denote clusters by m;, and a partitioning of points
as {m;}5_,. Using the non-linear function ¢, the objective
function of weighted kernel k-means is defined as:

D({m;}i=1) = ZZ a)llé(a) —my[* (1)

S er, w(b)o(b)
Zbeﬂj w(b) '

Note that m; is the “best” cluster representative since

m; = argmin, Z a)||p(a) — z|*.

acT;

where m; =

The Euclidean distance from ¢(a) to center mj is given by

Y ber, w(b)p(b) 2 B
#(a) — W = ¢(a) - ¢(a) —

25 e, wD)6(a) B(b) T ., wb)w(e)d(b) - d(c)
S her, w(b) (Soen, w2

The dot products ¢(a)-¢(b) are computed using kernel func-
tion x (see Table 1 for examples of popular kernel functions),
and are contained in the kernel matrix K. All computation
is in the form of such inner products, hence we can replace
all inner products by entries of the kernel matrix.

The weighted kernel k-means algorithm (Algorithm 1)
shares many properties of standard k-means; for example,
the objective function value defined in (1) monotonically de-
creases with each iteration.

Assuming we are able to store the whole affinity matrix
in main memory, we can analyze the time complexity of Al-
gorithm 1. It is clear that the bottleneck is Step 3, i.e., the
computation of distances. The first term in (2), ¢(a) - ¢(a),

ALGORITHM 1: Weighted Kernel k-means.

WEIGHTED_KERNEL_KMEANS (K, k, w, C1, ..., Ck)
Input: K: kernel matrix, k: number of clusters, w:
weights for each point

Output: C4,....,Ck: partitioning of the points

1. Initialize the k clusters: C£0)7 s C,(CO).

2. Set t = 0.

3. For each point a, find its new cluster index as

j*(a) = argmin[|¢(a) — my|*, using (2).
4. Compute the updated clusters as
t+1 Loax _
¢ ={a: j(a)=j}

5. If not converged, set t = t + 1 and go to Step 3;

Otherwise, stop.

need not be computed since it is a constant for a and thus
does not affect the assignment of a to clusters. The second
term is calculated once per data point, and costs O(n) each
time it is computed, leading to a cost of O(n?) per iteration.
For the third term, notice that Eb,cg&,:w(b)w(:;;b)(:)‘¢(C) is
bE‘frj w
fixed for cluster j, so in each iteration it is computed once
and stored. Thus the complexity is O(n?) scalar operations
per iteration. Initially, we must compute the kernel matrix
K, which usually takes time O(n?*m), where m is the dimen-
sion of the original points. If the total number of iterations is
7, then the time complexity of Algorithm 1 is O(n?(7+m)).

2.2 Spectral clustering

Spectral clustering has emerged recently as a popular clus-
tering method that uses eigenvectors of a matrix derived
from the data. Several algorithms have been proposed in the
literature [9, 10, 12], each using the eigenvectors in slightly
different ways. In this paper, we will focus on the normalized
cut spectral algorithm.

2.2.1 Normalized Cuts

In [13], the authors consider the k-way normalized cut
problem. We are given a graph G = (V, &, A), where V is
the set of vertices, £ is the set of edges connecting vertices,
and A is an edge affinity matrix, assumed to be nonnegative
and symmetric. Suppose A, B C V), we define

Z A3, 7).

i€ A,jEB

links(A, B)

Then the normalized linkratio of A, B is:

links(A, B)

norrnhnkratlo(.A B) m

The k-way normalized cut problem is to minimize the links
that escape a cluster relative to the total “weight” of the
cluster. For a k-way partitioning of the vertices, we are
interested in solving the following problem:

minimize

w\»—'

k
Z normlinkratio(V;, V \ V;).

The authors of [13] obtain the following spectral relaxation
to this problem: let D be the diagonal matrix whose (i,7)
entry is the sum of the entries of row 4 in matrix A. Then

the normalized cut criterion is equivalent to the following
trace maximization problem:

1
maximize %trace(ZTAZ),

where Z = X(XTDX)™%/2 and X is an n x k indicator
matrix for the partitions. Note that Z7 DZ = I.

Letting Z =D'Y?Z and relaxing the constraint that X is
an indicator matrix results in the following problem: maxi-
mize the trace of ZTD_l/QAQ_lfQZ, where the constraints
on Z are relaxed such that Z72Z = I,. A well-known so-
lution to this problem is obtained by setting the matrix Z
to be the top k eigenvectors of the matrix D™'/2AD~1/2.
These eigenvectors are then used to compute a discrete par-
titioning of the points.

3. THE SPECTRAL CONNECTION

At first glance, weighted kernel k-means and normalized
cuts using spectral clustering appear to be quite different.
After all, spectral clustering uses eigenvectors to help deter-
mine the partitions, whereas eigenvectors do not appear to
figure in kernel k-means. However, we saw that the normal-
ized cut problem can be expressed as a trace maximization
problem, and in this section, we show how we can express
weighted kernel k-means as a trace maximization problem
as well. This will show how to connect the two methods of
clustering.

For ease in presentation, let us denote the “distortion” of
a cluster 7; to be d(m;) = 3, w(a)|é(a) - m;||?. Then

we have that D({m;}}_,) = Zf;l d(m;). Moreover, let us
denote, for a cluster m;, the sum of the w weights of the
points in 7; to be s;; in other words, s; = Zaeﬁj w(a).
Finally, let us denote W to be the diagonal matrix of all the
w weights, and W; to be the diagonal matrix of the weights

in ;. Then we can rewrite the mean vector m; as

W,e
m; = o;——,
sj

where ®; is the matrix of points associated with cluster m;
(after the ¢ mapping), i.e., ® = [¢(a1, ¢(az), ..., ¢(a,)], and
e is the vector of all ones of appropriate size.

We can rewrite the distortion of cluster 7; to be:

d(m;) = Y w(@)lé(a) —my|?

aem;

=Y wll(m) - o, B2

acm;

W;ee”

= |(®; — @, W%

I/V.l/2eeTI/V.1/2
= [l(@;W}*(1 - —L—-=)|}

Sj

Using the fact that trace(AAT) = trace(ATA) = ||A|7%,

wl/2eeTwl/?
and noting that [— i Ty

Sj

= P is an orthogonal

projection, i.e. P? = P since s; = e” Wje, we get that

1/2 Tir-1/2 o
W:'“ee W].

d(mj) = trace CI)J'W;/2 7o _J W;/Q(I)JT
55
W_I/QeeTW_l/z
= trace <I>]-Wj1/2 [AT Bt B le/zq);;
Sj
T
W; W,
= race(W; 2 af 0w} - Wogle, Woe,
Vi V5i
If we represent the full matrix of points as ® = [®1, Do, ..., D],

then we have that

D({m;}h_1) = trace(W/ 20T oW /%) —trace(Y' W20 oW /%Y,

where
W11/2e
VR
Wzl/ze
Y = V52
W,i/ze
V5K

Note that Y is an n x k orthonormal matrix, i.e., YTY = I.

Since trace(®WdT) is a constant, the minimization of the
objective function in (1) is equivalent to the maximization
of trace(YTW20T®W1/2Y). The matrix ®7® is simply
the kernel matrix K of the data, so we can rewrite it as the
maximization of trace(Y?WY/2KW'/2Y).

A standard result in linear algebra [8] provides a global
solution to a relaxed version of this problem. By allowing
Y to be an arbitrary orthonormal matrix, we can obtain an
optimal Y by taking the top k eigenvectors of WY2KW/2,
Similarly, the sum of the top k eigenvalues of W'/2KW/?
gives the optimal trace value.

4. |IMPLICATIONS

The previous two sections show that the seemingly unre-
lated graph cut problem and weighted kernel k-means prob-
lem can both be written as trace maximization problems.
This hints at a connection between these problems. We now
make this connection precise, and discuss its implications.

4.1 Normalized Cuts using Weighted Kernel
k-means

As discussed in Section 2.2.1, the normalized cut problem
can be recast as a trace maximization problem, where we
attempt to maximize trace(ZTD™Y2AD™Y/2Z). A simple
calculation reveals that Z is analogous to the matrix Y from
the previous section.

We now show a direct relationship between the trace max-
imizations of the normalized cut and kernel k-means prob-
lems. Consider weighted kernel k-means with W = D and
K = D 'AD™!. The trace maximization of weighted kernel
k-means is then trace(YTD™Y2AD~Y/2Y), which is equiv-
alent to the trace maximization for normalized cut. If the
affinity matrix K is positive definite, we can use the weighted
kernel k-means procedure described in Algorithm 1 in order
to minimize the normalized cut (positive definiteness allows
us to factor K into ®T®, and allows us to prove conver-
gence). Indeed, any starting partition can potentially be
improved by Algorithm 1.

One advantage to our use of an iterative algorithm for
these graph problems is that we can use different improve-

ment methods, such as local search, to increase the quality
of the results. In situations where eigenvector computation
is difficult, for example, when the affinity matrix is large
and sparse, and many eigenvectors are desired, our iterative
algorithm is particularly useful.

4.2 Kernel k-means using Eigenvectors

The reformulation of the kernel k-means objective func-
tion allows us to solve a relaxed problem using the eigen-
vectors of the matrix WY2KW?'/2. This yields a spectral
approach to minimizing the objective function: we first com-
pute the top k eigenvectors of the matrix WY2KW?/2 This
maps the original points to a lower-dimensional space. Once
postprocessing is performed and a discrete clustering solu-
tion has been attained, one can treat the resulting parti-
tioning as a good initialization to kernel k-means on the full
data set. This two-layer approach — first running spectral
clustering to get an initial partitioning and then refining the
partitioning by running kernel k-means on the partitioning
— typically results in a robust partitioning of the data.

4.3 Interpreting NJW As Kernel k-means

The results from the previous sections give us novel ways

to interpret the spectral algorithm of Ng, Jordan, and Weiss [10].

Their algorithm first computes the kernel matrix K, where
the kernel that is used is the Gaussian Kernel. They com-
pute a diagonal matrix D such that the diagonal entries of
D are the sums of the rows of K. Then they compute the
eigenvectors of the matrix D™*2KD~'/2, and form a dis-
crete clustering using these eigenvectors.

Hence, we see that the NJW algorithm can be viewed as
either a spectral relaxation to the weighted kernel k-means
objective function or as a normalized cut problem. The
connection to normalized cuts is clear: we view the affin-
ity matrix K in the spectral algorithm as defining the edge
weights of a graph, and their algorithm attempts to mini-
mize the normalized cut in this graph.

5. SCALABILITY ISSUES

In this section, we discuss methods for scaling the kernel
k-means algorithm to large data sets.

To speed up the distance computation in our weighted ker-
nel k-means algorithm, we can adapt the pruning procedure
used in [4]. The idea behind the acceleration scheme is that
we can use the triangle inequality to avoid unnecessary com-
putation. We compute the distances between corresponding
new and old centers, ||m} — mj|| for all j, and store the
information in a k X k matrix D. Similarly, we keep a k x n
matrix L that contains lower bound for the distance from
each point to each center. The distance from a point to its
cluster center is exact in L. After the centers are updated,
we estimate the lower bound from each point a to new clus-
ter center, say mj, to be the difference between the lower
bound from a to m$ and ||m} —mj||. We actually compute
the distance from a to mj only if the estimation is smaller
than distance from a to its cluster center. Figure 3 shows
significant computation savings due to this estimation.

6. EXPERIMENTAL RESULTS

We now provide experimental results to validate the use-
fulness of the results presented in the previous sections. We
first illustrate “diametric clustering” of genes with degree-
2 polynomial kernel k-means. Then, with the handwriting

recognition data set, we show that using eigenvectors to ini-
tialize kernel k-means gives better initial and final objective
function values and better clustering results. Thus the theo-
retical connection between spectral clustering and kernel k-
means helps in obtaining higher quality results. Finally, we
show that our distance estimation techniques save a consid-
erable amount of computation time, verifying the scalability
of our approach.

6.1 Data sets

The human fibroblast gene expression has 517 genes across
12 conditions and the yeast dataset of Rosetta Inpharmatics
has 5246 genes across 300 conditions. They are used and
preprocessed as in [6].

The Pendigits is downloaded from UCI machine learn-
ing repository (ftp://ftp.ics.uci.edu/ pub/machine-learning-
databases/pendigits), which contains (z,y) coordinates of
hand-written digits. This dataset contains 7494 training
digits and 3498 testing digits. Each digit is represented as
a vector in 16-dimensional space.

6.2 Implementation details

Our kernel k-means algorithm is implemented in C++ and
all experiments are done on a PC (Linux, two AMD 1.19GHz
processors, 1GB main memory). In our implementation, we
store the kernel matrix in main memory. All the plots are
generated using Matlab.

6.3 Results

Diametrical Clustering of Gene Expression Data

In gene expression clustering, identifying anti-correlated
relationship among genes is important, as it has been ob-
served that genes whose expression patterns are strongly
anti-correlated may also be functionally similar. We show
that degree-2 polynomial kernel k-means can identify anti-
correlated genes as was done in [6]. We cluster human fi-
broblast genes into 5 clusters. Then for each cluster A;,i =
1,...,5, we compute the dot product of each gene vector
and the leading eigenvector of A; AT and plot genes across
experiments in red or blue depending on whether the dot
product value is positive or negative. The first 3 plots of
Figure 1 show some sample results. Then we cluster 5246
yeast genes into 40 clusters. This took approximately 4.5
minutes, including forming the kernel matrix and cluster-
ing. The last 3 plots in Figure 1 correspond to one cluster
of yeast genes. We magnify three parts of one cluster plot
across 300 experiments in order to show the details. From
the plots we see that degree-2 polynomial kernel k-means
captures the anti-correlation similar to those captured by
the diametric clustering algorithm. For example, cluster 2 of
the human fibroblast dataset includes a number of genes in-
volved in inter-cellular signaling, inflammation, angiogenesis
and re-epithelialization, such as IL1beta, thrombomodulin,
IL8, etc., corresponding to Figure 3d in [6].
Clustering Handwriting Recognition Data Set

Since the eigenvectors of the kernel matrix are the opti-
mizers of a relaxed trace maximization problem, using the
output of spectral clustering to initialize kernel k-means can
often produce better clustering results than pure random ini-
tialization. To illustrate this, we run sigmoid kernel k-means
on the Pendigits.tes dataset 10 times with random initial-
ization, then average the initial and final objective function
values. Then we run sigmoid kernel k-means 10 times again,

Figure 1: In each figure are plotted the mean ex-
pression profiles of two opposed clusters obtained
on the human fibroblast dataset (first 3 plots) and
the Rosetta dataset (last 3 plots). The clustering al-
gorithm used is degree 2 polynomial kernel k-means.

Figure 2: Two sample runs of sigmoid kernel k-
means clustering of Pendigits.tes dataset; a = 0.0045
and b= 0.11 are used.

initial | final | NMI
random | .0213 | .0062 | .666
spectral | .0081 | .0059 | .698

Table 2: Average initial and final objective func-
tion values and normalized mutual information val-
ues over 10 runs for the Pendigits.tes dataset.

Number of keme! Euclidean distances computed

Figure 3: Computation savings due to triangle in-
equality estimation.

Computation e (sc)
/

B0
.......................

Figure 4: Computation time required to cluster the
whole Pendigits dataset.

but initialized with the output of the spectral clustering al-
gorithm. We also compute the average of the initial and final
objective function values. For this dataset, since we know
the underlying class labels we can evaluate clustering results
by forming a confusion matrix, where entry (i, j), nlm gives
the number of points in cluster 7 and class j. From such a
confusion matrix, we compute normalized mutual informa-
tion (NMI) as

) (h)

(h
% e n” L NS L
2 Zl:l Zh:l n lOg Zle ngh) i1 nl(i)

H(m) + H(C) ’

— i Gilog
. High NMI value indi-

cates that the clustering and true class labels match well. In
Table 2, we compare the average initial and final objective
function values as well as the average normalized mutual in-
formation values of 10 runs each with random initialization
and spectral initialization. Clearly, using spectral initial-
ization can improve clustering quality. Figure 2 shows two
sample runs of sigmoid kernel k-means clustering, one with
random initialization and the other with spectral initializa-
tion.

The bottleneck in Algorithm 1 is the computation of Eu-
clidean distances in kernel space. In order to avoid unnec-
essary computation, we incorporate the triangle inequality
estimation mentioned in Section 5 into our kernel k-means
software. Figure 3 shows the considerable savings in the
number of Euclidean distance computations as the iteration
count increases in a typical run of Algorithm 1 on the whole

where ¢ is the number of classes, H(7) =

and H(¢) = — 5:1 #log #

Figure 5: Objective function value of kernel k-means
and normalized cut values monotonically decrease
in Algorithm 1. Corresponding objective function
value and cut value at each iteration differ by a con-
stant.

Pendigits dataset, which contains 10992 digits. Without
using the estimation, in every iteration nk distance calcu-
lations, 109920 in this case, need to be performed. How-
ever, after incorporating the estimation, we save consider-
able computation; for example, in the ninth iteration only
621 distances need to be computed. Figure 4 gives the com-
putation time taken to cluster 10992 digits into a varied
number of clusters. Times for both the original clustering
algorithm and the one with distance estimation are shown.
The distance estimation technique yields more savings in
computation time as the number of clusters grows.

Figure 5 shows the objective function values of kernel k-
means and the corresponding normalized cut values at each
iteration of Algorithm 1 on the human fibroblast gene data.
Again, a degree-2 polynomial kernel is used and 5 diametri-
cal clusters are generated. We see that cut values decrease
monotonically along with the objective function value of the
kernel k-means algorithm. As can be seen, the difference
between the corresponding cut value and objective func-
tion value at each iteration is a constant, which is equal
to k — trace(D ' A).

7. RELATED WORK

Our work has been largely inspired by recent results on
spectral clustering and relaxation methods presented in [10,
13, 1, 14]. In [14], the authors show that the traditional
k-means objective function can be recast as a trace maxi-
mization problem of the Gram matrix for the original data.
We generalize their work to the case when non-linear ker-
nels are used, plus we treat the weighted version of the kernel
k-means algorithm, which allows us to encompass spectral
algorithms that use normalized cuts.

Although focusing on a different issue, [13, 1] also dis-
cusses a relation to normalized cuts, as well as a method for
finding a good discrete clustering from the eigenvector ma-
trix. In [1], they hint at a way to run an iterative algorithm
for normalized cuts but their algorithm considers the fac-
torization of a semi-definite matrix K such that K = GG7T,
which takes O(n?) time, and thus is computationally worse
than our kernel k-means approach.

The notion of using a kernel to enhance the k-means ob-
jective function was first described in [11]. Kernel-based
learning methods have appeared in a number of other areas,
especially in the area of Support Vector Machines [3].

In [7], the objective function was recast as a trace maxi-

mization, but they developed an EM-style algorithm to solve
the kernel k-means problem.

8. CONCLUSION AND FUTURE WORK

In this paper, we have presented a theoretical connection
between weighted kernel k-means and spectral clustering.
We show that the weighted kernel k-means formulation is
very general, and that the normalized cut objective can be
recast as a special case of the weighted kernel k-means ob-
jective function. We also show that, given weights and a
kernel matrix, it is possible to derive a spectral algorithm
that solves a relaxed version of the objective function. We
also provide new interpretations of the spectral algorithm of
Ng, Jordan, and Weiss, while generalizing them to use other
kernels, such as the degree-2 kernel for diametric clustering.

In future work, we would like to incorporate alternate

objectives, such as ratio cut and ratio association, into our
framework. So far, we have assumed that the affinity matrix
is positive definite. In the future, we would like to be able
to handle indefinite matrices.
Acknowledgments. This research was supported by
NSF CAREER Award No. ACI-0093404, Texas Advanced
Research Program grant 003658-0431-2001 and NSF ITR
Award No. 1IS-0325116.

9. REFERENCES

(1] F. Bach and M. Jordan. Learning spectral clustering. In
Proc. of NIPS-16. MIT Press, 2004.

[2] A. Banerjee, S. Merugu, I. Dhillon, and J. Ghosh.
Clustering with Bregman divergence. Proceeding of SIAM
Data Mining conference, pages 234—245, 2004.

[3] N. Cristianini and J. Shawe-Taylor. Introduction to
Support Vector Machines: And Other Kernel-Based
Learning Methods. Cambridge University Press,
Cambridge, U.K., 2000.

[4] 1. S. Dhillon, J. Fan, and Y. Guan. Efficient clustering of

very large document collections. In Data Mining for

Scientific and Engineering Applications, pages 357-381.

Kluwer Academic Publishers, 2001.

I. S. Dhillon, Y. Guan, and J. Kogan. Iterative clustering

of high dimensional text data augmented by local search.

In Proceedings of The 2002 IEEE International Conference

on Data Mining, pages 131-138, 2002.

I. S. Dhillon, E. M. Marcotte, and U. Roshan. Diametrical

clustering for identifying anti-correlated gene clusters.

Bioinformatics, 19(13):1612-1619, September 2003.

M. Girolami. Mercer kernel based clustering in feature

space. IEEE Transactions on Neural Networks,

13(4):669-688, 2002.

[8] G. Golub and C. Van Loan. Matriz Computations. Johns
Hopkins University Press, 1989.

[9] R. Kannan, S. Vempala, and A. Vetta. On clusterings —
good, bad, and spectral. In Proceedings of the 41st Annual
Symposium on Foundations of Computer Science, 2000.

[10] A.Y. Ng, M. Jordan, and Y. Weiss. On spectral clustering:
Analysis and an algorithm. In Proc. of NIPS-1/, 2001.

[11] B. Scholkopf, A. Smola, and K.-R. Miiller. Nonlinear
component analysis as a kernel eigenvalue problem. Neural
Computation, 10:1299-1319, 1998.

[12] J. Shi and J. Malik. Normalized cuts and image
segmentation. IEEE Trans. Pattern Analysis and Machine
Intelligence, 22(8):888-905, August 2000.

[13] S. X. Yu and J. Shi. Multiclass spectral clustering. In
International Conference on Computer Vision, 2003.

[14] H. Zha, C. Ding, M. Gu, X. He, and H. Simon. Spectral
relaxation for k-means clustering. In Neural Info.
Processing Systems, 2001.

[5

6

[7

