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Abstract
It is a known fact that training recurrent neural
networks for tasks that have long term depen-
dencies is challenging. One of the main reasons
is the vanishing or exploding gradient problem,
which prevents gradient information from prop-
agating to early layers. In this paper we propose
a simple recurrent architecture, the Fourier Re-
current Unit (FRU), that stabilizes the gradients
that arise in its training while giving us stronger
expressive power. Specifically, FRU summarizes
the hidden states h(t) along the temporal dimen-
sion with Fourier basis functions. This allows
gradients to easily reach any layer due to FRU’s
residual learning structure and the global support
of trigonometric functions. We show that FRU
has gradient lower and upper bounds indepen-
dent of temporal dimension. We also show the
strong expressivity of sparse Fourier basis, from
which FRU obtains its strong expressive power.
Our experimental study also demonstrates that
with fewer parameters the proposed architec-
ture outperforms other recurrent architectures on
many tasks.

1. Introduction
Deep neural networks (DNNs) have shown remarkably bet-
ter performance than classical models on a wide range of
problems, including speech recognition, computer vision
and natural language processing. Despite DNNs having
tremendous expressive power to fit very complex functions,
training them by back-propagation can be difficult. Two
main issues are vanishing and exploding gradients. These
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issues become particularly troublesome for recurrent neu-
ral networks (RNNs) since the weight matrix is identical
at each layer and any small changes get amplified expo-
nentially through the recurrent layers (Bengio et al., 1994).
Although exploding gradients can be somehow mitigated
by tricks like gradient clipping or normalization (Pascanu
et al., 2013), vanishing gradients are harder to deal with. If
gradients vanish, there is little information propagated back
through back-propagation. This means that deep RNNs
have great difficulty learning long-term dependencies.

Many models have been proposed to address the vanish-
ing/exploding gradient issue for DNNs. For example Long
Short Term Memory (LSTM) (Hochreiter & Schmidhuber,
1997) tries to solve it by adding additional memory gates,
while residual networks (He et al., 2016) add a short cut to
skip intermediate layers. Recently the approach of directly
obtaining the statistical summary of past layers has drawn
attention, such as statistical recurrent units (SRU) (Oliva
et al., 2017). However, as we show later, they still suffer
from vanishing gradients and have limited access to past
layers.

In this paper, we present a novel recurrent architecture,
Fourier Recurrent Units (FRU) that use Fourier basis to
summarize the hidden statistics over past time steps. We
show that this solves the vanishing gradient problem and
gives us access to any past time step region. In more detail,
we make the following contributions:

• We propose a method to summarize hidden states
through past time steps in a recurrent neural network
with Fourier basis (FRU). Thus any statistical sum-
mary of past hidden states can be approximated by a
linear combination of summarized Fourier statistics.

• Theoretically, we show the expressive power of sparse
Fourier basis and prove that FRU can solve the van-
ishing gradient problem by looking at gradient norm
bounds. Specifically, we show that in the linear set-
ting, SRU only improves the gradient lower/upper
bound of RNN by a constant factor of the expo-
nent (i.e, both have the form (eaT , ebT )), while FRU
(lower and upper) bounds the gradient by constants
independent of the temporal dimension.

• We tested FRU together with RNN, LSTM and SRU
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on both synthetic and real world datasets like pixel-
(permuted) MNIST, IMDB movie rating dataset. FRU
shows its superiority on all of these tasks while enjoy-
ing smaller number of parameters than LSTM/SRU.

We now present the outline of this paper. In Section 2 we
discuss related work, while in Section 3 we introduce the
FRU architecture and explain the intuition regarding the
statistical summary and residual learning. In Sections 4
and 5 we prove the expressive power of sparse Fourier ba-
sis and show that in the linear case FRUs have constant
lower and upper bounds on gradient magnitude. Experi-
mental results on benchmarking synthetic datasets as well
as real datasets like pixel MNIST and language data are
presented in Section 6. Finally, we present our conclusions
and suggest several interesting directions in Section 7.

2. Related Work
Numerous studies have been conducted hoping to address
the vanishing and exploding gradient problems, such as the
use of self-loops and gating units in the LSTM (Hochre-
iter & Schmidhuber, 1997) and GRU (Cho et al., 2014).
These models use trained gate units on inputs or memory
states to keep the memory for a longer period of time thus
enabling them to capture longer term dependencies than
RNNs. However, it has also been argued that by using a
simple initialization trick, RNNs can have better perfor-
mance than LSTM on some benchmarking tasks (Le et al.,
2015). Apart from these advanced frameworks, straight
forward methods like gradient clipping (Mikolov, 2012)
and spectral regularization (Pascanu et al., 2013) are also
proposed.

As brought to wide notice in Residual networks (He et al.,
2016), give MLP and CNN shortcuts to skip intermedi-
ate layers allowing gradients to flow back and reach the
first layer without being diminished. It is also claimed this
helps to preserve features that are already good. Although
ResNet is originally developed for MLP and CNN architec-
tures, many extensions to RNN have shown improvement,
such as maximum entropy RNN (ME-RNN) (Mikolov
et al., 2011), highway LSTM (Zhang et al., 2016) and
Residual LSTM (Kim et al., 2017).

Another recently proposed method, the statistical recurrent
unit (SRU) (Oliva et al., 2017), keeps moving averages of
summary statistics through past time steps. Rather than use
gated units to decide what should be memorized, at each
layer SRU memory cells incorporate new information at
rate α and forget old information by rate (1 − α). Thus
by linearly combining multiple memory cells with different
α’s, SRU can have a multi-scale view of the past. However,
the weight of moving averages is exponentially decaying
through time and will surely go to zero given enough time

steps. This prevents SRU from accessing the hidden states
a few time steps ago, and allows gradients to vanish. Also,
the expressive power of the basis of exponential functions
is small which limits the expressivity of the whole network.

Fourier transform is a strong mathematical tool that has
been successful in many applications. However the pre-
vious studies of Fourier expressive power have been con-
centrate in dense Fourier transform. Price and Song (Price
& Song, 2015) proposed a way to define k-sparse Fourier
transform problem in the continuous setting and also pro-
vided an algorithm which requires the frequency gap.
Based on that (Chen et al., 2016) proposed a frequency
gap free algorithm and well defined the expressive power
of k-sparse Fourier transform. One of the key observations
in the frequency gap free algorithm is that a low-degree
polynomial has similar behavior as Fourier-sparse signal.
To understand the expressive power of Fourier basis, we
use the framework designed by (Price & Song, 2015) and
use the techniques from (Price & Song, 2015; Chen et al.,
2016).

There have been attempts to combine the Fourier trans-
form with RNNs: the Fourier RNN (Koplon & Son-
tag, 1997) uses eix as activation function in RNN model;
ForeNet (Zhang & Chan, 2000) notices the similarity be-
tween Fourier analysis of time series and RNN predictions
and arrives at an RNN with diagonal transition matrix. For
CNN, the FCNN (Pratt et al., 2017) replaces sliding win-
dow approach with the Fourier transform in the convolu-
tional layer. Although some of these methods show im-
provement over current ones, they have not fully exploit the
expressive power of Fourier transform or avoided the gradi-
ent vanishing/exploding issue. Motivated by the shortcom-
ings of the above methods, we have developed a method
that has a thorough view of the past hidden states, has
strong expressive power and does not suffer from the gra-
dient vanishing/exploding problem.

Notation. We use [n] to denote {1, 2, · · · , n}.

We provide several definitions related to matrix A. Let
det(A) denote the determinant of a square matrix A, and
A> denote the transpose of A. Let ‖A‖ denote the spectral
norm of matrix A, and let At denote the square matrix A
multiplied by itself t − 1 times. Let σi(A) denote the i-th
largest singular value of A.

For any function f , we define Õ(f) to be f · logO(1)(f).
In addition to O(·) notation, for two functions f, g, we use
the shorthand f . g (resp. &) to indicate that f ≤ Cg
(resp. ≥) for an absolute constant C. We use f h g to
mean cf ≤ g ≤ Cf for constants c and C.

The full version provides the detailed proofs and additional
experimental results for comparison.
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3. Fourier Recurrent Unit
In this section, we first introduce our notation in the RNN
framework and then describe our method, the Fourier Re-
current Unit (FRU), in detail. Given a hidden state vector
from the previous time step h(t−1) ∈ Rnh , input x(t−1) ∈
Rni , RNN computes the next hidden state h(t) and output
y(t) ∈ Rny as:

h(t) = φ(W · h(t−1) + U · x(t−1) + b) ∈ Rnh (1)

y(t) = Y · h(t) ∈ Rny

where φ is the activation, W ∈ Rnh×nh , U ∈ Rnh×ni and
Y ∈ Rny×nh , t = 1, 2, . . . , T is the time step and h(t) is
the hidden state at step t. In RNN, the output y(t) at each
step is locally dependent to h(t) and only remotely linked
with previous hidden states (through multiple weight ma-
trices and activations). This give rise to the idea of directly
summarizing hidden states through time.

Statistical Recurrent Unit. For each t ∈ {1, 2, · · · , T},
(Oliva et al., 2017) propose SRU with the following update
rules

g(t) = φ(W1 · u(t−1) + b1) ∈ Rng

h(t) = φ(W2 · g(t) + U · x(t−1) + b2) ∈ Rnh

u
(t)
i = D · u(t−1)i + (I −D) · (1⊗ I) · h(t) (2)

y(t) = Y · u(t) ∈ Rny

where 1 ⊗ I = [Inh
, . . . , Inh

]>. Given the decay fac-
tors αk ∈ (0, 1), k = 1, 2 · · ·K, the decaying matrix
D ∈ RKnh×Knh is:

D = diag (α1Inh
, α2Inh

, · · · , αKInh
) .

For each i ∈ [Knh] and t > 0, u(t)i can be expressed as
the summary statistics across previous time steps with the
corresponding αk:

u
(t)
i = αtk · u

(0)
i + (1− αk)

t∑
τ=1

αt−τk · h(τ). (3)

However, it is easy to note from (3) that the weight on h(τ)

vanishes exponentially with t − τ , thus the SRU cannot
access hidden states from a few time steps ago. As we show
later in section 5, the statistical factor only improves the
gradient lower bound by a constant factor on the exponent
and still suffers from vanishing gradient. Also, the span
of exponential functions has limited expressive power and
thus linear combination of entries of u(t) also have limited
expressive power.

Fourier Recurrent Unit. Recall that Fourier expansion
indicates that a continuous function F (t) defined on [0, T ]

can be expressed as:

F (t) = A0 +
1

T

N∑
k=1

Ak cos

(
2πkt

T
+ θk

)
where ∀k ∈ [N ]:

Ak =
√
a2k + b2k, θk = arctan(bk, ak)

ak = 2〈F (t), cos
(
2πkt

T

)
〉, bk = 2〈F (t), sin

(
2πkt

T

)
〉,

where 〈a, b〉 =
∫ T
0
a(t)b(t)dt. To utilize the strong ex-

pressive power of Fourier basis, we propose the Fourier
recurrent unit model. Let f1, f2, · · · , fK denote a set of
K frequencies. For each t ∈ {1, 2, · · · , T}, we have the
following update rules

g(t) = φ(W1 · u(t−1) + b1) ∈ Rng

h(t) = φ(W2 · g(t) + U · x(t−1) + b2) ∈ Rnh

u(t) = u(t−1) +
1

T
C(t) · h(t) ∈ Rnu (4)

y(t) = Y · u(t) ∈ Rny

where C(t) ∈ Rnu×nh is the Cosine matrix containing m
square matrices:

C(t) =
[
C

(t)
1 C

(t)
2 · · · C

(t)
M

]>
,

and each C(t)
j is a diagonal matrix with cosine at m = K

M
distinct frequencies evaluated at time step t:

C
(t)
j = diag

(
cos

(
2πfk1

t

T
+ θk1

)
Id, · · · , cos

(
2πfk2

t

T
+ θk2

)
Id

)

where k1 = m(j−1)+1, k2 = mj and d is the dimension
for each frequency. For every t, j, k > 0, i = d(k − 1) + j

the entry u(t)i has the expression:

u
(t)
i = u

(0)
i +

1

T

t∑
τ=1

cos

(
2πfkτ

T
+ θk

)
· h(τ)j (5)

As seen from (5), due to the global support of trigonometric
functions, we can directly link u(t) with hidden states at any
time step. Furthermore, because of the expressive power of
the Fourier basis, given enough frequencies, y(t) = Y ·
u(t) can express any summary statistic of previous hidden
states. As we will prove in later sections, these features
prevent FRU from vanishing/exploding gradients and give
it much stronger expressive power than RNN and SRU.

Connection with residual learning. Fourier recurrent
update of u(t) can also be written as:

u(t+1) = u(t) + F(u(t))

F(u(t)) = 1

T
C(t+1)φ(W2φ(W1u

(t) + b1) + Ux(t) + b2)
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Figure 1: The Fourier Recurrent Unit

Thus the information flows from layer (t − 1) to layer t
along two paths. The second term, u(t−1) needs to pass two
layers of non-linearity, several weight matrices and scaled
down by T , while the first term, u(t−1) directly goes to u(t)

with only identity mapping. Thus FRU directly incorpo-
rates the idea of residual learning while limiting the magni-
tude of the residual term. This not only helps the informa-
tion to flow more smoothly along the temporal dimension,
but also acts as a regularization that makes the gradient of
adjacent layers to be close to identity:

∂u(t+1)

∂u(t)
= I +

∂F
∂u(t)

.

Intuitively this solves the gradient exploding/vanishing is-
sue. Later in Section 5, we give a formal proof and com-
parison with SRU/RNN.

4. Fourier Basis
In this section we show that FRU has stronger expressive
power than SRU by comparing the expressive power of lim-
ited number of Fourier basis (sparse Fourier basis) and ex-
ponential functions. On the one hand, we show that sparse
Fourier basis is able to approximate polynomials well. On
the other hand, we prove that even infinitely many expo-
nential functions cannot fit a constant degree polynomial.

First, we state several basic facts which will be later used
in the proof.

Lemma 4.1. Given a square Vandermonde matrix V where
Vi,j = αj−1i , then det(V ) =

∏
1≤i<j≤n(αj − αi).

Also recall the Taylor expansion of sin(x) and cos(x) is

sin(x) =

∞∑
i=0

(−1)i

(2i+ 1)!
x2i+1, cos(x) =

∞∑
i=0

(−1)i

(2i)!
x2i.

4.1. Using Fourier Basis to Interpolate Polynomials

(Chen et al., 2016) proved an interpolating result which
uses Fourier basis ( e2πift, i =

√
−1) to fit a complex

polynomial (Q(t) : R → C). However in our applica-
tion, the target polynomial is over the real domain, i.e.

Q(t) : R → R. Thus, we only use the real part of the
Fourier basis. We extend the proof technique from previous
work to our new setting, and obtain the following result,

Lemma 4.2. For any 2d-degree polynomial Q(t) =∑2d
j=0 cjt

j ∈ R, any T > 0 and any ε > 0, there al-
ways exists frequency f > 0 (which depends on d and ε)
and x∗(t) =

∑d+1
i=1 αi cos(2πfit) + βi cos(2πfit + θi)

with coefficients {αi, βi}di=0 such that ∀t ∈ [0, T ], |x∗(t)−
Q(t)| ≤ ε.

We provide the proof in the full version.

4.2. Exponential Functions Have Limited Expressive
Power

Given k coefficients c1, · · · , ck ∈ R and k decay param-
eters α1, · · · , αk ∈ (0, 1), we define function x(t) =∑k
i=1 ciα

t
i. We provide an explicit counterexample which

is a degree-9 polynomial. Using that example, we are able
to show the following result and defer the proof to full ver-
sion.

Theorem 4.3. There is a polynomial P (t) : R → R with
O(1) degree such that, for any k ≥ 1, for any x(t) =∑k
i=1 ciα

t
i, for any k coefficients c1, · · · , ck ∈ R and k

decay parameters α1, · · · , αk ∈ (0, 1) such that

1

T

∫ T

0

|P (t)− x(t)|dt & 1

T

∫ T

0

|P (t)|dt.

5. Vanishing and Exploding Gradients
In this section, we analyze the vanishing/exploding gradi-
ent issue in various recurrent architectures. Specifically we
give lower and upper bounds of gradient magnitude under
the linear setting and show that the gradient of FRU does
not explode or vanish with temporal dimension T → ∞.
We first analyze RNN and SRU models as a baseline and
show their gradients vanish/explode exponentially with T .

Gradient of linear RNN. For linear RNN, we have:

h(t+1) =W · h(t) + U · x(t) + b

where t = 0, 1, 2 · · ·T − 1. Thus

h(T ) =W · h(T−1) + U · x(T−1) + b

=WT−T0 · h(T0) +

T∑
t=T0

WT−t−1(U · x(t) + b)
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Figure 2: Temperature changes of Beijing from year 2010 to 2012, and the fit with Fourier basis: (a) 5 Fourier basis; (b)
20 Fourier basis; (c) 60 Fourier basis; (d) 100 Fourier basis.

Let L = L(h(T )) denote the loss function. By Chain rule,
we have ∥∥∥∥ ∂L

∂h(T0)

∥∥∥∥ =

∥∥∥∥∥
(
∂h(T )

∂h(T0)

)>
∂L

∂h(T )

∥∥∥∥∥
=

∥∥∥∥(WT−T0)> · ∂L

∂h(T )

∥∥∥∥
≥ σmin(W

T−T0) ·
∥∥∥∥ ∂L

∂h(T )

∥∥∥∥ .
Similarly for the upper bound:∥∥∥∥ ∂L

∂h(T0)

∥∥∥∥ ≤ σmax(W
T−T0) ·

∥∥∥∥ ∂L

∂h(T )

∥∥∥∥ .

Gradient of linear SRU. For linear SRU, we have:

h(t) =W1W2 · u(t−1) +W2b1 +W3 · x(t−1) + b2,

u(t) = α · u(t−1) + (1− α)h(t).

Denoting W =W1W2 and B =W2b1 + b2, we have

Claim 5.1. Let W = αI + (1 − α)W . Then us-
ing SRU update rule, we have u(T ) = W

T−T0
u(T0) +∑T

t=T0
W

T−t−1
(1− α)W3(x

(t) +B).

We provide the proof in the full version.

With L = L(u(T )), by Chain rule, we have the lower
bound:∥∥∥∥ ∂L

∂u(T0)

∥∥∥∥ =

∥∥∥∥((αI + (1− α)W )>)T−T0
∂L

∂u(T )

∥∥∥∥
≥ (α+ (1− α)σmin(W ))T−T0 ·

∥∥∥∥ ∂L

∂u(T )

∥∥∥∥ .
And similarly for the upper bound:∥∥∥∥ ∂L

∂u(T0)

∥∥∥∥ ≤ (α+ (1− α)σmax(W ))(T−T0) ·
∥∥∥∥ ∂L

∂u(T )

∥∥∥∥ .
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Figure 3: Test MSE of different models on mix-sin syn-
thetic data. FRU uses FRU120,5.

These bounds for RNN and SRU are achievable, a sim-
ple example would be W = σI . It is easy to notice that
with α ∈ (0, 1), SRUs have better gradient bounds than
RNNs. However, SRUs is only better by a constant factor
on the exponent and gradients for both methods could still
explode or vanish exponentially with temporal dimension
T .

Gradient of linear FRU. By design, FRU avoids van-
ishing/exploding gradient by its residual learning structure.
Specifically, the linear FRU has bounded gradient which
is independent of the temporal dimension T . This means
no matter how deep the network is, gradient of linear FRU
would never vanish or explode. We have the following the-
orem:

Theorem 5.2. With FRU update rule in (4), and φ being
identity, we have: e−2σmax(W1W2)

∥∥ ∂L
∂u(T )

∥∥ ≤ ∥∥ ∂L
∂u(T0)

∥∥ ≤
eσmax(W1W2)

∥∥ ∂L
∂u(T )

∥∥ for any T0 ≤ T .

We provide the proof in the full version.

6. Experimental Results
We implemented the Fourier recurrent unit in
Tensorflow (Abadi et al., 2016) and used the
standard implementation of BasicRNNCell and
BasicLSTMCell for RNN and LSTM, respectively.
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We also used the released source code of SRU (Oliva
et al., 2017) and used the default configurations of
{αi}5i=1 = {0.0, 0.25, 0.5, 0.9, 0.99}, gt dimension of
60, and h(t) dimension of 200. We release our codes
on github1. For fair comparison, we construct one layer
of above cells with 200 units in the experiments. Adam
(Kingma & Ba, 2014) is adopted as the optimization
engine. We explore learning rates in {0.001, 0.005, 0.01,
0.05, 0.1} and learning rate decay in {0.8, 0.85, 0.9, 0.95,
0.99}. The best results are reported after grid search for
best hyper parameters. For simplicity, we use FRUk,d to
denote k sampled sparse frequencies and d dimensions for
each frequency fk in a FRU cell.

6.1. Synthetic Data

We design two synthetic datasets to test our model: mix-
ture of sinusoidal functions (mix-sin) and mixture of poly-
nomials (mix-poly). For mix-sin dataset, we first con-
struct K components with each component being a com-
bination of D sinusoidal functions at different frequencies
and phases (sampled at beginning). Then, for each data
point, we mix the K components with randomly sampled
weights. Similarly, each data point in mix-poly dataset is
a random mixture of K fixed D degree polynomials, with
coefficients sampled at beginning and fixed. Alg. 1 and
Alg. 2 (in the full version) explain these procedures in de-
tail. Among the sequences, 80% are used for training and
20% are used for testing. We picked sequence length T to
be 176, number of components K to be 5 and degree D
to be 15 for mix-sin and {5, 10, 15} for mix-poly. At each
time step t, models are asked to predict the sequence value
at time step t+1. It requires the model to learn theK under-
lying functions and uncover the mixture rates at beginning
time steps. Thus we can measure the model’s ability to ex-
press sinusoidal and polynomial functions as well as their
long term memory.

Figure 3 and 4 plots the testing mean square error (MSE)
of different models on mix-sin/mix-poly datasets. We use
learning rate of 0.001 and learing rate decay of 0.9 for train-
ing. FRU achieves orders of magnitude smaller MSE than
other models on mix-sin and mix-poly datasets, while using
about half the number of parameters of SRU. This indicates
FRU’s ability to easily express these component functions.

To explicitly demonstrate the gradient stability and ability
to learn long term dependencies of different models, we
analyzed the partial gradient at different distance. Specif-
ically, we plot the partial derivative norm of error on digit
t w.r.t. the initial hidden state, i.e. ∂(ŷ(t)−y(t))2

∂h(0) where y(t)

is label and ŷ(t) is model prediction. The norms of gra-
dients for FRU are very stable from t = 0 to t = 300.

1https://github.com/limbo018/FRU
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Figure 4: Test MSE of different models on mix-poly syn-
thetic data with different maximum degrees of polynomial
basis. FRU uses FRU120,5.

Table 1: Testing Accuracy of MNIST Dataset

Networks Testing
Accuracy #Variables Variable

Ratio
RNN 10.39% 42K 0.26

LSTM 98.17% 164K 1.00
SRU 96.20% 275K 1.68

FRU40,10 96.88% 107K 0.65
FRU60,10 97.61% 159K 0.97

With the convergence of training, the amplitudes of gradi-
ent curves gradually decrease. However, the gradients for
SRU decrease in orders of magnitudes with the increase of
time steps, indicating that SRU is not able to capture long
term dependencies. The gradients for RNN/LSTM are even
more unstable and the vanishing issues are rather severe.

6.2. Pixel-MNIST Dataset

We then explore the performance of Fourier recurrent units
in classifying MNIST dataset. Each 28 × 28 image is flat-
tened to a long sequence with a length of 784. The RNN
models are asked to classify the data into 10 categories af-
ter being fed all pixels sequentially. Batch size is set to
256 and dropout (Srivastava et al., 2014) is not included in
this experiment. A softmax function is applied to the 10
dimensional output at last layer of each model. For FRU,
frequencies f are uniformly sampled in log space from 0 to
784.
Fig. 6 plots the testing accuracy of different models during
training. RNN fails to converge and LSTM converges very
slow. The fastest convergence comes from FRU, which
achieves over 97.5% accuracy in 10 epochs while LSTM
reaches 97% at around 40th epoch. Table 1 shows the ac-
curacy at the end of 100 epochs for RNN, LSTM, SRU,
and different configurations of FRU. LSTM ends up with

https://github.com/limbo018/FRU
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Figure 5: L1, L2, and L∞ norms of gradients for different models on the training of mix-poly (5, 5) dataset. We evaluate
the gradients of loss to the initial state with time steps, i.e., ∂(ŷ

(t)−y(t))2
∂h(0) , where (ŷ(t) − y(t))2 is the loss at time step t.

Each point in a curve is averaged over gradients at 20 consecutive time steps. We plot the curves at epoch 0, 10, 20, . . . , 90
with different colors from dark to light. FRU uses FRU120,5 and SRU uses {αi}5i=1 = {0.0, 0.25, 0.5, 0.9, 0.95}.
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Figure 6: Testing accuracy of RNN, LSTM, SRU, and FRU
for pixel-by-pixel MNIST dataset. FRU uses FRU60,10,
i.e., 60 frequencies with the dimension of each frequency
fk to be 10.

98.17% in testing accuracy and SRU achieves 96.20%. Dif-
ferent configurations of FRU with 40 and 60 frequencies
provide close accuracy to LSTM. The number and ratio of
trainable parameters are also illustrated in the table. The
amount of variables for FRU is much smaller than that of
SRU, and comparable to that of LSTM, while it is able to
achieve smoother training and high testing accuracy. We
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Figure 7: Testing accuracy of RNN, LSTM, SRU, and FRU
for permuted pixel-by-pixel MNIST. FRU uses 60 frequen-
cies with the dimension of 10 for each frequency.

ascribe such benefits of FRU to better expressive power and
more robust to gradient vanishing from the Fourier repre-
sentations.

6.3. Permuted MNIST Dataset
We now use the same models as previous section and test
on permuted MNIST dataset. Permute MNIST dataset is
generated from pixel-MNIST dataset with a random but
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Table 2: Testing Accuracy of Permuted MNIST Dataset

RNN LSTM SRU FRU
87.46% 90.26% 92.21% 96.93%
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Figure 8: Testing accuracy of RNN, LSTM, SRU, and FRU
for IMDB dataset. FRU5,10 uses 5 frequencies with the di-
mension of 10 for each frequency fk. FRU1,10 is an ex-
treme case of FRU with only frequency 0.

fixed permutation among its pixels. It is reported the per-
mutation increases the difficulty of classification (Arjovsky
et al., 2016). The training curve is plotted in Fig. 7 and
the converged accuracy is shown in Table 2. We can see
that in this task, FRU can achieve 4.72% higher accuracy
than SRU, 6.67% higher accuracy than LSTM, and 9.47%
higher accuracy than RNN. The training curve of FRU
is smoother and converges much faster than other mod-
els. The benefits of FRU to SRU are more significant in
permuted MNIST than that in the original pixel-by-pixel
MNIST. This can be explained by higher model complex-
ity of permuted-MNIST and stronger expressive power of
FRU.

6.4. IMDB Dataset

We further evaluate FRU and other models with IMDB
movie review dataset (25K training and 25K testing se-
quences). We integrate FRU and SRU into TFLearn
(Damien et al., 2016), a high-level API for Tensorflow,
and test together with LSTM and RNN. The average se-
quence length of the dataset is around 284 and the maxi-
mum sequence length goes up to over 2800. We truncate
all sequences to a length of 300. All models use a single
layer with 128 units, batch size of 32, dropout keep rate of
80%. FRU uses 5 frequencies with the dimension for each
frequency fk as 10. Learning rates and decays are tuned
separately for each model for best performance.

Fig. 8 plots the testing accuracy of different models dur-
ing training and Table 3 gives the eventual testing accuracy.

Table 3: Testing Accuracy of IMDB Dataset

Networks
Testing

Accuracy #Variables
Variable

Ratio
RNN 50.53% 33K 0.25

LSTM 83.64% 132K 1.00
SRU 86.40% 226K 1.72

FRU5,10 86.71% 12K 0.09
FRU1,10 86.44% 4K 0.03

FRU5,10 can achieve 0.31% higher accuracy than SRU, and
3.07% better accuracy than LSTM. RNN fails to converge
even after a large amount of training steps. We draw at-
tention to the fact that with 5 frequencies, FRU achieves
the highest accuracy with 10X fewer variables than LSTM
and 19X fewer variables than SRU, indicating its excep-
tional expressive power. We further explore a special case
of FRU, FRU1,10, with only frequency 0, which is reduced
to a RNN-like cell. It uses 8X fewer variables than RNN,
but converges much faster and is able to achieve the second
highest accuracy.

Besides the experimental results above, we provide more
experiments on different configurations of FRU for MNIST
dataset, detailed procedures to generate synthetic data in
the full version.

7. Conclusion
In this paper, we have proposed a simple recurrent architec-
ture called the Fourier recurrent unit (FRU), which has the
structure of residual learning and exploits the expressive
power of Fourier basis. We gave a proof of the expressiv-
ity of sparse Fourier basis and showed that FRU does not
suffer from vanishing/exploding gradient in the linear case.
Ideally, due to the global support of Fourier basis, FRU is
able to capture dependencies of any length. We empirically
showed FRU’s ability to fit mixed sinusoidal and polyno-
mial curves, and FRU outperforms LSTM and SRU on
pixel MNIST dataset with fewer parameters. On language
models datasets, FRU also shows its superiority over other
RNN architectures. Although we now limit our models
to recurrent structure, it would be very exciting to extend
the Fourier idea to help gradient issues/expressive power
for non-recurrent deep neural network, e.g. MLP/CNN. It
would also be interesting to see how other basis functions,
such as polynomial basis, will behave on similar architec-
tures. For example, Chebyshev’s polynomial is one of the
interesting case to try.
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