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Abstract

Learning a low-rank matrix from missing and corrupted observations is a fundamental
problem in many machine learning applications. However, the role of side information in
low-rank matrix learning has received little attention, and most current approaches are
either ad-hoc or only applicable in certain restrictive cases. In this paper, we propose a
general model that exploits side information to better learn low-rank matrices from missing
and corrupted observations, and show that the proposed model can be further applied to
several popular scenarios such as matrix completion and robust PCA. Furthermore, we
study the effect of side information on sample complexity and show that by using our model,
the efficiency for learning can be improved given sufficiently informative side information.
This result thus provides theoretical insight into the usefulness of side information in our
model. Finally, we conduct comprehensive experiments in three real-world applications—
relationship prediction, semi-supervised clustering and noisy image classification, showing
that our proposed model is able to properly exploit side information for more effective
learning both in theory and practice.

Keywords: Side information, low-rank matrix learning, learning from missing and cor-
rupted observations, matrix completion, robust PCA

1. Introduction

Learning a low-rank matrix from noisy, high-dimensional complex data is an important
research challenge in modern machine learning. In particular, in the recent big data era,
assuming that the observations come from a model with implicit low-rank structure is one of
the most prevailing approaches to avoid the curse of dimensionality. While various low-rank
matrix learning problems arise from different contexts and domains, the primary challenge
is rather similar: namely to reliably learn a low-rank matrix L0 based only on missing
and corrupted observations from L0. This generic framework includes many well-known
machine learning problems such as matrix completion (Candès and Tao, 2009), robust
PCA (Wright et al., 2009) and matrix sensing (Zhong et al., 2015), and is shown to be
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useful in many important real-world applications including recommender systems (Koren
et al., 2009), social network analysis (Hsieh et al., 2012) and image processing (Wright et al.,
2009).

Among research related to low-rank matrix learning, one promising direction is to fur-
ther exploit side information, or features, to help the learning process. 1 The notion of side
information appears naturally in many applications. For example, in the famous Netflix
problem where the goal is movie recommendation based on users’ ratings, a popular ap-
proach is to assume that the given user-movie rating pairs are sampled from a low-rank
matrix (Koren et al., 2009). However, besides rating history, profiles of users and/or genres
of movies may also be provided, and one can possibly leverage such side information for
better recommendation. Since such additional features are available in many applications,
designing a model to better incorporate features into low-rank matrix learning problems
becomes an important issue with both theoretical and practical interests.

Motivated by the above realization, we study the effect of side information on learning
low-rank matrices from missing and corrupted observations in this paper. Our general
problem setting can be formally described as follows. Let L0 ∈ Rn1×n2 be the low-rank
modeling matrix, yet due to various reasons we can only observe a matrix R ∈ Rn1×n2

which contains missing and/or corrupted observations of L0. In addition, suppose we are
also given additional feature matrices X ∈ Rn1×d1 and/or Y ∈ Rn2×d2 as side information,
where each row xi ∈ Rd1 (or yi ∈ Rd2) denotes a feature representation of the i-th row
(or column) entity of X (or Y ). Then, instead of just using R to recover L0, our hope is
to leverage side information X and Y to learn L0 more effectively. Below, we further list
some important applications where the side information naturally comes in as the form of
X and/or Y in this framework:

• Collaborative filtering. Collaborative filtering is one of the most popular machine
learning applications in industry where we aim to predict the preferences of users to
any products based on limited rating history (e.g. the Netflix problem we mentioned
previously). A traditional approach is to complete the partial user-product rating
matrix R via matrix completion. However, one could also collect per-user features xi
and per-product features yj as possible information to leverage, and the assembled
feature representation for users and products becomes X and Y in this framework.

• Link prediction. The link prediction problem in online social network analysis is to
predict and recommend the implicit friendships of users given the current network
snapshot. One approach is to think of the network snapshot as a user-to-user rela-
tionship matrix R, and thus any missing relationships in the snapshot can be inferred
by conducting matrix completion on R (Liben-Nowell and Kleinberg, 2007). Similarly,
if user-specific information (like user profile) is collected, these user features can be
deemed as both X and Y .

• Image denoising. Another low-rank matrix learning application is image denoising.
It is known that same types of images (e.g. images of human face, digits, or im-
ages with same scene) often share a common low-rank structure, and learning that
low-dimensional space can be useful for many applications such as image recognition

1. We will use terms ‘side information’ and ‘features’ interchangeably throughout the paper.
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and background subtraction. Yet in the realistic setting, images may be corrupted by
sparse noise such as shadowing or brightness saturation, making the learning of that
low-dimensional space much more difficult. A popular approach, known as robust
PCA, is to construct an observed matrix R where each column is a vector represen-
tation of an image, and further learn the underlying low-rank subspace by separating
it from the sparse noise in R. In Section 4, we will show that if features of clean im-
ages X and/or label-relevant features Y are also given, one can learn the underlying
low-dimensional subspace more accurately.

Organization of the paper. To study the effect of side information in low-rank matrix
learning with missing and corrupted observations, we focus on answering the following
important questions in a systematical manner:

• What type of side information can benefit learning?

• What model should we use for incorporating side information?

• How can we further quantify the merits of side information in learning?

Regarding the first question, in Section 2, we start with the case of “perfect” side information
(defined in equation 2) as an idealized case where the given features are fully informative,
and further generalize to the case of noisy side information where the given features are
only partially correlated to L0. We will see that while information from perfect features is
extremely useful, certain noisy features can also be quite effective to benefit learning.

The model for incorporating side information can also be constructed subsequently once
the type of side information is identified. Precisely, in Section 2, we argue that for perfect
features, one can directly transform the low-rank modeling matrix into a bilinear form
with respect to features X and Y . However, the validity of such an embedding becomes
questionable if features are noisy. Therefore, for noisy features, we propose to break the
low-rank matrix into two parts—one that captures information from features and one that
captures information outside the feature space—resulting in a general model (problem 4)
that learns the low-rank matrix by jointly balancing information from noisy features and
observations. In addition, we discuss the connections between our model and several well-
known models, such as low-rank matrix completion and robust PCA. We also show that
our proposed model can be efficiently solved by well-established optimization procedures.

Furthermore, in Section 3, we provide a theoretical analysis to justify the merits of side
information in the proposed model (4). To start with, in Section 3.1, we quantify the quality
of features and the noise level of corruption using Rademacher model complexity in the gen-
eralization analysis. As a result, a tighter error bound can be derived given better quality
of features and/or lower noise level in observations. We further derive sample complexity
guarantees for the case of matrix completion in Section 3.2 and for the case where observa-
tions are both missing and corrupted in Section 3.3. For the case of matrix completion, our
sample complexity result suggests that the proposed model requires asymptotically fewer
observations to recover the low-rank matrix compared to standard matrix completion, as
long as the given features are sufficiently informative. This result substantially generalizes
the previous study of side information in matrix completion in Jain and Dhillon (2013)
which only guarantees improved complexity given perfect features. On the other hand, for
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the case where observations are both missing and corrupted, our resulting sample complex-
ity guarantee implies that better quality of side information is useful for learning missing
entries of the low-rank matrix provided that the corruption is not too severe. These results
thus justify the usefulness of side information in the proposed model in theory.

Finally, in Section 4, we verify the effectiveness of the proposed model experimen-
tally on various synthetic data sets, and additionally apply it to three machine learning
applications—relationship prediction, semi-supervised clustering and noisy image classifi-
cation. We show that each of them can be tackled by learning a low-rank modeling matrix
from missing or corrupted observations given certain additional features, and therefore, by
employing our model to exploit side information, we can achieve better performance in these
applications compared to other state-of-the-art methods. These results demonstrate that
our proposed model indeed exploits side information for various low-rank matrix learning
problems.

Here are the key contributions of this paper:

• We study the effect of side information and provide a general treatment to incor-
porate side information for learning low-rank matrices from missing and corrupted
observations.

• In particular, given perfect side information, we propose to transform the estimated
low-rank matrix to a bilinear form with respect to features. Moreover, given noisy side
information, we propose to further break the low-rank matrix into a part capturing
feature information plus a part capturing information outside the feature space, and
therefore, learning can be conducted efficiently by balancing information between
features and observations.

• We theoretically justify the usefulness of side information in the proposed model in
various scenarios by first quantifying the effectiveness of features and then showing
that the sample complexity can be asymptotically improved provided sufficiently in-
formative features.

• We provide comprehensive experimental results to confirm that the proposed model
properly embeds both perfect and noisy side information for learning low-rank matri-
ces more effectively compared to other state-of-the-art approaches.

Parts of this paper have previously appeared in Chiang et al. (2015) and Chiang et al. (2016),
in which we exclusively studied the effect of noisy side information in matrix completion and
the effect of perfect side information in robust PCA, respectively. In this paper, we consider
a much more general setting and propose a general model to exploit side information for a
broader class of low-rank matrix learning problems. In particular, given this general model,
we can further exploit noisy side information for the robust PCA problem and for the case
where observations are both missing and corrupted as we will discuss in Section 2.3. We
also provide much more comprehensive theoretical and experimental results to demonstrate
the effectiveness of the proposed treatment.
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2. Exploiting Side Information for Learning Low-Rank Matrices

In this section, we discuss how to incorporate side information for learning low-rank matri-
ces from missing and corrupted observations. We first introduce the problem formulation in
Section 2.1. We then start with exploiting perfect, noiseless side information in Section 2.2
and introduce the proposed model which can further exploit noisy side information in Sec-
tion 2.3. We finally describe the optimization for solving the proposed model in Section 2.4.

2.1. Learning from Missing and Corrupted Observations

The problem of learning a low-rank matrix from missing and corrupted observations can
be formally stated as follows. Let L0 ∈ Rn1×n2 be the underlying rank-r matrix where
r � min(n1, n2) so that L0 is low-rank, and S0 be a noise matrix whose support (denoted
as Ω) and magnitude is unknown but the structure is known to be sparse. Furthermore, let
Ωobs be a set of observed entries with cardinality m, and PΩobs be the orthogonal projection
operator defined by:

PΩobs(X)ij =

{
Xij , if (i, j) ∈ Ωobs,

0, otherwise.

Then, given the observed data matrix R which is in the form of:

R = PΩobs(L0 + S0) = PΩobs(L0) + S′0,

the goal is to accurately estimate the underlying matrix L0 given R. Without loss of
generality, we assume that S0 is supported on Ωobs, i.e. Ω ⊆ Ωobs and S′0 = S0. Note that
this problem can be viewed as an extension of the matrix completion problem, which only
assumes the given observations to be undersampled yet noiseless (Ω is the empty set).

An intuitive way to approach this problem is to estimate the low-rank matrix based on
the given structural information of the problem. Specifically, Candès et al. (2011) proposed
to solve this problem via the following convex program:

min
L,S
‖L‖∗ + λ‖S‖1 s.t. Lij + Sij = Rij , ∀ (i, j) ∈ Ωobs, (1)

where ‖L‖∗ is the nuclear norm of L defined by the sum of singular values of L, and
‖S‖1 :=

∑
i,j |Sij | is the element-wise one norm of S. These two regularizations are known

to be useful for enforcing low rank structure and sparse structure, respectively.

Although problem (1) has been shown to enjoy theoretical and empirical success (Candès
et al., 2011), it cannot directly leverage side information for recovery if it is provided. A
tailored model is thus required to resolve this issue.

2.2. Idealized Case: Perfect Side Information

Suppose in addition to the data matrix R, we are also given features of row and column
entities X ∈ Rn1×d1 and Y ∈ Rn2×d2 , d1 < n1 and d2 < n2 as side information. Then, the
goal of low-rank matrix learning with side information is to exploit X and Y in addition to
the observations R to better estimate L0. A concrete example is the Netflix problem where
R corresponds to the partial user-movie rating matrix and, X and Y correspond to user
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and movie features; the hope is to further leverage additional features X and Y along with
rating history R to better predict the unknown user-movie ratings.

In principle, not all types of side information will be useful. For instance, if the given
X and Y are simply two random matrices, then there is no information gain from the pro-
vided side information, and therefore, any method incorporating such X and Y is expected
to perform the same as methods only using structural information. That being said, to
explore the advantage of side information, a condition on side information to ensure its
informativeness is required. To begin with, we consider an ideal scenario where the side
information is “perfect” in the sense that it implicitly describes the full latent space of L0.

Definition 1 (Perfect side information) The side information X and Y is called per-
fect side information, or noiseless side information, w.r.t. L0 if X and Y satisfy:

col(X) ⊇ col(L0), col(Y ) ⊇ col(LT0 ), (2)

where col(X) and col(Y ) denotes the column space of X and Y .

Then, consider L0 = UΣV T to be the SVD of L0, a set of perfect side information will also
satisfy col(X) ⊇ col(U) and col(Y ) ⊇ col(V ), which further indicates that there exists a
matrix M0 ∈ Rd1×d2 such that L0 = XM0Y

T . This fact leads us to expressing the target
low-rank matrix as a bilinear form with respect to features X and Y , and as a result, one
can cast problem (1) with features as:

min
M,S

‖M‖∗ + λ‖S‖1 s.t. xTi Myj + Sij = Rij , ∀ (i, j) ∈ Ωobs, (3)

in which the problem is reduced to learning a smaller d1 × d2 low-rank matrix M . The
bilinear embedding with respect to perfect features for the low-rank matrix has already
been proposed in matrix completion. Indeed, by casting L = XMY T as matrix completion,
one can obtain a so-called “inductive matrix completion” (IMC) model which is able to
learn the underlying matrix with much fewer samples given perfect side information (Jain
and Dhillon, 2013; Xu et al., 2013; Zhong et al., 2015). We will discuss the improved sample
complexity result of IMC in detail in Section 3.2.

However, an obvious weakness of the bilinear embedding in problem (3) is that it assumes
the given side information to be perfect. Unfortunately, in real applications, most given
features X and Y will not be perfect, and could be in fact noisy or only weakly correlated
to the latent space of L0. In such cases, L0 can no longer be expressed as XMY T and
thus the translated objective (3) becomes questionable to use. This weakness will also be
empirically shown in Section 4 in which we observe that the recovered matrix XM∗Y T of
problem (3) will diverge from L0 given noisy side information in experiments. Nevertheless,
it is arguable that certain noisy features should still be helpful for learning L0. For example,
given the SVD of L0 = UΣV T , a small perturbation of a single entry of U (or V ) makes the
perturbed U , V to be imperfect features, yet such U and V should still be very informative.
This observation thus motivates us to design a more general model to exploit noisy side
information.
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2.3. The Proposed Model: Exploiting Noisy Side Information

We now introduce an improved model to further exploit imperfect, noisy side information.
The key idea of our model is to balance both feature information and observations when
learning the low-rank matrix. Specifically, we propose to learn L0 jointly in two parts, one
part captures information from the feature space as XMY T , and the other part N captures
the information outside the feature space. Thus, even if the given features are noisy and
fail to cover the full latent space of L0, we can still capture missing information using N
learned from pure observations.

However, there is an identifiability issue if we simply learn L0 with the expression
XMY T +N , since there are infinitely many solutions of (M,N) that satisfy XMY T +N =
L0. Although in theory they all perfectly recover the underlying matrix, some of the solu-
tions shall be more preferred than others if we further consider the efficiency of learning.
Intuitively, since the underlying L0 is low-rank, a natural thought is to prefer both XMY T

and N to be low-rank so that the L0 can be recovered with fewer parameters. This prefer-
ence leads us to pursue a low-rank M as well, which conceptually means that only a small
subspace of X and a subspace of Y are expected to be effective in jointly forming a low-
rank estimate XMY T . Pursuing low-rank solutions of M and N enables us to accurately
estimate L0 with fewer samples because fewer parameters need to be learned compared to
other solutions. This advantage will be formally justified later in Section 3.

Therefore, putting this all together, to incorporate noisy side information and learn
the low-rank matrix L0 from missing and corrupted observations, we propose to solve the
following problem:

min
M,N,S

∑
(i,j)∈Ωobs

`((XMY T +N + S)ij , Rij) + λM‖M‖∗ + λN‖N‖∗ + λS‖S‖1 (4)

with some convex surrogate loss `, and the underlying matrix L0 can be estimated by
XM∗Y T + N∗, where (M∗, N∗, S∗) is the optimal solution of problem (4). Note that to
force M and N to be low-rank, in the proposed objective we add nuclear norm regularization
on both variables M and N . It is known that nuclear norm regularization is one of the most
popular heuristic to pursue low-rank structure as it is the tightest convex relaxation of the
rank function (Fazel et al., 2001). In particular, given a low-rank matrix rank(R) ≤ r and
maxij |Rij | ≤ CL, we always have:

‖R‖∗ ≤
√
r‖R‖F ≤ CL

√
rn1n2,

and thus, a nuclear norm regularized constraint ‖R‖∗ ≤ t can be thought of as a relaxed
condition of rank(R) ≤ r and maxij |Rij | ≤ t/

√
rn1n2.

The proposed problem (4) is also a general formulation to better exploit side information
for learning low-rank matrices from missing and corrupted observations. This fact can be
seen by considering the following equivalent form of problem (4) which converts the loss
term to hard constraints:

min
M,N,S

α‖M‖∗ + β‖N‖∗ + λ‖S‖1 s.t. (XMY T +N + S)ij = Rij ,∀(i, j) ∈ Ωobs. (5)

Then, it is easy to see that by setting α =∞ or β =∞, problem (5) will become problem (1)
or problem (3), which learns the low-rank matrix from missing and corrupted observations
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either without any side information or using perfect side information, respectively. This
suggests that our model (4) is more general as it can exploit both perfect and noisy side
information in learning.

The parameters λM , λN and λS of the model are crucial for controlling the contributions
from features, observations and corruption. Intuitively, λS controls the ratio of corrupted
observations. The relative weight between λM and λN further controls the contributions
from XMY T and N in forming the low-rank estimate. Therefore, with an appropriate
ratio between λM , λN , the proposed model can leverage a (informative) part of the features
XMY T , yet also be robust to feature noise by learning the remaining part N from pure
observations. Below, we further discuss the connections between our model (4) and other
well-known models for solving various low-rank matrix learning problems.

2.3.1. Connections to models for matrix completion

First, consider the matrix completion case where the partially observed entries are not cor-
rupted. Then, λS can be set to∞ to force S∗ = 0, and therefore, our proposed problem (4)
reduces to the following objective:

min
M,N

∑
(i,j)∈Ωobs

`((XMY T +N)ij , Rij) + λM‖M‖∗ + λN‖N‖∗, (6)

which is a general model for solving matrix completion problem. For example, when λM =
∞, M∗ will be forced to 0 so features are disregarded, and problem (6) becomes a standard
matrix completion objective. On the other hand, when λN = ∞, N∗ will be forced to 0
and problem (6) becomes the IMC model (Jain and Dhillon, 2013; Xu et al., 2013) where
the estimation of the low-rank matrix is completely from XM∗Y T . However, problem (6)
is more general than both problems, since by appropriately setting the weights of λM and
λN , it can better estimate the low-rank matrix jointly from (noisy) features XM∗Y T and
pure observations N∗. Therefore, problem (6) can be thought of as an improved model
which exploits noisy side information in matrix completion problem. We thus refer to
problem (6) as “IMC with Noisy Features” (IMCNF) and will justify its effectiveness for
matrix completion in Section 4.

2.3.2. Connections to models for robust PCA

Another special case is to consider the well-known “robust PCA” setting, in which Ωobs is
assumed to be the set of all n1 × n2 entries, i.e. observations are full without any missing
entries but few of them are corrupted. In this scenario, our proposed problem (4) can be
used for solving robust PCA problem with side information by again converting the loss
term to hard constraints:

min
M,N,S

α‖M‖∗ + β‖N‖∗ + λ‖S‖1 s.t. XMY T +N + S = R. (7)

Problem (7) can be further reduced to several robust PCA models. For example, if α =∞,
problem (7) will be equivalent to the well-known PCP method (Candès et al., 2011) which
solves robust PCA problem purely using a structural prior. On the other hand, suppose
side information is perfect, then one can set β = ∞ in (7) to derive the following “PCP
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Model Corresponding setting in our proposed model (4)

problem (1) (Candès et al., 2011) λM =∞
problem (3) λN =∞

MC λS =∞, λM =∞
IMC (Jain et al., 2013) λS =∞, λN =∞

IMCNF λS =∞
LRR (Liu et al., 2013) Ωobs = all entries, λN =∞, Y = I

PCP (Candès et al., 2011) Ωobs = all entries, λM =∞
PCPF Ωobs = all entries, λN =∞

PCPNF Ωobs = all entries

Table 1: Settings of several low-rank matrix learning models in the form of our proposed
problem (4).

with (perfect) Features” (PCPF) objective:

min
M,S

α‖M‖∗ + λ‖S‖1 s.t. XMY T + S = R, (8)

in which L0 can be directly estimated by the bilinear embedding XM∗Y T as discussed
in Section 2.2. However, problem (7) is more general than both PCP and PCPF as it
can exploit noisy side information for recovery. We thus refer to (7) as “PCP with Noisy
Features” (PCPNF) and will examine its effectiveness to leverage noisy side information in
robust PCA in Section 4.

Table 1 summarizes several well-known low-rank matrix learning models in terms of the
proposed model (4). 2 From the above discussion, it shall be convincing that problem (4)
is a general treatment for solving various matrix learning problems with side information.
In particular, we have provided sufficient intuitions on how parameters λM , λN and λS
play important roles in learning under various circumstances. In Section 3, we will further
analytically show that by properly setting these parameters based on the quality of features
and noise level of corruption, the proposed model is able to achieve more efficient learning.
As a remark, in practical applications, feature quality and noise level may not be known a
priori. Therefore, in this case, we recommend to set these parameters via validation, i.e.
choosing parameters such that the learned low-rank model best estimates the entries in the
validation set.

2.4. Optimization

We propose an alternative minimization scheme to solve the proposed problem (4). The
algorithm is shown in Algorithm 1 in which we alternatively update one of the variables (M ,
N or S) by fixing the others in each iteration, 3 and update of each variable can thus be done
via solving a single variable minimization (sub)problem. This algorithm can be viewed as
applying a block coordinate descent algorithm on a convex and continuous function, and in

2. Some models are originally proposed in hard-constrained forms, yet their equivalent forms in soft con-
straints become instances of our proposed problem (4).

3. For simplicity, we choose `(t, y) = (t− y)2 to be the squared loss.
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Algorithm 1: Alternative Minimization for Problem (4) with Squared Loss

Input: R: observed matrix, X,Y : feature matrices, tmax: max iteration
Output: L∗: estimated low-rank matrix
M ← 0, N ← 0, S ← 0, t← 0
do

M ← arg minM
∑

(i,j)∈Ωobs
((XMY T )ij − (R−N − S)ij)

2 + λM‖M‖∗.
N ← arg minN

∑
(i,j)∈Ωobs

(Nij − (R−XMY T − S)ij)
2 + λN‖N‖∗.

S ← arg minS
∑

(i,j)∈Ωobs
(Sij − (R−XMY T −N)ij)

2 + λS‖S‖1.

t← t+ 1.

while not converged and t < tmax

L∗ ← XMY T +N

such case the cyclic block coordinate descent algorithm is guaranteed to converge to global
minimums (see Tseng, 2001). The condition required in Tseng (2001) is that the level set
has to be compact, which is satisfied when λM , λN , λS > 0.

We now briefly discuss the optimization for solving three subproblems in Algorithm 1.
Let Sx(A) := sign(A) ◦ max(|A| − x, 0) be the soft thresholding operator on elements of
A, where ◦ denotes the element-wise product. Similarly, let Dx(A) be the thresholding
operator on singular values of A, i.e. Dx(A) := UASx(ΣA)V T

A where UAΣAV
T
A is the SVD

of A. Then, when fixing N and S, the minimization problem over M becomes a standard
IMC objective with observed matrix to be R′ := R − N − S. We then solve for M using
typical proximal gradient descent update M ← DλM (M −ηXT (R′−XMY T )Y ), where η is
the learning rate. Notice that in our setting, feature dimensions (d1, d2) are much smaller
than number of entities (n1, n2). Therefore, it is relatively inexpensive to compute a full
SVD for a d1 × d2 matrix in each proximal step.

On the other hand, when fixing M and S, the subproblem of solving over N becomes
standard matrix completion problem where the observed matrix is R − XMY T − S. In
principle, any algorithm for matrix completion with nuclear norm regularization can be
used to solve this subproblem (e.g. the singular value thresholding algorithm (Cai et al.,
2010) using proximal gradient descent). In our experiment, we apply the active subspace
selection algorithm (Hsieh and Olsan, 2014) to solve the matrix completion problem more
efficiently.

Finally, the solution of minimizing over S given fixed M,N can be written in a simple
closed form, SλS (PΩobs(R − XMY T − N)). The resulting S∗, therefore, will be always
supported on Ωobs.

3. Theoretical Analysis on the Effect of Side Information

In this section, we provide a theoretical analysis to justify the usefulness of side information
in our model (4). We will focus on the sample complexity analysis of the model, in which
we aim to show that by exploiting side information, learning can be accomplished with
fewer number of (possibly corrupted) observations. The high-level idea of the analysis is
to consider the generalization error of the estimated entries, which is associated to both
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number of samples and a model complexity term. We further show that model complexity
can be related to the quality of features and the noise level of sparse error, and as a result,
better feature quality will lead to a smaller generalization error and also a better sample
complexity guarantee, provided a small enough noise level. To concentrate on the whole
picture of the analysis, we leave detailed proofs of theorems, corollaries and lemmas in
Appendix A.

3.1. Generalization Bound of the Proposed Model

To begin with, we consider the equivalent hard-constrained form of problem (4):

min
M,N,S

∑
(i,j)∈Ωobs

`((XMY T +N + S)ij , Rij), s.t. ‖M‖∗ ≤M, ‖N‖∗ ≤ N , ‖S‖1 ≤ S. (9)

In the analysis, we assume that each entry (i, j) ∈ Ωobs is sampled i.i.d. from an unknown
distribution D with index set {(iα, jα)}mα=1, 4 and each entry of L0 is upper bounded by a
constant CL (so ‖L0‖∗ = O(

√
n1n2)). Such a circumstance is consistent with real scenarios

such as Netflix problem where users can rate movies with scale up to 5. Let θ := (M,N,S)
be any feasible solution and Θ := {(M,N,S) | ‖M‖∗ ≤ M, ‖N‖∗ ≤ N , ‖S‖1 ≤ S} be the
set of feasible solutions. Also, let fθ ∈ [n1]× [n2]→ R, fθ(i, j) := xTi Myj + eTi Nej + eTi Sej
be the estimation function (parameterized by θ) where et is the unit vector on the t-th
axis, and let FΘ := {fθ | θ ∈ Θ} be the set of feasible functions. We are interested in both
expected and empirical “`-risk” quantities, R`(f) and R̂`(f), defined by:

R`(f) := E(i,j)∼D
[
`(f(i, j), eTi (L0 + S0)ej)

]
, R̂`(f) :=

1

m

∑
(i,j)∈Ωobs

`(f(i, j), Rij).

Under this context, our model (problem 9) is to solve for θ∗ that parameterizes f∗ =
arg minf∈FΘ

R̂`(f). Classic generalization error bounds have shown that the expected risk

R`(f) can be controlled by R̂`(f) along with a measurement on the complexity of the model.
The following lemma is a typical result to bound R`(f):

Lemma 2 (Bound on Expected `-risk, Bartlett and Mendelson, 2003) Let ` be a
Lipschitz loss function and is bounded by B with respect to its first argument, and δ be a
constant where 0 < δ < 1. Let R(FΘ) be the Rademacher model complexity of the function
class FΘ (w.r.t. Ωobs) defined by:

R(FΘ) := Eσ
[

sup
f∈FΘ

1

m

m∑
α=1

σα`(f(iα, jα), Riαjα)
]
,

where each σα takes values {±1} with equal probability. Then with probability at least 1− δ,
for all f ∈ FΘ we have:

R`(f) ≤ R̂`(f) + 2EΩobs

[
R(FΘ)

]
+ B

√
log 1

δ

2m
.

4. In other words, we consider the observations to be sampled under a sampling with replacement model
which is similar to Recht (2011); Shamir and Shalev-Shwartz (2014). There are also studies that consider
other sampling procedures such as Bernoulli model (Candès and Tao, 2009; Candès and Recht, 2012).
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Therefore, to guarantee a small enough R`, not only R̂`, but also the Rademacher model
complexity EΩobs

[
R(FΘ)

]
has to be carefully controlled. We further introduce a key lemma

to show that the model complexity is related to both the feature quality and the sparse
noise level, where better quality of features and lower noise level will lead to a smaller model
complexity. The intuition of the goodness of feature quality can be motivated as follows.
Consider any imperfect side information which violates (2). One can imagine such a feature
set is perturbed by some misleading noise which is not correlated to the true latent space.
However, features should still be effective if noise does not weaken the true latent space
information too much. Thus, if a large portion of true latent space lies on the informative
part of the feature spaces X and Y , they should still be somewhat informative and helpful
for recovering the matrix L0.

More formally, for FΘ in problem (9), its model complexity EΩobs

[
R(FΘ)

]
can be

bounded in terms of M, N and S by the following lemma:

Lemma 3 Let X = maxi ‖xi‖2, Y = maxi ‖yi‖2, n = max(n1, n2) and d = max(d1, d2).
Suppose ` is a convex surrogate loss satisfying conditions in Lemma 2 with the Lipschitz
constant L`. Then for FΘ in problem (9), its model complexity EΩobs

[
R(FΘ)

]
is upper

bounded by:

2L`MXY
√

log 2d

m
+ min

{
2L`N

√
log 2n

m
,

√
9CL`B

N (
√
n1 +

√
n2)

m

}
+ L`S

√
2 log(2n1n2)

m
,

where L` and B are constants appearing in Lemma 2.

Thus, from Lemma 2 and 3, one should carefully construct a feasible solution set (by setting
M, N and S) such that both R̂`(f

∗) and EΩobs

[
R(FΘ)

]
are controlled to be reasonably

small. We now suggest a witness setting of (M,N ,S) as follows. Let Tµ(·) : R+ → R+ be
the thresholding operator where Tµ(x) = x if x ≥ µ and Tµ(x) = 0 otherwise. In addition,

let X =
∑d1

i=1 σiuiv
T
i be the reduced SVD of X, and Xµ =

∑d1
i=1 σ1Tµ(σi/σ1)uiv

T
i be the

“µ-informative” part of X. The ν-informative part of Y , denoted as Yν , can also be defined
similarly. We then propose to set:

M = ‖M̂‖∗ N = ‖L0 −XµM̂Y T
ν ‖∗ S = ‖S0‖1, (10)

where M̂ := arg minM ‖XµMY T
ν −L0‖2F = (XT

µXµ)†XT
µ L0Yν(Y T

ν Yν)† is the optimal solution
for approximating L0 under the informative feature spaces Xµ and Yν . The following lemma
further shows that the trace norm of M̂ will not grow as a function of n.

Lemma 4 Fix µ, ν ∈ (0, 1], and let γ be a constant defined by

γ := min

(
mini ‖xi‖
X

,
mini ‖yi‖
Y

)
where X ,Y are constants defined in Lemma 3. Then the trace norm of M̂ is upper bounded
by:

‖M̂‖∗ ≤
CLd

2

µ2ν2γ2XY
,

where CL ≥ maxi,j |eTi L0ej | is the constant upper bounding the entries of L0.
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Therefore, by combining Lemma 2-4, we derive a generalization error bound on R`(f
∗) of

problem (9) as follows.

Theorem 5 Suppose ` is a convex surrogate loss function with Lipschitz constant L`
bounded by B with respect to its first argument and assume that `(t, t) = 0. Consider
problem (9) where the constraints (M,N ,S) are set as (10) with some fixed µ, ν ∈ (0, 1].
Then with probability at least 1 − δ, the expected `-risk of the optimal solution R`(f

∗) is
bounded by:

R`(f
∗) ≤min

{
4L`N

√
log 2n

m
,

√
36CL`B

N (
√
n1 +

√
n2)

m

}
+ 2L`S

√
2 log (2n1n2)

m

+
4L`CLd

2

µ2ν2γ2

√
log 2d

m
+ B

√
log 1

δ

2m
,

where C, CL and γ are constants appearing in Lemma 3 and 4.

As a result, Theorem 5 leads us to deem N and S in (10) to be the measurement of fea-
ture quality and noise level respectively, where features with better quality (or observations
with less corruption) lead to a smaller N (or S) and thus a smaller risk quantity. Note that
the measurement N is consistent with the stated intuition of feature quality, since given
a good feature set such that most true latent space of L0 lies on the informative part of
the feature spaces, XµM̂Y T

ν will absorb most of L0, resulting in a small N . Given Theo-
rem 5, we can further discuss the effect of side information in the proposed model (9) on
the sample complexity in several important scenarios. To make the comparison more clear,
we fix d = O(1) so the feature dimensions do not grow as a function of n in the following
discussion.

3.2. Sample Complexity for Matrix Completion

First, consider the matrix completion case where the observations are partial yet not cor-
rupted, i.e. S0 = 0. Then, as mentioned, our model can be further reduced to IMCNF
(problem (6), or equivalently problem (9) with S = 0) which exploits noisy side information
to solve the matrix completion problem. In addition, from Theorem 5, we can derive the
sample complexity of IMCNF as follows.

Corollary 6 Suppose we aim to (approximately) recover L0 from partial observations R =
PΩobs(L0) in the sense that E(i,j)∼D

[
`((XM∗Y T+N∗)ij , e

T
i L0ej)

]
< ε given an arbitrary ε >

0. Then by solving problem (9) with constraints to be set as (10), O(min(N
√
n,N 2 log n)/ε2)

samples are sufficient to guarantee that the estimated low-rank matrix XM∗Y T+N∗ recovers
L0 with high probability, provided a sufficiently large n.

Corollary 6 suggests that the sample complexity of IMCNF can be lowered with the
aid of (sufficiently informative) noisy side information. The significance of this result can
be further explained by comparing with the sample complexity of other models. First, if
features are perfect (N = O(1)), Corollary 6 suggests that our IMCNF model only requires
O(log n) samples for recovery. This result coincides with the sample complexity of IMC, in
which researchers have shown that given perfect features, O(log n) observations are enough
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for exact recovery (Xu et al., 2013; Zhong et al., 2015). However, IMC does not guarantee
recovery when features are not perfect, while Corollary 6 suggests that recovery is still
attainable by IMCNF with O(min(N

√
n,N 2 log n)/ε2) samples.

On the other hand, our analysis suggests that sample complexity of IMCNF is at most
O(n3/2) given any features by applying the following inequality to Corollary 6:

N ≤ ‖L0‖∗ ≤ CL‖E‖∗ ≤ CL
√

rank(E)‖E‖F = CL
√
n1n2 = O(n),

where E ∈ Rn1×n2 is the matrix with all entries to be one. To explain the result, we
compare this result to the sample complexity of standard matrix completion where no side
information is considered. At the first glance, it may appear that the result is worse than
pure matrix completion in the worst case, since many well-known matrix completion guar-
antees showed that under certain spikiness and distributional conditions, one can achieve
O(n polylog n) sample complexity for both approximate recovery (Srebro and Shraibman,
2005; Negahban and Wainwright, 2012) and exact recovery (Candès and Recht, 2012). How-
ever, all of the above O(n polylog n) results require additional distributional assumptions on
observed entries, while our analysis does not make distributional assumptions. To make a
fairer comparison, Shamir and Shalev-Shwartz (2014) have shown that for pure matrix com-
pletion, O(n3/2) entries are sufficient for approximate recovery without any distributional
assumptions, and furthermore, the bound is tight if no further distributional assumptions
on observed entries is allowed. Therefore, Corollary 6 indicates that IMCNF is at least
as good as pure matrix completion even in the worst case under the distribution-free set-
ting. Notice that it is reasonable to meet the matrix completion lower bound Ω(n3/2) even
given features, since for completely useless feature case (e.g. X,Y are random matrices), the
given information is exactly the same as that in standard matrix completion, so any method
cannot beat the matrix completion lower bound even by taking features into account.

However, in most applications, the given features are expected to be far from random,
and Corollary 6 provides a theoretical insight to show that even noisy features can be
useful in matrix completion. Indeed, as long as features are informative enough such that
N = o(n), sample complexity of the IMCNF model will be asymptotically lower than
standard matrix completion. Here we provide a concrete example for such a scenario. We
consider the rank-r matrix L0 to be generated from random orthogonal model (Candès and
Recht, 2012) as follows:

Corollary 7 Let L0 ∈ Rn×n be generated from random orthogonal model, where U =
{ui}ri=1, V = {vi}ri=1 are random orthogonal bases, and σ1 . . . σr are singular values with
arbitrary magnitude. Let σt be the largest singular value such that limn→∞ σt/

√
n = 0.

Then, given the noisy features X,Y where X:i = ui (and Y:i = vi) if i < t and X:i (and
V:i) be any basis orthogonal to U (and V ) if i ≥ t, o(n) samples are sufficient for IMCNF
to achieve recovery of L0.

Corollary 7 suggests that, under random orthogonal model, if features are not too noisy
in the sense that noise only perturbs the true subspace associated with smaller singular
values, the sample complexity of IMCNF can be asymptotically lower than the lower bound
of standard matrix completion (which is Ω(n3/2)).

All in all, for the matrix completion case where observations are partial yet uncorrupted,
our proposed problem (4) reduces to the IMCNF model (6) and moreover, Corollary 6
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suggests that it can attain recovery more efficiently than other existing models by exploiting
noisy yet informative side information.

3.3. Sample Complexity given Partial and Corrupted Observations

We now further consider the case where observations are both missing and corrupted. In
the presence of corruption, Theorem 5 results in the following Corollary 8 which shows that
the learned matrix XM∗Y T +N∗+S∗ will be close to L0 +S0 with sufficient observations,
where the number of required samples depends on both the quality of features and the noise
level of sparse error. Since there always exists a solution of problem (9) with PΩ⊥obs

(S∗) = 0

and the generalization bound in Theorem 5 holds for any solution, the result in Corollary 8
implies that XM∗Y T+N∗ is close to L0 on missing entries (i, j) /∈ Ωobs, which means we can
recover the missing entries of the underlying low-rank matrix with small error. Moreover, if
we apply the proposed Algorithm 1 to solve the soft-constrained form (4), the solution S∗

will satisfy PΩ⊥obs
(S∗) = 0 automatically. In the following, we formally state the recovery

guarantee for partial and corrupted observations:

Corollary 8 Suppose we are given a data matrix R = PΩobs(L0 + S0) containing both
missing and corrupted observations of L0 along with side information X, Y . Then for
problem (9) with constraints to be set as (10), if we apply Algorithm 1 to solve its equivalent
form in (4), O({min(N

√
n,N 2 log n)+S2 log n}/ε2) samples are sufficient to guarantee that

with high probability, E(i,j)∼D
[
`((XM∗Y T +N∗+S∗)ij , Rij)

]
< ε for any ε > 0 provided a

sufficiently large n, where S∗ satisfies PΩ⊥obs
(S∗) = 0.

Corollary 8 suggests that if observations are both missing and corrupted, then to guar-
antee the learned low-rank matrix XM∗Y T +N∗ is accurate on missing entries, the number
of required samples depends not only on the quality of features N , but also on the noise level
of corruption S. In addition, larger S results in a higher complexity guarantee. The reason-
ing behind this result is intuitive: compared to the matrix completion setting in Section 3.2,
allowing observed samples to be corrupted makes the problem harder, and therefore may
increase sample complexity. However, suppose the corruption is not too severe as the total
magnitude of error S is in the order of o(n/

√
log n), Corollary 8 still provides a non-trivial

bound on required samples for learning the missing entries accurately. Furthermore, better
quality of features becomes helpful for faster learning if corruption is small enough. For
example, suppose the allowed corruption budget is upper bounded as S = O(1), then the
sample complexity will again be O(min(N

√
n,N 2 log n)/ε2). As discussed, it implies that

the number of samples can be o(n3/2) provided sufficiently good features, while the required
samples will be O(n3/2) if no features are given.

Remark. Overall, we provide sample complexity analysis to justify that our model (4) is
able to learn the missing information of L0 more effectively by leveraging side information.
The analysis is based on the generalization bounds of the missing values, where more infor-
mative side information (and less corruption) results in fewer required samples for accurate
estimation, justifying the usefulness of side information.

Again, we emphasize that our results are relatively loose compared to those exact re-
covery guarantees in both matrix completion (Candès and Tao, 2009; Candès and Recht,
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2012) and robust PCA (Chandrasekaran et al., 2011; Candès et al., 2011) as we only con-
sider an approximate recovery on missing entries. However, it is important to note that
those stronger recovery guarantees require additional assumptions, such as incoherence of
the underlying low-rank matrices and distributional assumptions, to ensure the sampled
observations are sufficiently representative. On the other hand, our analysis does not re-
quire distributional or incoherence assumptions, since in generalization analysis we only
need to ensure the average loss of the missing entries are sufficiently small, and therefore,
the average loss can still be controlled even if few spots are wrongly estimated in a high
incoherence L0.

However, in some circumstances, it is in fact possible to provide a stronger argument to
justify the usefulness of side information in the exact recovery context. For example, in the
robust PCA setting where observations are grossly corrupted yet full, one can further show
that by exploiting perfect side information, a large amount of low-rank matrices L0, which
cannot be recovered by standard robust PCA without features, can be exactly recovered
using our proposed model. Interested readers can consult Chiang et al. (2016) for such
a result in detail. A theoretical analysis on how much the side information can improve
the exact recovery guarantees in general low-rank matrix learning would be an interesting
research direction to explore in the future.

4. Experimental Results

We now present experimental results on exploiting side information using the proposed
model (4) for various low-rank matrix learning problems. For synthetic experiments, we
show that our model performs better with the aid of side information given observations are
either only missing (i.e. matrix completion setting), only corrupted (i.e. robust PCA set-
ting) or both missing and corrupted. For real-world applications, we consider three machine
learning applications—relationship prediction, semi-supervised clustering and noisy image
classification—and show that each of them can be viewed as a problem of learning a low-
rank modeling matrix from missing/corrupted entries with side information. As a result, by
applying our model, we can achieve better performance compared to other state-of-the-art
methods in these applications.

4.1. Synthetic Experiments

To begin with, we show the usefulness of (both perfect and noisy) side information in our
model under different synthetic settings.

4.1.1. Experiments on Matrix Completion Setting

We first examine the effect of side information in our model in the case of matrix completion.
We create a low rank matrix L0 = UV T where the true latent row/column space U, V ∈
R200×20, Uij , Vij ∼ N (0, 1). We then randomly sample ρobs of entries Ωobs from L0 to form
the observed matrix R = PΩobs(L0). In addition, we construct perfect side information
X∗, Y ∗ ∈ R200×40 satisfying (2), from which we generate different quality of features X, Y
with a noise parameter ρf ∈ [0, 1], where X and Y are derived by replacing ρf of bases
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(f) ρf = 0.9

Figure 1: Performance of various methods for matrix completion under certain fixed sparsity
of observations ρobs (upper figures) and fixed feature quality ρf (lower figures). We observe
that all feature-based methods perform better than standard matrix completion (MC) given
perfect features (ρf = 0). However, IMCNF is less sensitive to feature noise as ρf increases,
indicating that it better exploits information from noisy features.
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in X∗ (and Y ∗) with bases orthogonal to X∗ (and Y ∗). We then consider recovering the
underlying matrix L0 given R, X and Y .

In this experiment, we consider the proposed IMCNF model (problem 6) which is an
instance of the general problem (4) for exploiting noisy side information in matrix comple-
tion case. We compare IMCNF with standard trace-norm regularized matrix completion
(MC), IMC (Jain and Dhillon, 2013) and SVDfeature (Chen et al., 2012). The recovered
matrix L∗ from each algorithm is evaluated by the standard relative error:

‖L∗ − L0‖F
‖L0‖F

. (11)

For each method, we select parameters from the set {10α}2α=−3 and report the one with the
best recovery. All results are averaged over 5 random trials.

Figure 1 shows results of each method under different ρobs = 0.1, 0.25, 0.4 and ρf =
0.1, 0.5, 0.9. We can first observe in upper figures that IMC and SVDfeature perform sim-
ilarly under each ρobs, and moreover, their performance mainly depends on feature quality
and will not be affected much by the number of observations. Although their performance
is comparable to IMCNF given perfect features (ρf = 0), their performance quickly drops
when features become noisy. This phenomenon is more clear in figure 1c and 1f where we
see that given noisy features, IMC and SVDfeature will be easily trapped by feature noise
and perform even worse than pure MC. Another interesting finding is that even if feature
quality is as good as ρf = 0.1 (Figure 1d), IMC (and SVDfeature) still fails to achieve 0
relative error as the number of observations increases, suggesting that IMC is sensitive to
feature noise and cannot guarantee recoverability when features are not perfect. On the
other hand, we see that performance of IMCNF can be improved by both better features
and more observations. In particular, it makes use of informative features to achieve lower
error compared to MC and is also less sensitive to feature noise compared to IMC and
SVDfeature. These results empirically support the analysis presented in Section 3.

4.1.2. Experiments on Robust PCA Setting

In this experiment, we examine the effect of both perfect and noisy side information in
the proposed model for robust PCA as follows. We create a low-rank matrix L0 = UV T ,
where U, V ∈ Rn×40, Uij , Vij ∼ N(0, 1/n) with n = 200. We also form a sparse noise
matrix S0 where each entry will be a non-zero entry with probability ρs, and each non-zero
entry will take values from {±1} with equal probability. We then construct noisy features
X,Y ∈ Rn×50 with a noise parameter ρf using the same construction in the previous
experiment, i.e. features X/Y will only span 40 × (1 − ρf ) true bases of U/V . We then
consider to recover the low-rank matrix given the fully observed matrix R = L0 + S0 along
with noisy side information X and Y .

We consider the following three methods: PCP (Candès et al., 2011) which does not ex-
ploit features, PCPF (problem 8) which theoretically exploits perfect features using bilinear
embedding, and PCPNF (problem 7) for incorporating noisy side information. Note that
PCPF and PCPNF are instances of our proposed model (4) that exploits side information
for robust PCA problem as discussed in Section 2.3. The same relative error criterion (11)
is used for evaluation.
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(c) ρs = 0.3

Figure 2: Performance of various methods for robust PCA given different feature noise level
ρf and sparsity of corruption ρs. These results show that PCPNF can make use of noisy
yet informative features for better recovery.

Figure 2 shows the performance of each method given different feature quality under
ρs = 0.1, 0.2, 0.3. We first see that when features are perfect (ρf = 0), both PCPF and
PCPNF can exactly recover the underlying matrix, while pure PCP fails to recover L0 if
ρs ≥ 0.2. This result confirms that both PCPNF and PCPF can leverage perfect features for
better recovery. However, as features become noisy (larger ρf ), we see that PCPF quickly
performs worse as it is misled by noise in features, while PCPNF can better exploit noisy
features for recovery. In particular, in Figure 2b, we observe that PCPNF still recovers L0

given noisy yet reasonably good features (0 < ρf < 0.4), whereas PCP and PCPF fail to
recover L0. These results show that PCPNF can take advantage of noisy side information
for learning L0 given corrupted observations.

4.1.3. Experiments on Learning with Missing and Corrupted Observations

We now further examine to what extent can side information help the learning using our
model when observations are both missing and corrupted. We consider the same construc-
tion of L0 and S0 as in the previous experiment, and generate perfect feature matrices
X,Y ∈ Rn×d with d = r+10. We then form the observation set Ωobs by randomly sampling
ρobs of entries from all n2 indexes, and take R = PΩobs(L0 + S0) as the observed matrix.
The goal is therefore to recover L0 given R along with side information X and Y .

To exploit the advantage of side information, we consider the proposed model in form (5)
where we further set α = 1 and β =∞ to force N∗ to be zero for better exploiting perfect
features, and compare it with the problem (1) which tries to recover L0 only using structural
information. Notice that when ρobs = 1.0, the given problem becomes a robust PCA problem
where R is a fully observed matrix, in which case problem (1) reduces to PCP method and
our model reduces to PCPF objective (problem 8), respectively. From this aspect, we refer
to problem (1) as “PCP with partial observations” (PCP-part) and our model as “PCPF
with partial observations” (PCPF-part). The relative error criterion (11) is again used to
evaluate the recovered matrix. Here, we regard the recovery to be successful if the error is
less than 10−4. The parameter λ in both methods are set to be 1/

√
ρobsn.

We compare the recoverability of PCP-part and PCPF-part by varying rank of L0 (r)
and sparsity of S0 (ρs) under different ρobs = 1.0, 0.7 and 0.5. For each pair of (r, ρs),
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Figure 3: Performance of PCP-part and PCPF-part with perfect features for recovering
L0 from missing and corrupted observations (controlled by ρobs and ρs respectively). Both
methods achieve recovery in white region and fail in black region, yet there is a gray region
where only PCPF-part achieves recovery. This shows that by leveraging perfect features,
PCPF-part can recover a much larger class of L0 given both missing and corrupted obser-
vations are present.

we apply both methods to obtain the estimated low-rank matrix L∗. We then mark the
grid point (r, ρs) to be white if recovery is attained by both methods and black if both
fail. We also observe that in several cases recovery cannot be attained by PCP-part but
can be attained by PCPF-part, and these grid points are marked as gray. The results are
shown in Figure 3. We observe that for each ρobs, there exists a substantial gray region
where matrices in such a region can be recovered only by PCPF-part. This result shows
that in the case where both missing and corrupted entries are present, by exploiting side
information, the proposed model is able to further recover a large amount of matrices which
cannot be recovered if no side information is provided.

4.2. Real-world Applications

We now consider three applications—relationship prediction in signed networks, semi-
supervised clustering and noisy image classification—which can be cast to problems of
low-rank matrix learning from missing/corrupted entries with additional side information.
As a consequence, we show that by learning the low-rank modeling matrix using our pro-
posed model, we can achieve better performance compared to other methods for these
applications as our model can better exploit side information in learning.

4.2.1. Relationship Prediction in Signed Networks

We first consider relationship prediction problem in an online review website Epin-
ions (Massa and Avesani, 2006), where people can write product reviews and choose to
trust or distrust others based on their reviews. Such a social network can be modeled as
a signed network where each person is treated as an entity and trust/distrust relationships
between people are modeled as positive/negative edges between entities (Leskovec et al.,
2010). The relationship prediction problem in signed network is to predict unknown rela-
tionship between any two users given the current network snapshot. While several methods
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Method IMCNF IMC MF-ALS HOC-3 HOC-5
Accuracy 0.9474±0.0009 0.9139±0.0016 0.9412±0.0011 0.9242±0.0010 0.9297±0.0011

AUC 0.9506 0.9109 0.9020 0.9432 0.9480

Table 2: Relationship prediction on Epinions network. We see that given noisy user features,
IMC performs worse even than methods without features (MF-ALS and HOCs), while
IMCNF outperforms others by successfully exploiting noisy features.

are proposed, a state-of-the-art approach is the low-rank model (Hsieh et al., 2012; Chiang
et al., 2014) which first conducts matrix completion on the adjacency matrix and then uses
the sign of the completed matrix for prediction. However, these methods are developed
based only on network structure. Therefore, if features of users are available, we can also
extend the low-rank model by incorporating user features in the completion step.

The experiment setup is described as follows. In this data set, there are about n = 105K
users and m = 807K observed relationship pairs where 15% relationships are distrust. In
addition to the who-trust-to-whom information, we are also given a user feature matrix
Z ∈ Rn×41 where for each user a 41-dimensional feature is collected based on the user’s
review history, such as number of positive/negative reviews the user gave or received. We
consider the following prediction methods: walk and cycle-based methods including HOC-3
and HOC-5 (Chiang et al., 2014), and the original low-rank model with matrix factorization
for the completion step (LR-ALS) (Hsieh et al., 2012). These methods make the prediction
based on network structure without considering user features. We further consider the
extended low-rank model where the completion step is replaced by IMCNF and IMC (Jain
et al., 2013), both of which thus incorporate user features implicitly for prediction. Since
row and column entities are both users, X = Y = Z is set for both IMCNF and IMC
methods. We randomly divide the edges of the network into 10 folds and conduct the
experiment using 10-fold cross validation, in which 8 folds are used for training, one fold for
validation and the other for testing. Parameters for validation in each method are chosen
from the set t2

α=−3{10α, 5× 10α}.
The averaged accuracy and AUC of each method are reported in Table 2. We first ob-

serve that IMC performs worse than LR-ALS even though IMC takes features into account.
It is because these user features are only partially related to the relationship matrix, and
IMC is misled by such noisy features. On the other hand, IMCNF performs the best among
all prediction methods, as it performs slightly better than LR-ALS in terms of accuracy and
much better in terms of AUC. This result shows that IMCNF can exploit weakly informative
features to make better prediction without being trapped by feature noise.

4.2.2. Semi-supervised Clustering

Semi-supervised clustering is another application which can be translated to learning a low-
rank matrix with partial observations. Given a feature matrix Z ∈ Rn×d of n items and m
pairwise constraints specifying whether item i and j are similar or dissimilar, the goal is to
find a clustering of items such that most similar items are within the same cluster.

First, note that the problem can be sub-optimally solved by dropping either constraint
or feature information. For example, traditional clustering algorithms (such as k-means)
can solve the problem based purely on features of items. On the other hand, one can also
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obtain a clustering purely from the pairwise constraints using matrix completion as follows.
Let S ∈ Rn×n be the (signed) similarity matrix constructed from the constraint set where
Sij = 1 if item i and j are similar, −1 if dissimilar and 0 if similarity is unknown. Then
finding a clustering of n items becomes equivalent to finding a clustering on the signed graph
S, where the goal is to put items (denoted as nodes) into k groups so that most edges within
the same group are positive and most edges between groups are negative (Chiang et al.,
2014). As a result, one can apply a matrix completion approach proposed in Chiang et al.
(2014) to solve the signed graph clustering problem, which first conducts matrix completion
on S and runs k-means on the top-k eigenvectors of completed S to obtain a clustering of
nodes.

Apparently, either dropping features or constraint set is not optimal for semi-supervised
clustering problem. Thus, many algorithms are proposed to take both item features and
constraints into account, such as metric-learning-based approaches (Davis et al., 2007),
spectral kernel learning (Li and Liu, 2009) and MCCC algorithm (Yi et al., 2013). Among
many of them, MCCC algorithm is a cutting edge approach which essentially solves semi-
supervised clustering using IMC objective. Observing that each pairwise constraint can be
viewed as a sampled entry from the matrix L0 = UUT where U ∈ Rn×k is the clustering
membership matrix, MCCC tries to complete L0 back as ZMZT using IMC objective.
Furthermore, since the completed matrix is ideally L0 whose subspace spans U , it thus
conducts k-means on the top-k eigenvectors of the completed matrix to obtain a clustering.

However, since MCCC is based on IMC, its performance thus heavily depends on the
quality of features. Therefore, we propose to replace IMC with IMCNF in the matrix
completion step of MCCC, and then run k-means on the top-k eigenvectors of the completed
matrix to obtain a clustering. Both X and Y are again set to be Z as the target low-rank
matrix describes the similarity between items. This algorithm can be viewed as an improved
version of MCCC to handle noisy features Z.

We now compare our algorithm with k-means, signed graph clustering with matrix
completion (Chiang et al., 2014) (SignMC) and MCCC (Yi et al., 2013) on three real-world
data sets: Mushrooms, Segment and Covtype. 5 All of them are classification benchmarks
where features and ground-truth labels of items are both available, and the ground-truth
cluster of each item is defined by its ground-truth label. The statistics of data sets are
summarized in Table 3. For each data set, we randomly sample m = [1, 5, 10, 15, 20, 25, 30]×
n clean pairwise constraints and input both constraints and features to each algorithm to
obtain a clustering π, where πi is the cluster index of item i. We then evaluate π using the
following pairwise error:

n(n− 1)

2

( ∑
(i,j):π∗i =π∗j

1 [πi 6= πj ] +
∑

(i,j):π∗i 6=π∗j

1 [πi = πj ]

)

where π∗i is the ground-truth cluster of item i.
Figure 4 shows the clustering result of each method given various numbers of constraints

on each data set. We first see that for the Mushrooms data set where features are perfect
(100% training accuracy can be attained by a linear-SVM for classification), both MCCC

5. All data sets are available at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/. For Cov-
type, we subsample from the entire data set to make each cluster has balanced size.
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number of items n feature dimension d number of clusters k

Mushrooms 8124 112 2
Segment 2319 19 7
Covtype 11455 54 7

Table 3: Statistics of semi-supervised clustering data sets.
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Figure 4: Performance of various semi-supervised clustering methods on real-world data
sets. For the Mushrooms data set where features are perfect, both MCCC and IMCNF
can output the ground-truth clustering with 0 error rate. For Segment and Covtype where
features are more noisy, IMCNF model outperforms MCCC as its error decreases given
more constraints.

and IMCNF can obtain the ground-truth clustering with 0 error rate, which indicates that
MCCC (and IMC) is indeed effective with perfect features. For the Segment and Covtype
data sets, we observe that the performance of k-means and MCCC is dominated by feature
quality. Although MCCC is still benefited from constraint information as it outperforms
k-means, it clearly does not make the best use of constraints since its performance is not
improved even if number of constraints increases. On the other hand, the error rate of
SignMC can always decrease down to 0 by increasing m; however, since it disregards fea-
tures, it suffers from a much higher error rate than other methods when constraints are few.
Finally, we see that IMCNF combines advantages from both MCCC and SignMC, as it not
only makes use of features when few constraints are observed, but also leverages constraint
information to avoid being trapped by feature noise. Therefore, the experiment shows that
by carefully handling side information using IMCNF model, we can further improve the
state-of-the-art semi-supervised clustering algorithm.

4.2.3. Noisy Image Classification

Finally, we consider noisy image classification problem as an application of low-rank matrix
learning with corrupted observations. In this problem, we are given a set of correlated
images in which a few of pixels are corrupted, and the task is to denoise the images so that
one can classify the images correctly. Since the underlying clean images are correlated and
thus share an implicit low-rank structure, standard robust PCA could be used to identify
sparse noise and recover the (low-rank approximation of) clean images. However, in certain
cases, low-dimensional features of images may also be available from other sources. For
example, suppose the set of images are human faces, then the principal components of
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linear SVM classifiers kernel SVM classifiers

ρs Clean Noisy PCP PCPF ρs Clean Noisy PCP PCPF

0.1
91.96

59.63 86.33 87.88 0.1
98.33

18.47 94.85 95.89
0.2 38.16 85.94 87.48 0.2 10.32 94.55 95.48
0.3 25.63 78.52 79.84 0.3 10.32 87.00 87.78

Table 4: Digit classification accuracy of PCP and PCPF with Eigendigit features. The
column Clean shows the accuracy on L0 and the column Noisy shows the accuracy on
R. Denoised images from both PCP and PCPF achieve much higher accuracy than noisy
images, and PCPF further outperforms PCP by incorporating Eigendigit features.

general human faces—known as Eigenface (Turk and Pentland, 1991)—could be used as
features, and such features could be helpful in the denoising process.

Motivated by the above realization, here we consider multiclass classification on a set
of noisy images from the MNIST data set. The data set includes 50, 000 training images
and 10, 000 testing images, and each image is a 28× 28 handwritten digit represented as a
784-dimensional vector. We first pre-train both multiclass linear and kernel SVM classifiers
on the clean training images, and perturb the testing image set to generate noisy images
R. Precisely, let L0 ∈ R784×10000 be the set of (clean) testing images, where each row
denotes a pixel and each column denotes an image. We then construct a sparse noise
matrix S0 ∈ R784×10000 where ρs of entries are randomly picked to be corrupted by setting
their values to be 255. The observed noisy images is thus given by R = min(L0 + S0, 255).
In the following, we show that by exploiting features of row and column entities in this
problem, we can better denoise the noisy images for classification.

Exploiting Eigendigit Features. We first exploit “Eigendigit” features to help denois-
ing. We take the training image set to produce the Eigendigit features X ∈ R784×300 using
PCA and simply set Y = I as we do not consider any column features here. We then input
R into PCP to derive a set of denoised images L∗pcp and input R, X and Y (which is I)
into PCPF (problem 8) to derive another set of denoised images L∗pcpf = XM∗. Both L∗pcp
and L∗pcpf will be low rank approximations of the clean images. Note that although the
Eigendigit features X will not satisfy (2) which is assumed in the derivation of PCPF, we
could heuristically incorporate it using PCPF in this circumstance because X is still ex-
pected to contain unbiased information of the low-rank approximation of the clean digits. 6

To compare the quality of denoised images of PCP and PCPF, we input L∗pcp and
L∗pcpf to pre-trained SVMs for digit classification and report the results in Table 4. Both
methods are somehow effective for denoising sparse noise, since accuracies achieved by
the denoised images are much closer to the clean images compared to the noisy images.
Furthermore, PCPF consistently achieves better accuracies than PCP under different ρs,
showing that incorporating Eigendigit features using PCPF is helpful on denoising process
for classification.

Exploiting both Eigendigit and Label-relevant Features In addition to the
Eigendigit features X, now we further exploit features for column entities. Ideally, the

6. Rigorously speaking, the ground-truth L0 is not even low-rank, but only approximately low-rank.
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(b) Linear SVM, ρs = 0.2
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(c) Linear SVM, ρs = 0.3
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(d) Kernel SVM, ρs = 0.1
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(e) Kernel SVM, ρs = 0.2
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(f) Kernel SVM, ρs = 0.3

Figure 5: Digit classification accuracy of various methods with both Eigendigit and label-
relevant features. For each ρs, we construct the label-relevant features Y with different
quality by varying ρf . The results show that PCPNF-w/Y is able to better exploit noisy
label-relevant features Y .

column features Y may describe the relevant information between images, which could be
extremely useful for classification. Thus, we generate the “label-relevant” features Y for
column entities as follows. Let Y ∗ ∈ R10000×10 be a perfect column feature matrix where
the i-th column of Y ∗ is the indicator vector of digit i − 1 (so Y ∗ contains ground-truth
label information). We then randomly pick ρf of rows in Y ∗ and shuffle these rows to form
Ỹ , which correspondingly means that 10, 000 × ρf images have noisy relevant information
in Ỹ . Finally, we form the column feature Y ∈ R10000×50 which spans Ỹ . Thus, the quality
of Y depends on the parameter ρf ∈ [0, 1] and smaller ρf results in better label-relevant
features.

We consider four approaches for denoising in the following experiment. The first two
baseline methods are PCP and PCPF with only Eigendigit features X. Both methods are
the ones we considered in the previous experiment which do not take label-relevant features
into account. Moreover, we consider using PCPF and PCPNF to incorporate both the
Eigendigit features X and the label-relevant features Y for denoising, and we name them as
“PCPF-w/Y” and “PCPNF-w/Y” to emphasize that they embed the label-relevant features
Y . We apply each method to denoise noisy images under different ρf and ρs and examine
the quality of denoised images by testing the accuracies they achieve in pre-trained SVMs.

The results are shown in Figure 5. In each figure, we fix the sparsity of noise ρs and try
to recover the clean images using each method with different quality of Y . We can see that
the perfect label-relevant features are extremely useful, as when ρf = 0, recovered images

25



Chiang, Hsieh and Dhillon

from both PCPF-w/Y and PCPNF-w/Y achieve even much higher accuracies compared to
the clean images (reported in Table 4). However, once ρf increases, PCPF-w/Y quickly fails
as its accuracy drops drastically (accuracies become much lower than 70 for ρf > 0.5 and
thus are not shown in figures). On the other hand, we see that PCPNF-w/Y performs much
better than PCPF-w/Y on exploiting noisy label-relevant features, as it still achieves better
accuracies compared to both PCPF and PCP when ρf > 0. The results again demonstrate
the effectiveness of our proposed model on exploiting noisy side information.

5. Related Work

Learning a low-rank matrix from imperfect observations is an expansive domain in machine
learning including many fundamental problems, such as Principal Component Analysis
(PCA) (Hotelling, 1933), matrix completion (Candès and Tao, 2009), low-rank matrix sens-
ing (Zhong et al., 2015) and robust PCA (Wright et al., 2009). While each of the above
topics is an independent research area burgeoning in recent years, our main focus is to study
the usefulness of side information in low-rank matrix learning where the observations are
partial and/or corrupted in both theoretical and practical aspects.

Learning a low-rank matrix from partial observations is well-known as matrix comple-
tion problem, which has been successfully applied to many machine learning tasks including
recommender systems (Koren et al., 2009), social network analysis (Hsieh et al., 2012; Chi-
ang et al., 2014) and clustering (Chen et al., 2014). Several theoretical foundations have also
been established. One of the most striking results is the exact recovery guarantee provided
by Candès and Tao (2009) and Candès and Recht (2012) where the authors showed that
O(n polylog n) observations are sufficient for exact recovery with high probability, provided
that entries are uniformly sampled at random. Several works also study recovery under
non-uniform distributional assumptions (Negahban and Wainwright, 2012), distribution-
free settings (Shamir and Shalev-Shwartz, 2014) and noisy observations (Keshavan et al.,
2010; Candès and Plan, 2010).

A few research papers also consider side information in the matrix completion setting
(Menon and Elkan, 2011; Chen et al., 2012; Natarajan and Dhillon, 2014; Shin et al., 2015).
Although most of them found that features are helpful in certain applications (Menon
and Elkan, 2011; Shin et al., 2015) and in the cold-start setting (Natarajan and Dhillon,
2014), they mainly focus on the non-convex matrix factorization formulation without any
theoretical analysis on the effect of side information. More recently, Jain et al. (2013)
studied Inductive Matrix Completion (IMC) objective to incorporate side information, and
several follow-up works also consider IMC with trace norm regularization (Xu et al., 2013;
Zhong et al., 2015). All of them showed that recovery can be achieved by IMC with much
lower sample complexity provided perfect features. However, as we have discussed in the
paper, given imperfect features, IMC cannot recover the underlying matrix and may even
suffer from poor performance in practice. This observation leads us to further develop an
improved model which better exploits noisy side information in learning (see Section 2.3).

Robust PCA is another prominent instance of low-rank matrix learning from imperfect
observations, where the goal is to recover a low-rank matrix from a full matrix in which a
few of entries are arbitrarily corrupted by sparse noise. This sparse structure of noise is
common in many applications such as image processing and bioinformatics (Wright et al.,
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2009). Researchers have also investigated several approaches to robust PCA with theo-
retical guarantees (Chandrasekaran et al., 2011; Candès et al., 2011). Perhaps the most
remarkable milestone is the strong guarantee provided by Candès et al. (2011), in which
the authors showed that under mild conditions, low-rank and sparse structure are exactly
distinguishable. Several extensions of robust PCA have also been considered, such as robust
PCA with column-sparse errors (Xu et al., 2010), with missing data (Candès et al., 2011;
Chen et al., 2013) and with compressed data (Ha and Barber, 2015).

However, unlike matrix completion, there is little research that directly exploits side in-
formation in the robust PCA problem, leaving the advantage of side information in robust
PCA unexplored. Though it may appear that one can extend the analysis of side informa-
tion in matrix completion to robust PCA as both problems share certain similarities, the
robust PCA problem is still essentially different—in fact harder—from matrix completion
in many aspects. In particular, matrix completion has been mostly used for missing value
estimation, where the emphasis is to accurately recover the missing entries given trustable,
partial observations, while robust PCA is a matrix separation problem where one has to
identify the corrupted entries given full yet untrustable observations. This difference natu-
rally precludes a direct extension from the analyses of matrix completion to robust PCA.
Nevertheless, Chiang et al. (2016) has recently shown that given perfect features, exact
recovery of higher-rank matrices becomes attainable in the robust PCA problem, indicating
that side information in robust PCA can be exploited. In this paper, we extend Chiang et al.
(2016) and develop a more general model which can further exploit noisy side information
to help solve the robust PCA problem.

Another model that shares certain similarities to robust PCA with side information is
Low-Rank Representation (LRR), which emerged from the subspace clustering problem (Liu
et al., 2010, 2013). Given that the observed data matrix is corrupted by sparse errors,
LRR model assumes that the underlying low-rank matrix can be represented by a linear
combination of a provided dictionary. Interestingly, LRR can be thought of as a special
case of the proposed PCPF model (see Section 2.3) where the given dictionary serves as
the row features X. Our problem setting is also more general than LRR as we consider
incorporating both row and column features to help recovery.

6. Conclusions

In this paper, we study the effectiveness of side information for low-rank matrix learning
from missing and corrupted observations. We propose a general model (problem (4)) which
incorporates both perfect and noisy side information by balancing information from features
and observations simultaneously, from which we can derive several instances of the model,
including IMCNF and PCPNF, that better solve matrix completion and robust PCA by
leveraging side information. In addition, we provide a formal analysis to justify the effec-
tiveness of side information in the proposed model, in which we quantify the quality of
features and show that the sample complexity of learning can be asymptotically improved
given sufficiently informative features, provided a small enough noise level. This analysis
therefore quantifies the merits of side information in our model for low-rank matrix learn-
ing in theory. Finally, we verify our model in several synthetic experiments as well as in
real-world machine learning applications including relationship prediction, semi-supervised
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clustering and noisy image classification. By viewing each application as a low-rank matrix
learning problem from missing or corrupted observations given certain additional features,
we show that employing our model results in competitive algorithms whose performance is
comparable to or better than other state-of-the-art approaches. All of our results consis-
tently demonstrate that the proposed model learns the low-rank matrix from missing and
corrupted observations more effectively by properly exploiting side information.
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Appendix A. Proofs

Preliminary Lemmas

We first introduce two lemmas required in the proof of Lemma 3. These two lemmas provide
bounds on the Rademacher complexity of the function class with bounded trace norm and
`1 norm respectively.

Lemma 9 Let Sw = {W ∈ Rn×n | ‖W‖∗ ≤ W} and A = maxi ‖Ai‖2, where each Ai ∈
Rn×n, then:

Eσ
[

sup
W∈Sw

1

m

m∑
i=1

σitrace(WAi)
]
≤ 2AW

√
log 2n

m
.

Proof This Lemma is directly from the Lemma 3 in Hsieh et al. (2015).

Lemma 10 Let Sw = {W ∈ Rn1×n2 | ‖W‖1 ≤ W}, and each Ei is in the form of Ei =
exe

T
y , where ex ∈ Rn2, ey ∈ Rn1 are two unit vectors. Then:

Eσ
[

sup
W∈Sw

1

m

m∑
i=1

σitrace(WEi)
]
≤ W

√
2 log (2n1n2)

m
.

Proof This Lemma is a special case of Theorem 1 in Kakade et al. (2008) with the fact
that ‖Ei‖∞ := maxa,b |(Ei)ab| = 1.
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Proof of Lemma 3

Proof First, we can use a standard Rademacher contraction principle (e.g. Lemma 5
in Meir and Zhang, 2003) to bound R(FΘ) to be:

R(FΘ) ≤L`Eσ
[

sup
θ∈Θ

1

m

m∑
σ=1

σα(XMY T +N + S)iαjα
]

=L`Eσ
[

sup
‖M‖∗≤M

1

m

m∑
α=1

σαtrace(MyjαxTiα)
]

+ L`Eσ
[

sup
‖N‖∗≤N

1

m

m∑
α=1

σαtrace(NejαeTiα)
]

+ L`Eσ
[

sup
‖S‖1≤S

1

m

m∑
α=1

σαtrace(SejαeTiα)
]

≤2L`Mmax
i,j
‖yjxTi ‖2

√
log 2d

m
+ 2L`N

√
log 2n

m
+ L`S

√
2 log (2n1n2)

m

where the last inequality is derived by applying Lemma 9 and Lemma 10. Moreover, since
maxi,j ‖yjxTi ‖2 = maxj ‖yj‖2 maxi ‖xi‖2, we can thus upper bound R(FΘ) by:

R(FΘ) ≤ 2L`MXY
√

log 2d

m
+ 2L`N

√
log 2n

m
+ L`S

√
2 log (2n1n2)

m
. (12)

However, in some circumstances, the above bound (12) is too loose for sample complexity
analysis. To deal with these cases, we follow Shamir and Shalev-Shwartz (2014) to derive a
tighter bound on the trace norm of residual (i.e. N ). To begin with, we rewrite R(FΘ) as:

R(FΘ) = Eσ
[

sup
f∈FΘ

1

m

m∑
α=1

σα`(f(iα, jα), Riα,jα))
]

= Eσ
[

sup
f∈FΘ

1

m

∑
(i,j)

Γij`(f(i, j), Rij)
]
,

where Γ ∈ Rn1×n2 , Γij =
∑

α:iα=i,jα=j σα. Now, using the same trick in Shamir and Shalev-
Shwartz (2014), we can divide Γ based on the “hit-time” of each (i, j) ∈ Ωobs, with some
threshold p > 0 whose value will be set later. Formally, let hij = |{α : iα = i, jα = j}|, and
let A,B ∈ Rn1×n2 be defined by:

Aij =

{
Γij , if hij > p,

0, otherwise.
Bij =

{
0, if hij > p,

Γij , otherwise.

By construction, Γ = A+B. Therefore, we can separate R(FΘ) to be:

R(FΘ) = Eσ
[

sup
f∈FΘ

1

m

∑
(i,j)

Aij`(f(i, j), Rij)
]

+ Eσ
[

sup
f∈FΘ

1

m

∑
(i,j)

Bij`(f(i, j), Rij)
]
. (13)

For the first term in (13), since |`(f(i, j), Rij)| ≤ B, it can be upper bounded by:

Eσ
[

sup
f∈FΘ

1

m

∑
(i,j)

Aij`(f(i, j), Rij)
]
≤ B
m
Eσ
[∑

(i,j)

|Aij |
]
≤ B√

p

29



Chiang, Hsieh and Dhillon

where the last inequality is derived by applying Lemma 10 in Shamir and Shalev-Shwartz
(2014). Now consider the second term of (13). Again, by Rademacher contraction principle,
it can be upper bounded by:

L`
m

Eσ
[

sup
f∈FΘ

∑
(i,j)

Bijf(i, j)
]

=
L`
m

Eσ
[

sup
‖M‖∗≤M

∑
(i,j)

Bijx
T
i Myj

]
+
L`
m

Eσ
[

sup
‖N‖∗≤N

∑
(i,j)

BijNij

]
+
L`
m

Eσ
[

sup
‖S‖1≤S

∑
(i,j)

BijSij
]
.

(14)

We can again upper bound the first and third term of (14) using Lemma 9 and Lemma 10.
Precisely, the first term can be upper bounded by:

L`
m

Eσ
[

sup
‖M‖∗≤M

m∑
α=1

σαxTiαMyjα
]

= L`Eσ
[

sup
‖M‖∗≤M

1

m

m∑
α=1

σαtrace(MyjαxTiα)
]
≤ 2L`MXY

√
log 2d

m
,

and the third term of (14) is upper bounded by:

L`Eσ
[

sup
‖S‖1≤S

1

m

m∑
α=1

σαtrace(SejαeTiα)
]
≤ L`S

√
2 log (2n1n2)

m
.

In addition, by applying Hölder’s inequality, the second term of (14) is upper bounded by:

L`
m

Eσ
[

sup
‖N‖∗≤N

∑
(i,j)

BijNij

]
≤ L`
m

sup
N :‖N‖∗≤N

‖B‖2‖N‖∗ =
L`N
m

Eσ
[
‖B‖2

]
≤

2.2CL`N
√
p(
√
n1 +

√
n2)

m
,

where the last inequality is derived by applying Lemma 11 in Shamir and Shalev-Shwartz
(2014). Therefore, putting all of the above upper bounds to (13) and choosing p to be
mB/(2.2CL`N (

√
n1 +

√
n2)), we obtain another upper bound on R(FΘ) as:

R(FΘ) ≤ 2L`MXY
√

log 2d

m
+

√
9CL`B

N (
√
n1 +

√
n2)

m
+ L`S

√
2 log (2n1n2)

m
. (15)

Lemma 3 thus follows by combining (12) and (15).

Proof of Lemma 4

Proof To begin with, we have:

‖XT
µ L0Yν‖2 ≤ ‖Xµ‖2‖L0‖2‖Yν‖2 ≤ σxσy‖L0‖∗,

where σx (or σy) is the largest singular value of Xµ (or Yν). Therefore, by the definition of
M̂ , we have:

‖M̂‖∗ ≤ d‖M̂‖2 = d‖(XT
µXµ)†XT

µ L0Yν(Y T
ν Yν)†‖2 ≤

σxσyd‖L0‖∗
σ2
xmσ

2
ym

, (16)
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where σxm (or σym) is the smallest non-zero singular value of Xµ (or Yν). Furthermore, by
the construction of Xµ and Yν , we have σxm ≥ µσx and σym ≥ νσy. We can further lower
bound σx (and σy) by:

σ2
x = ‖Xµ‖22 = ‖X‖22 ≥

‖X‖2F
d
≥ nmin ‖xi‖2

d
≥ nγ2X 2

d
.

Therefore, from (16), we can further bound ‖M̂‖∗ by:

‖M̂‖∗ ≤
d‖L0‖∗
µ2ν2σxσy

≤ d2‖L0‖∗
µ2ν2γ2XY√n1n2

.

The lemma is thus concluded by the fact that ‖L0‖∗ ≤ CL
√
n1n2.

Proof of Theorem 5

Proof The claim is directly proved by plugging Lemma 3 - 4 to Lemma 2, in which
R̂`(f

∗) = 0 because (M̂, L0 −XM̂Y T , S0) ∈ Θ and such an instance makes R̂` = 0.

Proof of Theorem 6

Proof Note that since S0 = S∗ = 0 in matrix completion case, we have:

R`(f
∗) = E(i,j)∼D

[
`(XM∗Y T

ij , e
T
i L0ej)

]
.

The claim therefore directly follows from Theorem 5 by setting R`(f
∗) < ε.

Proof of Theorem 7

Proof By the construction of X and Y , we can rewrite them as follows:

X =
t−1∑
i=1

uie
T
i +

d∑
i=t

ũie
T
i , Y =

t−1∑
i=1

vie
T
i +

d∑
i=t

ṽie
T
i , (17)

where for each ũi, ũTi uj = 0, ∀j. Therefore, we can upper bound N by:

‖L0 −XM̂Y T ‖∗ = ‖Ũ ŨTL0 + L0Ṽ Ṽ
T − Ũ ŨTL0Ṽ Ṽ

T ‖∗
≤ 2‖Ũ ŨTUΣV T ‖∗ + ‖UΣV T Ṽ Ṽ T ‖∗

≤ 3
k∑
i=t

σi,

where Ũ , Ṽ are the second term of X and Y in (17). Moreover, we have σi = o(
√
n) for all

i ≥ t. To see this, suppose σp = Ω(
√
n) for any t ≤ p ≤ k, then:

lim
n→∞

σt√
n
≥ lim

n→∞

σp√
n
> 0,
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leading a contradiction to the definition of σt. Therefore we can conclude:

N = ‖L0 −XM̂Y T ‖∗ ≤ 3

k∑
i=t

σi ≤ 3k × o(
√
n) = o(

√
n),

and the Theorem is thus proved by plugging the above bound on N to Theorem 6.

Proof of Theorem 8

Proof The sample complexity claim directly follows from Theorem 5 by setting R`(f
∗) < ε,

and the claim of PΩ⊥obs
(S∗) = 0 is directly from the construction of Algorithm 1 as discussed

in Section 2.4.
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