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Abstract
Kernel learning plays an important role in
many machine learning tasks. However, algo-
rithms for learning a kernel matrix often scale
poorly, with running times that are cubic in
the number of data points. In this paper, we
propose efficient algorithms for learning low-
rank kernel matrices; our algorithms scale
linearly in the number of data points and
quadratically in the rank of the kernel. We
introduce and employ Bregman matrix diver-
gences for rank-deficient matrices—these di-
vergences are natural for our problem since
they preserve the rank as well as positive
semi-definiteness of the kernel matrix. Spe-
cial cases of our framework yield faster al-
gorithms for various existing kernel learning
problems. Experimental results demonstrate
the effectiveness of our algorithms in learning
both low-rank and full-rank kernels.

1. Introduction

Kernel methods have played a major role in many re-
cent machine learning algorithms. However, scalabil-
ity is often a concern: given n input data points, many
kernel-based algorithms scale as O(n3). Furthermore,
the kernel matrix requires O(n2) memory overhead,
which may be prohibitive for large-scale learning tasks.
Recently, research has been done on using low-rank
kernel representations to improve scalability (Fine &
Scheinberg, 2001). If the kernel matrix is assumed to
be of rank r (with r < n), we need only store the de-
composition of the kernel matrix K = GGT , where G
is n × r. Many kernel-based learning algorithms can
be reformulated in terms of G, and lead to algorithms
that scale linearly with n. One of the main obsta-
cles in using low-rank kernel matrices lies in obtaining
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a matrix with such a property; most standard kernel
functions do not produce low-rank kernel matrices, in
general.

The focus in this paper is on learning low-rank kernel
matrices given distance and similarity constraints on
the data. Learning a kernel matrix has been a topic
of significant research, but most existing algorithms
are not very efficient. Moreover, there is not much
literature on learning low-rank kernel matrices. We
propose to learn a low-rank kernel by minimizing the
divergence to an initial low-rank kernel matrix while
satisfying distance and similarity constraints as well as
a low-rank constraint. However, low-rank constraints
are non-convex, and optimization problems involving
such constraints are intractable in general. By intro-
ducing specific matrix divergences, we show how to
naturally obtain convexity of the optimization prob-
lem, leading to algorithms that are substantially more
efficient than current kernel learning algorithms.

Our main contributions in this paper are:

• We employ rank-preserving Bregman matrix di-

vergences, dissimilarity measures over matrices
which are natural for learning low-rank kernel ma-
trices, as they implicitly constrain the rank and
maintain positive semi-definiteness during the up-
dates of our algorithms.

• We develop projection algorithms based on the
Burg matrix divergence and the von Neumann di-
vergence that scale linearly with the number of
data points.

• A special case of our formulation leads to the Def-
initeBoost optimization problem of Tsuda et al.
(2005). Our approach improves the running time
of their algorithm by a factor of n, from O(n3) to
O(n2) per projection. Additional special cases of
our formulation lead to improved algorithms for
nonlinear dimensionality reduction and the near-
est correlation matrix problem.
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• We experimentally demonstrate that our algo-
rithms can be effectively used in classification and
clustering tasks.

2. Background and Related Work

In this section, we briefly review relevant background
material and related work.

2.1. Kernel Methods

Given a set of training points a1, ...,an, a common
step in kernel algorithms is to transform the data us-
ing a non-linear function ψ. This mapping, typically,
represents a transformation of the data to a higher-
dimensional feature space. A kernel function is a func-
tion κ that gives the inner product between two vectors
in the feature space:

κ(ai,aj) = ψ(ai) · ψ(aj).

It is often possible to compute this inner product with-
out explicitly computing the expensive mapping of the
input points to the higher-dimensional feature space.
Generally, given n points ai, we form an n× n matrix
K, called the kernel matrix, whose (i, j) entry corre-
sponds to κ(ai,aj). In kernel-based algorithms, the
only information needed about the input data points
is the inner products; hence, the kernel matrix pro-
vides all relevant information for learning in the fea-
ture space. A kernel matrix formed from any set of
input data points is always positive semi-definite (has
non-negative eigenvalues). See Shawe-Taylor and Cris-
tianini (2004) for more details.

2.2. Low-Rank Kernel Representations and

Kernel Learning

Despite the popularity of kernel methods in machine
learning, many kernel-based algorithms scale poorly.
To improve scalability, the use of low-rank kernel rep-
resentations has been proposed. Given an n×n kernel
matrix K, if the matrix is of low rank, say r < n, we
can represent the kernel matrix in terms of a decom-
position K = GGT , with G an n × r matrix.

In addition to easing the burden of memory overhead
from O(n2) storage to O(nr), this low-rank decomposi-
tion can lead to improved efficiency. For example, Fine
and Scheinberg (2001) show that SVM training re-
duces from O(n3) to O(nr2) when using a low-rank
decomposition. Empirically, this algorithm was shown
to outperform other SVM training algorithms in terms
of training time by several orders of magnitude. In
clustering, the kernel k-means algorithm (Kulis et al.,
2005) has a running time of O(n2) per iteration but
can be improved to O(nrk) time per iteration with

a low-rank representation, where k is the number of
desired clusters. Low-rank kernel representations are
often obtained using incomplete Cholesky decomposi-
tions (Fine & Scheinberg, 2001). Recently, work has
been done on using labeled data to improve the low-
rank decomposition (Bach & Jordan, 2005).

In this paper, our focus is on using distance and sim-
ilarity constraints to learn a low-rank kernel matrix.
The problem of learning a kernel matrix has been stud-
ied in various contexts. Lanckriet et al. (2004) study
transductive learning of the kernel matrix and multi-
ple kernel learning using semi-definite programming.
In Kwok and Tsang (2003), a formulation based on
idealized kernels is presented to learn a kernel ma-
trix when some labels are given. Another recent pa-
per (Weinberger et al., 2004) considers learning a ker-
nel matrix for nonlinear dimensionality reduction; like
much of the research on learning a kernel matrix, semi-
definite programming is used and the running time is
at least cubic in the number of data points. Our work
is closest to that of Tsuda et al. (2005), who learn
a (full-rank) kernel matrix using von Neumann diver-
gence under linear constraints. However, our frame-
work is more general and our emphasis is on low-rank
kernel learning. Our algorithms are more efficient than
those of Tsuda et al.; we use exact instead of approx-
imate projections to speed up convergence, and we
consider the Burg divergence in addition to the von
Neumann divergence.

3. Optimization Framework

3.1. Bregman Matrix Divergences

Let φ be a real-valued strictly convex function defined
over a convex set S = dom(φ) ⊆ R

m such that φ is
differentiable on the relative interior of S. The Breg-

man divergence (Bregman, 1967) with respect to φ is
defined as

Dφ(x,y) = φ(x) − φ(y) − (x − y)T∇φ(y).

For example, if φ(x) = xT x, then the resulting Breg-
man divergence is Dφ(x,y) = ‖x − y‖2

2. Alternately,
if φ(x) =

∑

i(xi log xi − xi), then the resulting Breg-
man divergence is the (unnormalized) relative entropy.
Bregman divergences generalize many properties of
squared loss and relative entropy.

We can naturally extend this definition to convex func-
tions defined over matrices. In this case, given a
strictly convex, differentiable function φ(X), the Breg-
man matrix divergence is defined to be

Dφ(X,Y ) = φ(X) − φ(Y ) − tr((∇φ(Y ))T (X − Y )),

where tr(A) denotes the trace of matrix A. Ex-
amples include φ(X) = ‖X‖2

F , which leads to the
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squared Frobenius norm ‖X − Y ‖2
F . We consider two

other matrix divergences which are less well-known.
Let the function φ compute the (negative) entropy
of the eigenvalues of a positive semi-definite matrix.
More specifically, if X has eigenvalues λ1, ..., λn, then
φ(X) =

∑

i(λi log λi −λi), which may be expressed as
φ(X) = tr(X log X − X), where log X is the matrix
logarithm.1 The resulting matrix divergence is

DvN (X,Y ) = tr(X log X − X log Y − X + Y ), (1)

and is known as the von Neumann divergence (or quan-
tum relative entropy in the physics literature). An-
other example is to take the Burg entropy of the eigen-
values, i.e. φ(X) = −

∑

i log λi; this may be expressed
as φ(X) = − log detX. The resulting matrix diver-
gence is

DBurg(X,Y ) = tr(XY −1) − log det(XY −1) − n, (2)

which we call the Burg matrix divergence (or the
LogDet divergence).

3.2. Problem Description

We now give a formal statement of the problem. Given
an input kernel matrix K0, we attempt to solve the
following for K:

minimize Dφ(K,K0)

subject to tr(KAi) ≤ bi, 1 ≤ i ≤ c,

rank(K) ≤ r,

K º 0.

Any of the linear inequality constraints above may be
replaced with equalities. This problem is non-convex
in general, due to the rank constraint. However, when
the rank of K0 does not exceed r, then this problem
surprisingly turns out to be convex when we use rank-
preserving Bregman matrix divergences (defined later
in Section 4). As we will see later, another advantage
of using the von Neumann and Burg divergences is that
the algorithms used to solve the minimization problem
implicitly maintain the positive semi-definiteness con-
straint.

Though our algorithms can handle general linear con-
straints of the form tr(KAi) ≤ bi, we will focus
on two types of constraints. The first is a distance
constraint. The squared Euclidean distance in fea-
ture space between the ith and the jth data points

1If X = V ΛV
T is the eigendecomposition of the

positive-definite matrix X, then its matrix logarithm can
be written as V log ΛV

T , where log Λ is the diagonal ma-
trix whose entries contain the logarithm of the eigenvalues.
The matrix exponential can be defined analogously.

is given by Kii + Kjj − 2Kij . Given the constraint
Kii + Kjj − 2Kij ≤ b, it can be represented as
tr(KA) ≤ b, where A = zzT , zi = 1, zj = −1, and
all other entries of z are 0. The constraint Kij ≤ b
can be written as tr(KA) ≤ b using A = xyT , with
xj = 1, yi = 1, and all other entries of x and y are 0.

3.3. Bregman Projections

Consider the convex optimization problem presented
above, without the rank constraint. (We will see how
to handle the rank constraint in the next section.) To
solve this problem, we use the method of cyclic projec-
tions (Bregman, 1967; Censor & Zenios, 1997), which
we briefly summarize. Suppose we wish to minimize
f(X) = Dφ(X,X0) subject to linear equality and in-
equality constraints. In each iteration of the cyclic pro-
jection algorithm, we choose one constraint (assumed
to be tr(XAi) = bi or tr(XAi) ≤ bi). If constraint
i is an equality constraint, we project our current so-
lution Xt onto constraint i to obtain Xt+1 by solving
the following system of equations uniquely for α and
Xt+1:

∇f(Xt+1) = ∇f(Xt) + αAT
i (3)

tr(Xt+1Ai) = bi.

If constraint i is an inequality constraint, we maintain
a non-negative dual variable λi for that constraint. Af-
ter solving the above system of equations for α, we set
α′ = min(λi, α) and λi = λi − α′. Then we update
Xt+1 via

∇f(Xt+1) = ∇f(Xt) + α′AT
i . (4)

We cycle through constraints in such a way that all
constraints are visited infinitely often in the limit.
Both of our algorithms in Section 5 are based on this
method. The main difficulty in using cyclic projec-
tions lies in solving the nonlinear system of equations
efficiently. Details of the convergence of this method
can be found in Censor and Zenios (1997). Note
that Tsuda et al. (2005) do not handle inequality
constraints correctly, as they fail to make the correc-
tion (4) based on the dual variables.

For simplicity, we assume that the constraint matrices
are symmetric and rank one matrices: Ai = ziz

T
i (we

briefly discuss extensions to higher-rank constraints
in Section 5.3). By calculating the gradient for the
Burg and the von Neumann matrix divergences, re-
spectively, (3) simplifies to:

Xt+1 =
(

X−1
t − αziz

T
i

)−1
(5)

Xt+1 = exp(log(Xt) + αziz
T
i ), (6)

subject to tr(Xt+1ziz
T
i ) = bi, or equivalently,

zT
i Xt+1zi = bi.



Learning Low-Rank Kernel Matrices

4. Bregman Divergences for

Rank-Deficient Matrices

The von Neumann and Burg matrix divergences, as
well as the corresponding updates in Bregman’s algo-
rithm, are seemingly undefined for low-rank matrices.
We now discuss extensions of these divergences to low-
rank matrices.

Let the eigendecompositions of X and Y be X =
V ΛV T and Y = UΘUT . We express the Burg di-
vergence DBurg(X,Y ) given in (2) using the eigende-
composition of X and Y :

∑

i,j

λi

θj
(vT

i uj)
2 −

∑

i

log

(

λi

θi

)

− n.

Similarly, the von Neumann divergence DvN (X,Y )
can be written as:

∑

i

λi log λi −
∑

i,j

(vT
i uj)

2λi log θj −
∑

i

(λi − θi).

Using continuity arguments, it is possible to show that
the Burg divergence between X and Y is finite if and
only if the range spaces of X and Y are the same.
Similarly, the von Neumann divergence is finite if and
only if the range space of Y contains the range space of
X (for example, by defining 0 log 0 = 0, we can verify
this for the von Neumann divergence).

This fact has an important implication: when min-
imizing DBurg(K,K0), the updates of our algorithm
automatically maintain the range space of the input
kernel at each iteration as long as the optimization
problem is feasible. It follows that the rank of K is
equal to the rank of K0 during all updates of the al-
gorithm. Similarly, for the von Neumann divergence,
the range space of K0 must contain the range space of
K, so we conclude that the rank of K never exceeds
the rank of K0 during all updates of the algorithm.
Thus, we implicitly maintain rank constraints in our
optimization problem under both divergences.

We can re-write the divergences in terms of the re-
duced eigendecompositions of X and Y when they
share the same range space. We consider only the
top r leading eigenvalues and eigenvectors of X and
Y , where r is the rank of Y . Then the Burg matrix
divergence DBurg(X,Y ) can be written as

∑

i,j≤r

λi

θj
(vT

i uj)
2 −

∑

i≤r

log

(

λi

θi

)

− r,

where λ1 ≥ λ2 ≥ ... ≥ λn and θ1 ≥ θ2 ≥ ... ≥ θn.
The von Neumann divergence DvN (X,Y ) is expressed
using the reduced eigendecomposition as

∑

i≤r

λi log λi −
∑

i,j≤r

(vT
i uj)

2λi log θj −
∑

i≤r

(λi − θi).

5. Algorithms

5.1. Burg Divergence

5.1.1. Matrix Updates

Consider minimizing DBurg(X,X0), the Burg matrix
divergence between X and X0. Recall the projection
update rule (5). To accommodate low-rank kernels,
we can write the update as:

Xt+1 = (X†
t − αziz

T
i )†,

where X†
t is the pseudoinverse of the positive semi-

definite matrix Xt (Golub & Van Loan, 1996). Al-
ternatively, we could have written this update using
the more “procedural” reduced eigendecomposition of
Xt. Note that the limit of ((Xt + ǫI)−1 − αziz

T
i )−1

as ǫ → 0 leads to the above update, justifying our
use of the pseudoinverse. Note that in the full-rank
case, the above update is the same as (5). We apply
the Sherman-Morrison inverse formula to this update,
which can be extended to use the pseudoinverse of a
positive semi-definite matrix:

(A + uvT )† = A† −
A†uvT A†

1 + vT A†u
.

Using this formula, we arrive at a simplified expression
for Xt+1:

Xt+1 = Xt +
αXtziz

T
i Xt

1 − αzT
i Xtzi

.

Since Xt+1 must satisfy the ith constraint, i.e.
tr(Xt+1ziz

T
i ) = bi, we can solve the following equa-

tion for α:

tr

((

Xt +
αXtziz

T
i Xt

1 − αzT
i Xtzi

)

ziz
T
i

)

= bi.

Let p = zT
i Xtzi. Note that tr(Xtziz

T
i ) = p and

tr(Xtziz
T
i Xtziz

T
i ) = p2. In the case of distance con-

straints, p is the distance between the two data points
corresponding to constraint i, and can be computed in
constant time. Then we have:

α =
1

p
−

1

bi
.

If we let β = α/(1 − αp), then our matrix update is
given by

Xt+1 = Xt + βXtziz
T
i Xt.

This update is pleasantly surprising since the projec-
tion parameter for Bregman’s algorithm does not usu-
ally admit a closed form solution (see Section 5.2.2 for
the case of the von Neumann divergence).
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5.1.2. Update for the Factored Matrix

If one stopped with the update given above, the cost is
O(n2) per iteration. However, we can achieve a more
efficient update for low-rank matrices by working on a
suitable factored form of the matrix Xt. If Xt can be
written as GGT , where G is an n×r matrix, the update
can be formulated using only the factored matrices.
Let β be as above. Then we have:

Xt+1 = GGT + βGGT ziz
T
i GGT

= G(I + βGT ziz
T
i G)GT .

The matrix I + βz̃iz̃
T
i , where z̃i = GT zi, is an r × r

matrix. To update G for the next iteration, we factor
this matrix as LLT ; then our new G is updated to
GL. Since I +βz̃iz̃

T
i is a rank-one perturbation of the

identity, this update can be done in O(r2) time using
a Cholesky rank-one update routine.

To increase computational efficiency, we note that
G = G0B, where B is the product of all the L matri-
ces from every iteration and G0 is the initial Cholesky
factor of K0. Instead of updating G explicitly at each
iteration, we can just update B as BL. The matrix
I + βGT ziz

T
i G is then I + βBT GT

0 ziz
T
i G0B. In the

case of distance constraints, we can compute GT
0 zi in

O(r) time as the difference of two rows of G0. Further-
more, α, β and the Cholesky factorization can all be
computed in O(r2) time. The multiplication BL ap-
pears to cost O(r3) time, but the simple structure of L
and the fact that it depends on O(r) parameters allow
us to implement this multiplication in O(r2) time as
well. Details are omitted due to lack of space.

5.1.3. Algorithm

The algorithm for distance inequality constraints using
the Burg divergence is given as Algorithm 1. As dis-
cussed in the previous section, every projection can be
done in O(r2) time. Thus, cycling through all c pro-
jections requires O(cr2) time. The only dependence
on n—the number of data points—occurs in steps 1
and 4. If we need to explicitly create the matrix G0,
this takes O(nr) time, and the last step, multiplying
G = G0B, takes O(nr2) time. Hence, the algorithm is
linear in n (and linear in c).

Convergence can be checked by using the dual vari-
ables λ. The cyclic projection algorithm can be viewed
as a dual ascent algorithm, thus convergence can be
measured as follows: after cycling through all con-
straints, we check to see how much λ has changed after
a full cycle. At convergence, this change (as measured
with a vector norm) should be small.

Algorithm 1: Learning a low-rank kernel in
Burg divergence under distance constraints.

KernelLearnBurg(r, {Ai}
c
i=1, G0)

Input: r: rank of desired kernel matrix, {Ai}
c
i=1:

constraints, G0: optional input kernel factor ma-
trix of rank r
Output: G: output low-rank kernel factor matrix
1. If not given, create a random n × r matrix G0.
2. Set B = Ir, i = 1, and λj = 0 ∀ constraints j.
3. Repeat until convergence:

• Let vT be row i1 of G0 minus row i2 of G0,
where, corresponding to constraint i, points
i1 and i2 are constrained to have squared Eu-
clidean distance less than or equal to bi.

• Set the following variables:

w ← BT v

α ← min

(

λi,
1

‖w‖2
2

−
1

bi

)

λi ← λi − α

β ← α/(1 − α‖w‖2
2)

• Compute the Cholesky factorization LLT =
I + βwwT .

• Set B ← BL, i ← mod(i, c) + 1.

4. Return G = G0B.

5.2. Von Neumann Divergence

In this section we develop a cyclic projection algorithm
when the matrix divergence is the von Neumann diver-
gence.

5.2.1. Matrix Updates

Consider minimizing DvN (X,X0), the von Neumann
divergence between X and X0. Recall equation (6),
the projection update rule for constraint i. As with
the Burg divergence, we can express the von Neumann
divergence update using the reduced eigendecomposi-
tion of Xt. Let Xt = VtΛtV

T
t , where Vt is n × r and

Λt is r × r. We must calculate exp(log(Xt) + αziz
T
i ).

When Xt is of full rank, the definitions of the log
and exp functions imply that exp(log(Xt) + αziz

T
i ) =

Vtexp(log(Λt) + αV T
t ziz

T
i Vt)V

T
t . This motivates the

following natural extension of the update when Xt is
low rank:

Xt+1 = Vtexp(log(Λt) + αV T
t ziz

T
i Vt)V

T
t .

We can verify that the matrix on the right-hand side
is equal to the limit of exp(log(Xt +ǫI)+αziz

T
i ) when

ǫ → 0, thus justifying the update.
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If the eigendecomposition of the exponent log(Λt) +
αV T

t ziz
T
i Vt is UtΘtU

T
t , then the eigendecomposition

of Xt+1 is calculated by Vt+1 = VtUt and Λt+1 =
exp(Θt). This special eigenvalue problem (diagonal
plus rank-one update) can be solved in O(r2) time;
see Demmel (1997). This means that the matrix mul-
tiplication Vt+1 = VtUt becomes the most expensive
step in the computation, yielding O(nr2) complexity.

We reduce this cost by modifying the decomposition
slightly. Let Xt = VtWtΛtW

T
t V T

t be the factorization
of Xt, where Wt is a r× r orthogonal matrix, while Vt

and Λt are defined as before. The matrix update may
be written as:

Xt+1 = VtWt exp(log Λt + αWT
t V T

t ziziVtWt)W
T
t V T

t ,

yielding the following updates:

Vt+1 = Vt, Wt+1 = WtUt, Λt+1 = exp(Θt),

where log Λt + αWT
t V T

t ziziVtWt = UtΘtU
T
t . For a

general rank-one constraint, the product V T
t zi can

be calculated in O(nr) time, but for distance con-
straints O(r) operations are sufficient. The calcula-
tion of WT

t (V T
t zi) and computing the eigendecompo-

sition UtΘtU
T
t both take O(r2) time. Forming the

matrix product WtUt appears to cost O(r3) time, but
in fact the multiplication can be approximated very
accurately in O(r2 log r) and even in O(r2) time us-
ing the fast multipole method (Barnes & Hut, 1986;
Greengard & Rokhlin, 1987).

5.2.2. Computing the Projection Parameter

In the previous section, we assumed that we knew the
projection parameter α. Unlike in the case of the Burg
divergence, this parameter does not have a closed form
solution. Instead, we must compute α by solving the
nonlinear system of equations given in (3).

The main computational difficulty in finding α is in
calculating tr(Xt+1ziz

T
i ) = zT

i Xt+1zi for a given α.
Using the approach from Section 5.2.1, we have that
zT

i Xt+1zi = zT
i Vt+1Wt+1Λt+1W

T
t+1V

T
t+1zi, and for a

given choice of α, this trace can be computed in O(r2)
time. We built a custom nonlinear solver that is op-
timized for this problem, as a result of which we can
accurately compute α using only a few trace computa-
tions (rarely more than six trace evaluations per pro-
jection). Thus, the projection parameter can effec-
tively be computed in O(r2) time.

5.2.3. Algorithm

The algorithm for distance inequality constraints using
the von Neumann divergence is given as Algorithm 2.
By using the fast multipole method, every projection

Algorithm 2: Learning a low-rank kernel in von
Neumann divergence under distance constraints.

KernelLearnVonNeumann(r, {Ai}
c
i=1, V0,Λ0)

Input: r: rank of desired kernel matrix, {Ai}
c
i=1:

constraints, V0,Λ0: optional input kernel of rank r
in factored form
Output: V : output low-rank kernel factor matrix
1. If not given, create a random n × r orthogonal
matrix V0 and r × r diagonal matrix Λ0.
2. Set W = Ir, Λ = Λ0, i = 1, and λj = 0 ∀
constraints j.
3. Repeat until convergence:

• Let vT be row i1 of V0 minus row i2 of V0,
where, corresponding to constraint i, points
i1 and i2 are constrained to have squared Eu-
clidean distance less than or equal to bi.

• Set the following variables:

w ← WT v

α ← ComputeProj(v,w,W,Λ, bi)

β ← min(λi, α)

λi ← λi − β

• Compute the eigendecomposition UΘUT =
Λ + βwwT .

• Set W ← WU , Λ ← exp(Θ), i ← mod(i, c)+1.

4. Return V = V0WΛ1/2.

can be done in O(r2) time. The asymptotic running
time of this algorithm is the same as the algorithm
that uses the Burg divergence.

5.3. Generalizations and Special Cases

In the previous two sections, we focused on the case
of distance constraints. In this section, we briefly dis-
cuss generalizations to other constraints, and discuss
important special cases of our optimization problem.

When the constraints are similarity constraints (i.e.
Kij ≤ bi), the updates can be modified easily (details
are omitted due to lack of space). Other constraints
are possible as well; for example, one could incorporate
further distance constraints (such as ‖ai−aj‖

2
2 ≤ ‖al−

am‖2
2) or further similarity constraints (such as Kij ≤

Klm). Arbitrary linear constraints can also be applied,
the cost per projection update will then be O(nr).

If we use the von Neumann divergence, let r = n,
and set bi = 0 for all constraints, we exactly obtain
the DefiniteBoost optimization problem from Tsuda
et al. (2005). In this case, our algorithm computes
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the projection update in O(n2) time. In contrast, the
algorithm from Tsuda et al. (2005) computes the pro-
jection in a more expensive manner in O(n3) time. An-
other difference of our approach is that we compute the
exact projection, whereas Tsuda et al. (2005) compute
an approximate projection. Computing an approxi-
mate projection may lead to a faster per-iteration cost,
but it takes more iterations to converge to the optimal
solution. We illustrate this further in Section 6.

Another important special case is the nearest corre-

lation matrix problem (Higham, 2002), which is an
important problem that arises in applications in fi-
nance. In this problem, we set the constraints to be
Kii = 1 for all i. Thus, we seek to find the nearest
positive semi-definite matrix with unit diagonal. Our
algorithms from this paper give new methods of find-
ing low-rank correlation matrices. Previous algorithms
scale cubically in n.

Our formulation can also be employed for nonlinear di-
mensionality reduction, as in Weinberger et al. (2004).
The enforced constraints on the kernel matrix (center-
ing and isometry) are linear, and thus can be encoded
into our framework. The only difference is that Wein-
berger et al. maximize the trace of K, whereas we
minimize a matrix divergence. Comparisons between
these approaches is a potential area of future research.

6. Experiments

To show the effectiveness of our algorithms, we present
both clustering and classification results. We use two
data sets from real-life applications:

1. Digits data: a subset of the Pendigits data from
the UCI repository that contains handwritten samples
of the digits 3, 8, and 9. The raw data for each digit
is 16-dimensional, and our subset contains 317 digits.

2. GyrB protein data: a 52 × 52 kernel matrix among
bacteria proteins, containing three bacteria species.
This matrix is identical to the one used to test the
DefiniteBoost algorithm in Tsuda et al. (2005).

For classification, we compute accuracy using a k-
nearest neighbor classifier (k = 5) that computes dis-
tance in the feature space, with a 50/50 training/test
split and 2-fold cross validation. Our results are av-
eraged over 20 runs. For clustering, we use the ker-
nel k-means algorithm and compute accuracy using
the Normalized Mutual Information (NMI) measure,
a standard technique for determining quality of clus-
ters. NMI measures the amount of statistical informa-
tion shared by the random variables representing the
cluster and class distributions.

Constraints for the GyrB data set were generated ran-
domly as follows: two data points are chosen at ran-
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Figure 1. Results of clustering the Digits data set
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Figure 2. Classification accuracy with the gyrB data set

dom and a distance constraint is constructed. If the
data points are in the same class, the constraint is of
the form d(i1, i2) ≤ bi, where bi is the distance from
the original kernel matrix, and for different classes, we
construct d(i1, i2) ≥ bi constraints. For the Digits

data set, we added constraints of the form d(i1, i2) ≤
(1 − ǫ)bi for same class pairs and d(i1, i2) ≥ (1 + ǫ)bi

for different class pairs (bi is the original distance and
ǫ = .25). This is very similar to “idealizing” the ker-
nel, as in Kwok and Tsang (2003). Our convergence
tolerance was 10−3.

6.1. Results

We first ran our algorithms on the Digits data set
to learn a rank-16 kernel matrix using the randomly
generated constraints. The Gram matrix of the data
set (a 317x317 rank-16 matrix formed using a linear
kernel) was used as our initial kernel matrix. Figure 1
shows NMI values for the clustering with increasing
constraints. Adding just a few constraints improves
the results significantly, and both of the kernel learn-
ing algorithms perform comparably. Classification ac-
curacy using the k-nearest neighbor method was also
computed for this data set: marginal classification ac-
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curacy gains were observed with the addition of con-
straints (an increase from 94 to 97 percent accuracy for
both divergences). We also recorded convergence data
in terms of the number of cycles (sweeps) through all
constraints; for the von Neumann divergence, conver-
gence was attained from 11 sweeps for few constraints
to 105 sweeps for many constraints, and for the Burg
divergence, between 17 and 354 sweeps were needed for
convergence. This experiment highlights that our al-
gorithm can use constraints to learn a low-rank kernel
matrix (rank 16 as opposed to a full rank of 317). It
is noteworthy that the learned kernel performs better
than the original kernel for clustering and classifica-
tion.

As a second experiment, we performed a compari-
son to the DefiniteBoost algorithm of Tsuda et al.
(2005) (modified to correctly handle inequality con-
straints) using the GyrB data set. Using only con-
straints, we attempt to learn a kernel matrix that
achieves high classification accuracy. As in the exper-
iments of Tsuda et al. (2005), we learned a full-rank
kernel matrix starting from the scaled identity matrix.
In our experiments, we observed that using approxi-
mate projections—as done in DefiniteBoost—increases
the number of sweeps needed for convergence consid-
erably. For example, starting with the scaled iden-
tity as the initial kernel matrix and 100 constraints,
it took our von Neumann algorithm only 11 sweeps
to converge, whereas it took 3220 sweeps for the Def-
initeBoost algorithm to converge. Since the optimal
solutions are the same for approximate versus exact
projections, we converge to the same kernel matrix as
DefiniteBoost but in far fewer sweeps.

The slow convergence of the DefiniteBoost algorithm
did not allow us to run it with a larger set of con-
straints. For the Burg and the von Neumann exact
projection algorithms, the number of sweeps required
for convergence never exceeded 600 on runs of up to
1000 constraints. Figure 2 depicts the classification ac-
curacy achieved versus the number of constraints. The
classification accuracy on the original matrix is .948,
and so our learned kernels achieve even higher accu-
racy than the target kernel with a sufficient number
of constraints. These results highlight that excellent
classification accuracy can be obtained using a kernel
that is learned using only distance constraints. Note
that the starting kernel was the scaled identity matrix,
and so did not encode any domain information.

7. Conclusions

In this paper, we have developed algorithms for learn-
ing low-rank kernel matrices. By exploiting the rank-
preserving property of Bregman matrix divergences,

we were able to obtain convexity of our optimization
problem. Unlike previous kernel learning algorithms,
which have running times that are cubic in the number
of data points, our algorithms are highly efficient: both
algorithms have running times linear in the number of
data points and quadratic in the rank of the kernel.
Furthermore, our algorithms can be used in conjunc-
tion with a number of kernel-based learning algorithms
that are optimized for low-rank kernel representations.
The experimental results demonstrate that our algo-
rithms effectively learned low-rank and full-rank ker-
nels for classification and clustering problems.
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