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Abstract

We propose a novel distribution that generalizes the Multinomial distribution to
enable dependencies between dimensions. Our novel distribution is based on the
parametric form of the Poisson MRF model [1] but is fundamentally different be-
cause of the domain restriction to a fixed-length vector like in a Multinomial where
the number of trials is fixed or known. Thus, we propose the Fixed-Length Pois-
son MRF (LPMRF) distribution. We develop AIS sampling methods to estimate
the likelihood and log partition function (i.e. the log normalizing constant), which
was not developed for the Poisson MRF model. In addition, we propose novel
mixture and topic models that use LPMRF as a base distribution and discuss the
similarities and differences with previous topic models such as the recently pro-
posed Admixture of Poisson MRFs [2]. We show the effectiveness of our LPMRF
distribution over Multinomial models by evaluating the test set perplexity on a
dataset of abstracts and Wikipedia. Qualitatively, we show that the positive de-
pendencies discovered by LPMRF are interesting and intuitive. Finally, we show
that our algorithms are fast and have good scaling (code available online).

1 Introduction & Related Work

The Multinomial distribution seems to be a natural distribution for modeling count-valued data
such as text documents. Indeed, most topic models such as PLSA [3], LDA [4] and numerous
extensions—see [5] for a survey of probabilistic topic models—use the Multinomial as the funda-
mental base distribution while adding complexity using other latent variables. This is most likely
due to the extreme simplicity of Multinomial parameter estimation—simple frequency counts—that
is usually smoothed by the simple Dirichlet conjugate prior. In addition, because the Multinomial
requires the length of a document to be fixed or pre-specified, usually a Poisson distribution on doc-
ument length is assumed. This yields a Poisson-Multinomial distribution—which by well-known
results is merely an independent Poisson model.1 However, the Multinomial assumes independence
between the words because the Multinomial is merely the sum of independent categorical variables.
This restriction does not seem to fit with real-world text. For example, words like “neural” and
“network” will tend to co-occur quite frequently together in NIPS papers. Thus, we seek to relax
the word independence assumption of the Multinomial.

The Poisson MRF distribution (PMRF) [1] seems to be a potential replacement for the Poisson-
Multinomial because it allows some dependencies between words. The Poisson MRF is developed
by assuming that every conditional distribution is 1D Poisson. However, the original formulation
in [1] only allowed for negative dependencies. Thus, several modifications were proposed in [6]
to allow for positive dependencies. One proposal, the Truncated Poisson MRF (TPMRF), simply
truncated the PMRF by setting a max count for every word. While this formulation may provide

1The assumption of Poisson document length is not important for most topic models [4].

1



interesting parameter estimates, a TPMRF with positive dependencies may be almost entirely con-
centrated at the corners of the joint distribution because of the quadratic term in the log probability
(see the bottom left of Fig. 1). In addition, the log partition function of the TPMRF is intractable to
estimate even for a small number of dimensions because the sum is over an exponential number of
terms.

Thus, we seek a different distribution than a TPMRF that allows positive dependencies but is more
appropriately normalized. We observe that the Multinomial is proportional to an independent Pois-
son model with the domain restricted to a fixed length L. Thus, in a similar way, we propose a
Fixed-Length Poisson MRF (LPMRF) that is proportional to a PMRF but is restricted to a domain
with a fixed vector length—i.e. where ‖x‖1 = L. This distribution is quite different from previous
PMRF variants because the normalization is very different as will be described in later sections. For
a motivating example, in Fig. 1, we show the marginal distributions of the empirical distribution
and fitted models using only three words from the Classic3 dataset that contains documents regard-
ing library sciences and aerospace engineering (See Sec. 4). Clearly, real-world text has positive
dependencies as evidenced by the empirical marginals of “boundary” and “layer” (i.e. referring
to the boundary layer in fluid dynamics) and LPMRF does the best at fitting this empirical dis-
tribution. In addition, the log partition function—and hence the likelihood—for LPMRF can be
approximated using sampling as described in later sections. Under the PMRF or TPMRF models,
both the log partition function and likelihood were computationally intractable to compute exactly.2
Thus, approximating the log partition function of an LPMRF opens up the door for likelihood-based
hyperparameter estimation and model evaluation that was not possible with PMRF.
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Figure 1: Marginal Distributions from Classic3 Dataset (Top Left) Empirical Distribution, (Top
Right) Estimated Multinomial × Poisson joint distribution—i.e. independent Poissons, (Bottom
Left) Truncated Poisson MRF, (Bottom Right) Fixed-Length PMRF × Poisson joint distribution.
The simple empirical distribution clearly shows a strong dependency between “boundary” and
“layer” but strong negative dependency of “boundary” with “library”. Clearly, the word-independent
Multinomial-Poisson distribution underfits the data. While the Truncated PMRF can model depen-
dencies, it obviously has normalization problems because the normalization is dominated by the
edge case. The LPMRF-Poisson distribution much more appropriately fits the empirical data.

In the topic modeling literature, many researchers have realized the issue with using the Multino-
mial distribution as the base distribution. For example, the interpretability of a Multinomial can be
difficult since it only gives an ordering of words. Thus, multiple metrics have been proposed to eval-
uate topic models based on the perceived dependencies between words within a topic [7, 8, 9, 10].
In particular, [11] showed that the Multinomial assumption was often violated in real world data.
In another paper [12], the LDA topic assignments for each word are used to train a separate Ising
model—i.e. a Bernoulli MRF—for each topic in a heuristic two-stage procedure. Instead of model-
ing dependencies a posteriori, we formulate a generalization of topic models that allows the LPMRF
distribution to directly replace the Multinomial. This allows us to compute a topic model and word
dependencies jointly under a unified model as opposed to the two-stage heuristic procedure in [12].

2The example in Fig. 1 was computed by exhaustively computing the log partition function.
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This model has some connection to the Admixture of Poisson MRFs model (APM) [2], which was
the first topic model to consider word dependencies. However, the LPMRF topic model directly
relaxes the LDA word-independence assumption (i.e. the independent case is the same as LDA)
whereas APM is only an indirect relaxation of LDA because APM mixes in the exponential family
canonical parameter space while LDA mixes in the standard Multinomial parameter space. Another
difference with APM is that our proposed LPMRF topic model can actually produce topic assign-
ments for each word similar to LDA with Gibbs sampling [13]. Finally, the LPMRF topic model
does not fall into the same generalization of topic models as APM because the instance-specific
distribution is not an LPMRF—as described more fully in later sections. The follow up APM paper
[14] gives a fast algorithm for estimating the PMRF parameters. We use this algorithm as the basis
for estimating the topic LPMRF parameters. For estimating the topic vectors for each document, we
give a simple coordinate descent algorithm for estimation of the LPMRF topic model. This estima-
tion of topic vectors can be seen as a direct relaxation of LDA and could even provide a different
estimation algorithm for LDA.

2 Fixed-Length Poisson MRF
Notation Let p, n and k denote the number of words, documents and topics respectively. We will
generally use uppercase letters for matrices (e.g. Φ, X), boldface lowercase letters or indices of
matrices for column vectors (i.e xi,θ,Φs) and lowercase letters for scalar values (i.e. xi, θs).

Poisson MRF Definition First, we will briefly describe the Poisson MRF distribution and refer
the reader to [1, 6] for more details. A PMRF can be parameterized by a node vector θ and an
edge matrix Φ whose non-zeros encode the direct dependencies between words: PrPMRF(x |θ,Φ) =
exp

(
θTx+xT Φx−

∑p
s=1 log(xs!)−A (θ,Φ)

)
,where A (θ,Φ) is the log partition function needed

for normalization. Note that without loss of generality, we can assume Φ is symmetric because it
only shows up in the symmetric quadratic term. The conditional distribution of one word given all
the others—i.e. Pr(xs|x−s)—is a 1D Poisson distribution with natural parameter ηs = θs +xT

−sΦs

by construction. One primary issue with the PMRF is that the log partition function (i.e. A (θ,Φ))
is a log-sum over all vectors in Zp

+ and thus with even one positive dependency, the log partition
function is infinite because of the quadratic term in the formulation. Yang et al. [6] tried to address
this issue but, as illustrated in the introduction, their proposed modifications to the PMRF can yield
unusual models for real-world data.
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Figure 2: LPMRF distribution for L = 10 (left) and L = 20 (right) with negative, zero and pos-
itive dependencies. The distribution of LPMRF can be quite different than a Multinomial (zero
dependency) and thus provides a much more flexible parametric distribution for count data.

LPMRF Definition The Fixed-Length Poisson MRF (LPMRF) distribution is a simple yet fun-
damentally different distribution than the PMRF. Letting L ≡ ‖x‖1 be the length of document, we
define the LPMRF distribution as follows:

Pr
LPMRF

(x|θ,Φ, L) = exp(θTx+ xT Φx−
∑

s log(xs!)− AL(θ,Φ)) (1)

AL(θ,Φ) = log
∑
x∈XL

exp(θTx+ xT Φx−
∑

s log(xs!)) (2)

XL = {x : x ∈ Zp
+, ‖x‖1 = L}. (3)

The only difference from the PMRF parametric form is the log partition function AL(θ,Φ) which is
conditioned on the setXL (unlike the unbounded set for PMRF). This domain restriction is critical to
formulating a tractable and reasonable distribution. Combined with a Poisson distribution on vector
length L = ‖x‖1, the LPMRF distribution can be a much more suitable distribution for documents
than a Multinomial. The LPMRF distribution reduces to the standard Multinomial if there are no
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dependencies. However, if there are dependencies, then the distribution can be quite different than
a Multinomial as illustrated in Fig. 2 for an LPMRF with p = 2 and L fixed at either 10 or 20
words. After the original submission, we realized that for p = 2 the LPMRF model is the same
as the multiplicative binomial generalization in [15]. Thus, the LPMRF model can be seen as a
multinomial generalization (p ≥ 2) of the multiplicative binomial in [15].

LPMRF Parameter Estimation Because the parametric form of the LPMRF model is the same
as the form of the PMRF model and we primarily care about finding the correct dependencies, we
decide to use the PMRF estimation algorithm described in [14] to estimate θ and Φ. The algorithm
in [14] uses an approximation to the likelihood by using the pseudo-likelihood and performing `1
regularized nodewise Poisson regressions. The `1 regularization is important both for the sparsity of
the dependencies and the computational efficiency of the algorithm. While the PMRF and LPMRF
are different distributions, the pseudo-likelihood approximation for estimation provides good results
as shown in the results section. We present timing results to show the scalability of this algorithm in
Sec. 5. Other parameter estimation methods would be an interesting area of future work.

2.1 Likelihood and Log Partition Estimation

Unlike previous work on the PMRF or TPMRF distributions, we develop a tractable approximation
to the LPMRF log partition function (Eq. 2) so that we can compute approximate likelihood values.
The likelihood of a model can be fundamentally important for hyperparameter optimization and
model evaluation.

LPMRF Annealed Importance Sampling First, we develop an LPMRF Gibbs sampler by con-
sidering the most common form of Multinomial sampling, namely by taking the sum of a sequence
of L Categorical variables. From this intuition, we sample one word at a time while holding all other
words fixed. The probability of one word in the sequence w` given all the other words is propor-
tional to exp(θs + 2Φsx−`) where x−` is the sum of all other words. See the Appendix for the
details of Gibbs sampling. Then, we derive an annealed importance sampler [16] using the Gibbs
sampling by scaling the Φ matrix for each successive distribution by the linear sequence starting
with 0 and ending with 1 (i.e. γ = 0, . . . , 1). Thus, we start with a simple Multinomial sample
from Pr(x |θ, 0 · Φ, L) = PrMult(x |θ, L) and then Gibbs sample from each successive distribution
PrLPMRF(x |θ, γΦ, L) updating the sample weight as defined in [16] until we reach the final distri-
bution when γ = 1. From these weighted samples, we can compute an estimate of the log partition
function [16].

Upper Bound Using Hölder’s inequality, a simple convex relaxation and the partition function of a
Multinomial, an upper bound for the log partition function can be computed: AL(θ,Φ) ≤ L2λΦ,1 +
Llog(

∑
s exp θs) − log(L!), where λΦ,1 is the maximum eigenvalue of Φ. See the Appendix for

the full derivation. We simplify this upper bound by subtracting log(
∑

s exp θs) from θ (which
does not change the distribution) so that the second term becomes 0. Then, neglecting the constant
term −log(L!) that does not interact with the parameters (θ,Φ), the log partition function is upper
bounded by a simple quadratic function w.r.t. L.

Weighting Φ for Different L For datasets in which L is observed for every sample but is not
uniform—such as document collections, the log partition function will grow quadratically in L if
there are any positive dependencies as suggested by the upper bound. This causes long documents
to have extremely small likelihood. Thus, we must modify Φ as L gets larger to conteract this
effect. We propose a simple modification that scales the Φ for each L: Φ̃L = ω(L)Φ. In particular,
we propose to use the sigmoidal function using the Log Logistic cumulative distribution function
(CDF): ω(L) = 1− LogLogisticCDF(L |αLL, βLL). We set the βLL parameter to 2 so that the tail is
O(1/L2) which will eventually cause the upper bound to approach a constant. Letting L̄ = 1

n

∑
i Li

be the mean instance length, we choose αLL = cL̄ for some small constant c. This choice of αLL
helps the weighting function to appropriately scale for corpuses of different average lengths.

Final Approximation Method for All L For our experiments, we approximate the log partition
function value for all L in the range of the corpus. We use 100 AIS samples for 50 different test
values of L linearly spaced between the 0.5L̄ and 3L̄ so that we cover both small and large values
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of L. This gives a total of 5,000 annealed importance samples. We use the quadratic form of the
upper bound Ua(L) = ω(L)L2a (ignoring constants with respect to Φ) and find a constant a that
upper bounds all 50 estimates: amax = maxL[ω(L)L2]−1(ÂL(θ,Φ)−Llog(

∑
s exp θs)+log(L!)),

where ÂL is an AIS estimate of the log partition function for the 50 test values of L. This gives a
smooth approximation for all L that are greater than or equal to all individual estimates (figure of
example approximation in Appendix).

Mixtures of LPMRF With an approximation to the likelihood, we can easily formulate an esti-
mation algorithm for a mixture of LPMRFs using a simple alternating, EM-like procedure. First,
given the cluster assignments, the LPMRF parameters can be estimated as explained above. Then,
the best cluster assignments can be computed by assigning each instance to the highest likelihood
cluster. Extending the LPMRF to topic models requires more careful analysis as described next.

3 Generalizing Topic Models using Fixed-Length Distributions

In standard topic models like LDA, the distribution contains a unique topic variable for every word in
the corpus. Essentially, this means that every word is actually drawn from a categorical distribution.
However, this does not allow us to capture dependencies between words because there is only one
word being drawn at a time. Therefore, we need to reformulate LDA in a way that the words from a
topic are sampled jointly from a Multinomial. From this reformulation, we can then simply replace
the Multinomial with an LPMRF to obtain a topic model with LPMRF as the base distribution. Our
reformulation of LDA groups the topic indicator variables for each word into k vectors correspond-
ing to the k different topics. These k “topic indicator” vectors zl are then assumed to be drawn
from a Multinomial with fixed length L = ‖zj‖. This grouping of topic vectors yields an equivalent
distribution because the topic indicators are exchangeable and independent of one another given the
observed word and the document-topic distribution. This leads to the following generalization of
topic models in which an observation xi is the summation of k hidden variables zji :

Generic Topic Model Novel LPMRF Topic Model
wi ∼ SimplexPrior(α) wi ∼ Dirichlet(α)

Li ∼ LengthDistribution(L̄) Li ∼ Poisson(λ = L̄)

mi ∼ PartitionDistribution(wi, Li) mi ∼ Multinomial(p = wi;N = Li)

zji ∼ FixedLengthDist(φj ; ‖zji ‖ = mj
i ) zji ∼ LPMRF(θj ,Φj ;L = mj

i )

xi =
∑k

j=1 z
j
i xi =

∑k
j=1 z

j
i .

Note that this generalization of topic models does not require the partition distribution and the fixed-
length distribution to be the same. In addition, other distributions could be substituted for the Dirich-
let prior distribution on document-topic distributions like the logistic normal prior. Finally, this gen-
eralization allows for real-valued topic models for other types of data although exploration of this is
outside the scope of this paper.

This generalization is distinctive from the topic model generalization termed “admixtures” in [2].
Admixtures assume that each observation is drawn from an instance-specific base distribution whose
parameters are a convex combination of previous parameters. Thus an admixture of LPMRFs could
be formulated by assuming that each document, given the document-topic weights wi, is drawn
from a LPMRF(θ̄i =

∑
j wijθ

j , Φ̄i = wijΦ
j ;L = ‖xi‖1). Though this may be an interesting

model in its own right and useful for further exploration in future work, this is not the same as
the above proposed model because the distribution of xi is not an LPMRF but rather a sum of
independent LPMRFs. One case—possibly the only case—where these two generalizations of topic
models intersect is when the distribution is a Multinomial (i.e. a LPMRF with Φ = 0). As another
distinction from APM, the LPMRF topic model directly generalizes LDA because the LPMRF in the
above model reduces to a Multinomial if Φ = 0. Fully exploring the differences between this topic
model generalization and the admixture generalization are quite interesting but outside the scope of
this paper.

With this formulation of LPMRF topic models, we can create a joint optimization problem to solve
for the topic matrix Zi = [z1

i , z
2
i , . . . ,z

k
i ] for each document and to solve for the shared LPMRF
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parameters θ1...k,Φ1...k. The optimization is based on minimizing the negative log posterior:

arg min
Z1...n,θ1...k,Φ1...k

− 1

n

n∑
i=1

k∑
j=1

Pr
LPMRF

(zji |θ
j ,Φj ,mj

i )−
n∑

i=1

log( Pr
prior

(m1...k
i ))−

k∑
j=1

log( Pr
prior

(θj ,Φj))

s.t. Zie = xi, Zi ∈ Zk×p
+ ,

where e is the all ones vector. Notice that the observations xi only show up in the constraints.
The prior distribution on m1...k

i can be related to the Dirichlet distribution as in LDA by taking
Prprior(m

1...k
i ) = PrDir(m

j
i/
∑

`m
`
i |α). Also, notice that the documents are all independent if the

LPMRF parameters are known so this optimization can be trivially parallelized.

Connection to Collapsed Gibbs Sampling This optimization is very similar to the collapsed
Gibbs sampling for LDA [13]. Essentially, the key part to estimating the topic models is estimating
the topic indicators for each word in the corpus. The model parameters can then be estimated directly
from these topic indicators. In the case of LDA, the Multinomial parameters are trivial to estimate
by merely keeping track of counts and thus the parameters can be updated in constant time for every
topic resampled. This also suggests that an interesting area of future work would be to understand the
connections between collapsed Gibbs sampling and this optimization problem. It may be possible
to use this optimization problem to speed up Gibbs sampling convergence or provide a MAP phase
after Gibbs sampling to get non-random estimates.

Estimating Topic Matrices Z1...n For LPMRF topic models, the estimation of the LPMRF pa-
rameters given the topic assignments requires solving another complex optimization problem. Thus,
we pursue an alternating EM-like scheme as in LPMRF mixtures. First, we estimate LPMRF param-
eters with the PMRF algorithm from [14], and then we optimize the topic matrixZi ∈ Rp×k for each
document. Because of the constraints on Zi, we pursue a simple dual coordinate descent procedure.
We select two coordinates in row r ofZi and determine if the optimization problem can be improved
by moving a words from topic ` to topic q. Thus, we only need to solve a series of simple univariate
problems. Each univariate problem only has xis number of possible solutions and thus if the max
count of words in a document is bounded by a constant, the univariate subproblems can be solved
efficiently. More formally, we are seeking a step size a such that Ẑi = Zi + aere

T
` − aereTq gives

a better optimization value than Zi. If we remove constant terms w.r.t. a, we arrive at the following
univariate optimization problem (suppressing dependence on i because each of the n subproblems
are independent):

arg min
−z`

r≤a≤z
q
r

−a[θ`r − θqr + 2zT` Φ`
r − 2zTq Φq

r] + [log((z`r+a)!) + log((zqr−a)!)]

+ Am`+a(θ`,Φ`) + Amq+a(θq,Φq)− log( Pr
prior

(m̃1...k)),

where m̃ is the new distribution of length based on the step size a. The first term is the linear and
quadratic term from the sufficient statistics. The second term is the change in base measure of a
word is moved. The third term is the difference in log partition function if the length of the topic
vectors changes. Note that the log partition function can be precomputed so it merely costs a table
lookup. The prior also only requires a simple calculation to update. Thus the main computation
comes in the inner product zT` Φ`

r. However, this inner product can be maintained very efficiently
and updated efficiently so that it does not significantly affect the running time.

4 Perplexity Experiments

We evaluated our novel LPMRF model using perplexity on a held-out test set of documents from
a corpus composed of research paper abstracts3 denoted Classic3 and a collection of Wikipedia
documents. The Classic3 dataset has three distinct topic areas: medical (Medline, 1033), library
information sciences (CISI, 1460) and aerospace engineering (CRAN, 1400).

3http://ir.dcs.gla.ac.uk/resources/test_collections/
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Experimental Setup We train all the models using a 90% training split of the documents
and compute the held-out perplexity on the remaining 10% where perplexity is equal to
exp(−L(X test|θ1...k,Φ1...k)/Ntest), where L is the log likelihood and Ntest is the total number of
words in the test set. We evaluate single, mixture and topic models with both the Multinomial as
the base distribution and LPMRF as the base distribution at k = {1, 3, 10, 20}. The topic indicator
matrices Zi for the test set are estimated by fitting a MAP-based estimate while holding the topic
parameters θ1...k,Φ1...k fixed.4 For a single Multinomial or LPMRF, we set the smoothing param-
eter β to 10−4. 5 We select the LPMRF models using all combinations of 20 log spaced λ between
1 and 10−3, and 5 linearly spaced weighting function constants c between 1 and 2 for the weighting
function described in Sec. 2.1. In order to compare our algorithms with LDA, we also provide per-
plexity results using an LDA Gibbs sampler [13] for MATLAB 6 to estimate the model parameters.
For LDA, we used 2000 iterations and optimized the hyperparameters α and β using the likelihood
of a tuning set. We do not seek to compare with many topic models because many of them use the
Multinomial as a base distribution which could be replaced by a LPMRF but rather we simply focus
on simple representative models.7

Results The perplexity results for all models can be seen in Fig. 3. Clearly, a single LPMRF sig-
nificantly outperforms a single Multinomial on the test dataset both for the Classic3 and Wikipedia
datasets. The LPMRF model outperforms the simple Multinomial mixtures and topic models in all
cases. This suggests that the LPMRF model could be an interesting replacement for the Multino-
mial in more complex models. For a small number of topics, LPMRF topic models also outperforms
Gibbs sampling LDA but does not perform as well for larger number of topics. This is likely due to
the well-developed sampling methods for learning LDA. Exploring the possibility of incorporating
sampling into the fitting of the LPMRF topic model is an excellent area of future work. We believe
LPMRF shows significant promise for replacing the Multinomial in various probabilistic models.
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Figure 3: (Left) The LPMRF models quite significantly outperforms the Multinomial for both
datasets. (Right) The LPMRF model outperforms the simple Multinomial model in all cases. For a
small number of topics, LPMRF topic models also outperforms Gibbs sampling LDA but does not
perform as well for larger number of topics.

Qualitative Analysis of LPMRF Parameters In addition to perplexity analysis, we present the
top words, top positive dependencies and the top negative dependencies for the LPMRF topic
model in Table 1. Notice that in LDA, only the top words are available for analysis but an
LPMRF topic model can produce intuitive dependencies. For example, the positive dependency
“language+natural” is composed of two words that often co-occur in the library sciences but each
word independently does not occur very often in comparison to “information” and “library”. The
positive dependency “stress+reaction” suggests that some of the documents in the Medline dataset
likely refer inducing stress on a subject and measuring the reaction. Or in the aerospace topic, the
positive dependency “non+linear” suggests that non-linear equations are important in aerospace.
Notice that these concepts could not be discovered with a standard Multinomial-based topic model.

4For topic models, the likelihood computation is intractable if averaging over all possible Zi. Thus, we
use a MAP simplification primarily for computational reasons to compare models without computationally
expensive likelihood estimation.

5For the LPMRF, this merely means adding 10−4 to y-values of the nodewise Poisson regressions.
6http://psiexp.ss.uci.edu/research/programs_data/toolbox.htm
7We could not compare to APM [2, 14] because it is not computationally tractable to calculate the likelihood

of a test instance in APM, and thus we cannot compute perplexity.

7

http://psiexp.ss.uci.edu/research/programs_data/toolbox.htm


Table 1: Top Words and Dependencies for LPMRF Topic Model

Top words Top Pos. Edges Top Neg. Edges Top words Top Pos. Edges Top Neg. Edges Top words Top Pos. Edges Top Neg. Edges

information states+united paper-book patients term+long cells-patient flow supported+simply flow-shells

library point+view libraries-retrieval cases positive+negative patients-animals pressure account+taken number-numbers

research test+tests library-chemical normal cooling+hypothermi patients-rats boundary agreement+good flow-shell

system primary+secondary libraries-language cells system+central hormone-protein results moment+pitching wing-hypersonic

libraries recall+precision system-published treatment atmosphere+height growth-parathyroid theory non+linear solutions-turbulent

book dissemination+sdi information-citations children function+functions patients-lens method lower+upper mach-reynolds

systems direct+access information-citation found methods+suitable patients-mice layer tunnel+wind flow-stresses

data language+natural chemical-document results stress+reaction patients-dogs given time+dependent theoretical-drag

use years+five library-scientists blood low+rates hormone-tumor number level+noise general-buckling

scientific term+long library-scientific disease case+report patients-child presented purpose+note made-conducted

Topic 1 Topic 2 Topic 3

5 Timing and Scalability
Finally, we explore the practical performance of our algorithms. In C++, we implemented the three
core algorithms: fitting p Poisson regressions, fitting the n topic matrices for each document, and
sampling 5,000 AIS samples. The timing for each of these components respectively can be seen in
Fig. 4 for the Wikipedia dataset. We set λ = 1 in the first two experiments which yields roughly
20,000 non-zeros and varied λ for the third experiment. Each of the components is trivially par-
allelized using OpenMP (http://openmp.org/). All timing experiments were conducted on
the TACC Maverick system with Intel Xeon E5-2680 v2 Ivy Bridge CPUs (2.80 GHz), 20 CPUs
per node, and 12.8 GB memory per CPU (https://www.tacc.utexas.edu/). The scaling
is generally linear in the parameters except for fitting topic matrices which is O(k2). For the AIS
sampling, the scaling is linear in the number of non-zeros in Φ irrespective of p. Overall, we believe
our implementations provide both good scaling and practical performance (code available online).
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Figure 4: (Left) The timing for fitting p Poisson regressions shows an empirical scaling of O(np).
(Middle) The timing for fitting topic matrices empirically shows scaling that is O(npk2). (Right)
The timing for AIS sampling shows that the sampling is approximately linearly scaled with the
number of non-zeros in Φ irrespective of p.

6 Conclusion
We motivated the need for a more flexible distribution than the Multinomial such as the Poisson
MRF. However, the PMRF distribution has several complications due to its normalization that hin-
der it from being a general-purpose model for count data. We overcome these difficulties by re-
stricting the domain to a fixed length as in a Multinomial while retaining the parametric form of
the Poisson MRF. By parameterizing by the length of the document, we can then efficiently com-
pute sampling-based estimates of the log partition function and hence the likelihood—which were
not tractable to compute under the PMRF model. We extend the LPMRF distribution to both mix-
tures and topic models by generalizing topic models using fixed-length distributions and develop
parameter estimation methods using dual coordinate descent. We evaluate the perplexity of the pro-
posed LPMRF models on datasets and show that they offer good performance when compared to
Multinomial-based models. Finally, we show that our algorithms are fast and have good scaling.
Potential new areas could be explored such as the relation between the topic matrix optimization
method and Gibbs sampling. It may be possible to develop sampling-based methods for the LPMRF
topic model similar to Gibbs sampling for LDA. In general, we suggest that the LPMRF model could
open up new avenues of research where the Multinomial distribution is currently used.
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A LPMRF Gibbs Sampling Derivation

As described in the main paper, we develop an LPMRF Gibbs sampler by considering the most common
form of Multinomial sampling, namely by taking the sum of a sequence of L Categorical variables. Thus,
if w1,w2, . . . ,wL ∼ Categorical(θ) and x =

∑L
`=1w` ∼ Multinomial(θ|L), then the probability of any

particular sequence is merely the Multinomial probability scaled by the inverse of the multinomial coefficient:

Pr(w1,w2, . . . ,wL |θ) =

(
L

x1, x2, . . . , xp

)−1

Pr
Mult

(x =

L∑
`=1

w` |θ, L). (4)

In a similar way, we can implicitly derive the probability for a particular sequence of words whose sum is
distributed as an LPMRF:

Pr(w1,w2, . . . ,wL |θ,Φ) =

(
L

x1, x2, . . . , xp

)−1

Pr
LPMRF

(x =

L∑
`=1

w` |θ,Φ, L) (5)

= exp(θTx+ xT Φx− AL(θ,Φ)− log(L!)). (6)

To develop a Gibbs sampler, we simply need to compute the conditional probability of one of these words given
all the other words. Letting x−` ≡

∑
m 6=`wm, then x = x−` +w`. Thus, using the fact that the conditional

distribution is proportional to the joint distribution, we can derive the form of the conditional distribution:

Pr(w` = es |w1, . . . ,w`−1,w`+1, . . . ,wL,θ,Φ) (7)

∝ exp(θT (x−` +w`) + (x−` +w`)
T Φ(x−` +w`)) (8)

∝ exp(θs + 2Φsx−`). (9)

Thus, each word can be sampled given the state of all the other words thus producing an LPMRF Gibbs sampler.

B Derivation of LPMRF Log Partition Upper Bound

AL(θ,Φ) ≤ log
[(

sup
x∈XL

exp(xT Φx)

) ∑
x∈XL

exp(θTx−
∑

s log(xs!))
]

(10)
Hölder’s Inequality

= log
[(

sup
x∈XL

exp(xT Φx)

)
exp(L log(

∑
s exp(θs))− log(L!))

]
(11)

Derived from Multinomial

≤ log
[

exp(L2λΦ,1) exp(L log(
∑

s exp θs)− log(L!))
]

(12)
Convex Relaxation of XL

= L2λΦ,1 + Llog(
∑

s exp θs)− log(L!), (13)

where λΦ,1 is the maximum eigenvalue of Φ. See next section for derivation of Eqn. 11.

B.1 Derivation of Multinomial Partition Function

Lemma 1.
∑

x∈XL
exp(θTx−

∑p
s=1 log(xs!)) = exp(L log(

∑
s exp θs)− log(L!))

The derivation is based primarily on the fact that the above expression can be seen as the normalizing factor of
a reparameterized Multinomial (or as a scaled version of a standard Multinomial parameterization).
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Proof.∑
x∈XL

exp(θTx−
p∑

s=1

log(xs!))

=
∑

x∈XL

exp(θTx−
p∑

s=1

log(xs!) + ceTx− ceTx+ log(L!)− log(L!))

(where e = [1, 1, . . . , 1]T and c is a constant)

=
1

L!

∑
x∈XL

exp((θ − c)Tx−
p∑

s=1

log(xs!) + ceTx+ log(L!))

=
1

L!

∑
x∈XL

exp((θ − c)Tx−
p∑

s=1

log(xs!) + Lc+ log(L!))

=
1

L!
exp(cL)

∑
x∈XL

exp((θ − c)Tx−
p∑

s=1

log(xs!) + log(L!))

= exp(Lc− log(L!))
∑

x∈XL

exp((θ − c)Tx−
p∑

s=1

log(xs!) + log(L!))

(Letting c = log
( p∑

s

exp(θs)
)
)

= exp(Llog
( p∑

s

exp(θs)
)
− log(L!))

∑
x∈XL

exp((θ − log
( p∑

s

exp(θs)
)
)Tx−

p∑
s=1

log(xs!) + log(L!))

= exp(Llog
( p∑

s

exp(θs)
)
− log(L!))

∑
x∈XL

exp(log(ρ)Tx−
p∑

s=1

log(xs!) + log(L!))︸ ︷︷ ︸
Partition function of Multinomial = 1

(14)

= exp(Llog
( p∑

s

exp(θs)
)
− log(L!))

∑
x∈XL

L!∏p
s=1 xs!

p∏
s=1

ρxs
s︸ ︷︷ ︸

Partition function of Multinomial = 1

= exp(Llog
( p∑

s

exp(θs)
)
− log(L!))

where 14 is derived by showing that ρ = exp(θ−log
(∑p

s exp(θs)
)
) is a valid standard Multinomial parameter

vector because the vector is positive and sums to 1:
p∑

t=1

exp
(
θt − log

( p∑
s

exp(θs)
))

=
1∑p

s=1 exp(θs)

p∑
t=1

exp(θt) =

∑p
t=1 exp(θt)∑p
s=1 exp(θs)

= 1.
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C Example of Log Partition Estimation
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Figure 5: Example of log partition estimation for all values of L.
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